

Personal Computer

IIIZ·OOODU
SYSTEM PROGRAM

MANUAL

SHARP

~SHARP CORPORATION

Personal Computer
MZ-808

SYSTEM
PROGRAM

MANUAL

MARCH 1982

080281-050382

r--------------------------NOTICE------------------------~

This manual is based on the system programs for the MZ-80B personal computer. It

describes text editor SB-2102, assembler SB-2202, tinker SB-2301, symbolic

debugger SB-2401, PROM formatter SB-2501 and K-B converter SB-2601.

The MZ-80B general-purpose personal computer is supported by system software

which is filed in software packs (cassette tapes or diskettes). All system software is

subject to revision without prior notice, therefore, you are requested to pay special

attention to me version numbers.

This manual has been carefully prepared and checked for compelteness, accuracy

and clarity. However, in the event that you should encounter any errors or ambi

guities, please feel free to contact your local SHARP representative for clarification.

All system software packs provided for the MZ-80B are original products, and all

rights are reserved. No portion of any system software pack may be copied without

permission of the SHARP Corporation.

PREFACE

This manual describes the system programs, i.e., the editor-assembler, symbolic

debugger, tinker and PROM formatter, which assist in preparation of assembler programs

for the MZ-80B personal computer.

Computer programming languages such

as BASIC, assembly language, and

machine language are classified hierarchi

cally as shown at right.

The BASIC interpreter automatically

converts BASIC programs into machine

language programs, executes them and

informs the operator of errors encounter

ed in any program step so that the oper

ator is not required to use the assembler

or compiler before programs are executed.

With BASIC, however, the processing

speed is not as fast as can be achieved by

controlling the CPU directly and some

special control functions are not available. The assembly language described in this

manual provides a means of controlling the CPU directly.

This manual assumes that readers are familiar with the contents of the "BASIC

LANGUAGE MANUAL", "MONITOR REFERENCE MANUAL" and "OWNER'S

MANUAL" provided with ~MZ-80B. Refer to these manuals as necessary.

Guide to use of this manual

For the basic principles of the editor
assembler, tinker, symbolic dehugger
and PROM formatter.

For program development using the
system programs.

To code application programs for
devices using microprocessors.

Errors occurring during system program
operation.

For details on the system programs.

To use programs stored on a tape re
corded with the MZ-80K.

To link programs developed using the
system programs with FDOS.

To link programs developed using the
system programs with a BASIC program.

To connect a new user device to the
MZ-80B.

For the functions of monitor SB-1511.

">---'---~ Appendix 11, "UNKING BASIC PROGRAMS WITH
MACHINE LANGUAGE PROGRAMS"

"">---=-==---- Appendix 12, "PAPER TAPE PUNCHER
AND READER INTERFACE"

Appendix 13, "1/0 MAP"

D

Product Guide

The following materials are included in this group of products.

SYSTEM PROGRAM MANUAL

Z-80 PROGRAMMING MANUAL

System Program Filed in 4 Cassette Tapes

• Editor-Assembler (SB-2102, SB-2202), K-B converter (SB-2601)

• Linker (SB-2301)

• Symbolic debugger (SB-2401)

• PROM formatter (SB-2501)

m

-----------------CONTENTS-----------------

CHAPTER 1 OUTLINE OF SYSTEM PROGRAM

1.1 THE MEANING OF "CLEAN COMPUTER" . 2

1.2 SYSTEM PROGRAM CONFIGURATION . 4
1.2.1. System program organization . 5

1.2.2. Functions of the text editor . 6

1.2.3. Functions of the assembler . 7

1.2.4. Functions of the linker . 7

1.2.5. Functions of the symbolic debugger : . 8

1.2.6. Functions of the PROM formatter . 8

1.3 CONTROL KEYS OPERATIONS . 9

1.3 .1. Main keyboard . 9

1.3.2. Automatic repeat function . 10

1.3.3. Cursor control keys . 10

1.4 PROCEDURE FOR USING THE SYSTEM PROGRAMS
TO DEVELOP OBJECT PROGRAMS . 11

CHAPTER 2 EDITOR-ASSEMBLER 13

2 .1 OUTLINE OF THE EDITOR-ASSEMBLER 14

2.2 TEXT EDITOR . 15
2.2.1. Outline of the text editor 15

2.2.2. Character pointer and delimiter . 17

2.2.3. Text editor commands. 19

R (Read file) Command 19

A (Append file) Command . 20

W (Write) Command 21

T (Type) Command . 22

B (Begin) Command 23

Z Command . 23

J (Jump) Command . 23

L (line) Command 24

M (Move) Command . 24

C (Change) Command 25

Q (Queue) Command . 25

I (Insert) Command . 26

K (Kill) Command : . 27

D (Delete) Command . 28

S (Search) Command . 29

V (Verify) Command 30

= Command . 31

. Command . 31

& Command . 31

X (TRANSfer) Command 31

IV

Command . 31

! Command . 32

2.3 ASSEMBLER . 33

2.3.1. Outline of the assembler . 33

2.3.2. Assembly language rules . 36

2.3.3. Assembly listing and assembler messages . 40

2.3.4. Assembler directives . 43

2.4 ERROR MESSAGES OF THE EDITOR-ASSEMBLER . 52

2.4.1. Text editor error messages . 52

2.4.2. Assembler messages . 53

CHAPTER 3 LINKER . 55

3.1 OUTLINE OF THE LINKER . 56

3.2 SYMBOL TABLE 57

3.3 LINKER BIAS AND ADDRESSES . 58

3.4 RELATIONSHIP BETWEEN THE ORG
DIRECTIVE AND THE FOUR ADDRESSES . 61

3.5 LINKER COMMANDS . 62

L (relocate Load) Command . 62

N (Next file) Command . 63

H (Height) Command . 63

T (Table dump) Command . 64

S (Save) Command 66

V (Verify) Command 67

X (data TRANSfer) Command . 67

* (CLEAR bias and table) Command . 68

Command . 68

! Command . 68

3.6 ERROR MESSAGES OF THE LINKER . 69

3.7 HOW TO USE MONITOR SUBROUTINES . 70

CHAPTER 4 SYMBOLIC DEBUGGER 73

4.1 OUTLINE OF THE SYMBOLIC DEBUGGER . 74

4.2 BREAKPOINTS . 76

4.3 SYMBOLIC DEBUGGER COMMANDS . 77

L (relocate Load) Command . 77

N (Next file) Command 78

H (Height) Command . 78

T (Table dump) Command 79

V

· (CLEAR bias and table) Command. 79

B (Breakpoint) Command . 8 1

& (CLEAR breakpoint) Command. 83

M (Memory dump) Command . 84

D (memory list Dump) Command • . 85

W (data Write) Command . 86
G (Goto) Command 87

I (Indicative start) Command . 88

A (Accumulator) Command . 89

C (Complementary) Command . 89

P (Program counter) Command . 90
R (Register) Command . 90
X (data TRANSfer) Command 92

S (Save) Command . 93

Y (Yank) Command . 94
V (Verify) Command . 95

:If Command . 96

! Command . 96

4.4 ERROR MESSAGES OF THE SYMBOLIC DEBUGGER . 97

CHAPTER 5 PROM FORMATTER . 99

5.1 OUTLINE OF THE PROM FORMATTER l OO

5.2 PROM WRJTER FORMATS 102

5.2. 1. BNPF 102

5.2.2. BIOF 103

5.2.3. HEXADECIMAL 104

5.2.4. BINARY 105

5.2.5. Performance boards of various companies 106

5.3 PROM FORMATTER COMMANDS 108

FP (Format Punch) Command 108

FC (parity Form Change) Command 109

FR (Format Read) Command 110

FM (Format Message) Command 1 11

5.4 ERROR MESSAGES OF THE PROM FORMATTER 113

VI

CHAPTER 6 SAMPLE PROGRAM 115

6.1 DRAWING AN APPROACHING SQUARE 116

6.2 SORTING OAT A 1 19

6.3 MAKING A DIGITAL CLOCK 122

6.4 MULTIPLYING HEXADECIMAL NUMBERS 128

6.5 DISPLAYING BINARY DATA IN HEXADECIMAL REPRESENTATION 135

6.6 ENTERING HEXADECIMAL DATA 137

6.7 DISPLAYING A MEMORY BLOCK 140

6.8 WRITING DATA INTO A MEMORY AREA 142

APPENDIX 145

1. ASCll CODE TABLE .. 146

2. SYSTEM PROGRAM COMMANDS .. 147

2.1. Text editor commands . 14 7
2.2. Linker commands 148
2.3. PROM formatter commands 148

2.4. Symbolic debugger commands 149

3. ERROR MESSAGES 150

3.1 . Text editor error messages 150

3.2. Assembler messages 151

3.3. Linker messages 152

3.4. Symbolic debugger error messages 153

3.5. PROM formatter error messages 153

4. TEXT EDITOR FUNCTIONS 154

5. ASSEMBLY PROCEDURES 155

6. LINKER FUNCTIONS 159

7. SYMBOLIC DEBUGGER FUNCTIONS 162

8. PROM FORMA TIER FUNCTIONS 164

9. CONVERTING MZ-80K TAPES TO SOB TAPES 165
9.1 When FDOS is available 165

9.2 With a tape based system•............ 166

VII

10. LINKING FDOS WITH MACHINE LANGUAGE PROGRAMS 167

10.1. Execution after transfer to a diskette with the XFER command 167

10.2. Direct execution using the RUN command 168

10.3. Execution using the LIMIT command 169

11. LINKING BASIC PROGRAMS WITH MACHINE LANGUAGE PROGRAMS 170

12. PAPER TAPE PUNCHER AND READER INTERFACE 171

12.1. Signal name 171

12.2. 1/0 ports 171

12.3. Timing chart 172

12.4. Preparing a paper tape puncher/reader 1/0 card 173

13. 1/0 MAP 175

14. MONITOR 176

14.1. Functions of monitor SB-1511 176
14.2. Monitor subroutines 178
14.3. Monitor SB-1511 assembly list 184

VIU

CHAPTER 1

OUTLINE OF SYSTEM PROGRAM

1.1 THE MEANING OF"CLEAN COMPUTER"

Three important developments accompanied the shift from the boom in microcomputer kits to the

entrance of personal computers.

(1) Mass production reduced the cost of RAM and ROM devices so that they became readily available.

This development eliminated the need to devote great amounts of time and effort to compressing

system functions to the maximum extent possible to conserve valuable memory for user programs. Now

it is more important that system programs be written and managed in a structured manner and that their

overall usefulness be raised. It is more and more apparent that what the user comes in contact with is not

so much a unit of hardware as a software reinforced computer.

(2) Compact, reliable external memory units with large storage capacities became available.

Floppy disks and fixed disks are currently the basis for system configurations, but sooner or later

charge coupled devices and magnetic bubble memories will be used in this capacity. This suggests that

there will be increasing stratification of programs culminating in operating systems, and that the efficiency

of systems will also increase. From the user's point of view, this means that a wide variety of programs will

be readily available for use.

(3) The development of various peripheral circuit LSis has made possible realization of efficient inter

faces with high performance terminals.

This means the main concern of the user in the future will be with how many functions are provided

in a system and how useful they are. In terms of the contents of the system, the main concern will be in

developing operating systems capable of organically combining terminals and program processing with

a minimum of effort on the part of the user. It is even possible that real time processing of multiple tasks

and jobs on a level approaching that of minicomputers will become possible with the operating systems

of microcomputers.

As is apparent, it is extremely difficult to predict the extent to which computers will evolve as integ

rated circuit technology and program language theory become widely dispersed. This tends to undermine

the belief which some people have that rapid changes in hardware result in good computers.

Although the name "clean computer" has been given to the MZ-80 series, computers are basically clean

in principle. As the field of personal computers opens, the concept of embedding a single language,

BASIC, in ROM has become a hindrance to use of full computer capacity. Out of consideration for the

many different types of service which will be required by users as yet-to-be developed technology comes

into use in the future, it will be necessary to preserve the cleanliness of the computer to the maximum

degree possible to minimize constraints placed on its use. The ultimate ends to which computers are

applied will be determined by the junction of technological possibilities and user requirements; the only

other limits imposed are those which are inherent in the fact that the computer is nothing more than a

machine. In order for computers and users to get along well together, it is necessary that computers be

designed with a minimum of constraints so that they can be suited to user requirements, rather than the

other way around. In other words, the usefulness of the computer and the efficiency of the service it pro

vides depends on how clean it is.

2

The explanations in these publications are intended to show how flexible the MZ-80 series of computers

is in terms of system development. We think that the software technology and utilization procedures

applied in this system will open a new world of possibilities for personal computers.

3

, 1.2 SYSTEM PROGRAM CONFIGURATION

In keeping with the concept that the MZ-80B is a clean computer, all system software is supported by

external f:tles; these constitute the system which starts the various software elements.

To use the MZ-80B, first set the power switch to ON; when this is done, a program called the IPL

(initial program loader) is started automatically. As the name indicates, this program loads the system

software from the cassette tape file or diskette me. After loading is completed, control is passed to the

system software and system activation is complete.

As is shown in the figure below, the IPL program is located in ROM at an address which is outside of that

of the main memory. The IPL program controls the CPU only while the system software is being loaded

after the power is turned on.

Main memory During use r------------------,
Monitor

System program

RAM

During initial loading
r-----~ r-----------------,

c
p
u

IPLprogram

ROM

As is shown in the figure above, a program called the monitor is read into main memory when the

IPL is started. The monitor includes functions for monitoring operation of the MZ-80B 's various types of

software, subroutines for performing the various logical operations, and subroutines for controlling

input/output of the MZ-80B's hardware devices. The monitor is a program which has been prepared in

machine language, and is provided with commands for active system control of data preparation and

file input/output.

After the monitor program is loaded, the system programs are read into main memory. The system

programs are the software which is used by the Z-80 CPU for assembler programming, and consists of an

editor-assembler, linker, symbolic debugger, and PROM formatter. Although direct use of machine

language as instruction language is possible in programming, instructions are difficult to grasp directly

and addresses cannot be made relocatable. Therefore, a method is used in which the programmer uses

machine code mnemonics to describe the program, together with arbitrarily selected symbols to express

the data, addresses, and so forth which are referenced by the program's instructions. The system programs

support the sequence of operations necessary to convert programs written in this manner into mahcine

language.

4

1.2.1. System program organization
SHARP MZ-80B system program include an assembler, a text editor, a linker and a symbolic debugger.

They are organized to execute a sequence of assembly phases.

Editor-assembler
r•••···-----------····-~ =--------------------- --; : . . . Text editor (for editing I .: .

llnker (for relocating . . : Assembler (for assembly)
. .

source programs) and linking programs) . .
I
~--------~------------..:

. .
~------------~-------J

~
~ 1/ Symbolic debugger Object program (for debugging)

Fig. 1-1 Outline of the assembly process

Figure 1.1 shows the assembly process, which consists of creating source programs, assembling them,

relocating and linking the assembly output and debugging them.

One cycle of the phases in the left half of the figure makes up a program creation stage. The pro

grammer prepares a source program with the text editor and creates a source file, then inputs it to the

assembler. The assembler analyzes and interprets the syntax of the source program and assembly language

instructions into relocatable binary code. When the assembler detects errors, it issues error messages. The

programmer then corrects the errors in the source program with the text editor.

After all assembly errors are corrected, the programmer inputs the relocatable program (the

relocatable binary file), output by the assembler to the symbolic debugger. The symbolic debugger reads

the object program into the link area in an executable form and runs the program. During the debugging

phase, the programmer can set breakpoints in the program to start, interrupt and continue program exe

cution, and to display and alter register and memory contents for debugging purposes. If program logic

errors and execution inefficiency are detected during the debugging phases, the programmer reedits the

source program using the text editor.

After all bugs are removed from the source program, the programmer loads and links the program

unit(s) in the relocatable flle(s) and creates an object program in executable form with the tinker.

Each system program always generates an output file for use in other system programs. Figure 1.2

shows the interrelationship of the system programs.

As shown above, the program development phases are executed by four independent system programs.

By assigning the system functions to separate programs, the MZ-80B can accomodate large-scale,

serious application programs, thus enhancing its program development capabilities. "PROM formatter"

is provided which punches object programs into paper tape in several formats for use with various PROM

writers now on the market.

The system program commands are listed in Appendix 2.

5

Editor-assembler <:;::::J Source me of ASCII strings - Relocatable file

·--- Object me (machine language program) ... Object me with symbol table
.._ BASIC text program

• File medium (cassette recorder)

1Y~"
,

,//LOAD command

/ ,
,

/ ,

Fig. 1-2 File handling among the tape based system programs

1.2.2. Functions of the text editor

The primary functions of/ the, text editor include those used for making insertions, deletions, and

modifications in source programs. As is shown in Figure 1-3, the contents of source programs are dis

played on a CRT screen and can then be modified/edited conversationally. This makes it possible to

perform these tasks with a minimum of effort. Further, introduction of the concept of a character

pointer (referred to as CP below) makes it possible to edit source programs with even less effort.

The command format used in this system is compatible with the NOVA editor program manufactured

by the Data General Corporation, perfected over a period of many years by many users.

The figure below shows the general flow of processing performed by the text editor.

CD Source program read into the edit buffer of the text editor from cassette tape.

®While watching the CRT screen, the user moves the CP around as necessary and makes insertions,

deletions, and modifications. The source program in the edit buffer is revised concurrently.

@After all modifications have been made, the source program is written onto cassette tape from the

edit buffer.

Cassette tape

0..0

Monitor

Text editor
®

{_

CD ~
Source program

®

Fig. 1-3 Processing performed using the text editor

6

CJ
CRT screen

1.2.3 Functions of the assembler
The assembler converts programs written in assembly language into machine language. In other words,

source programs composed of ASCII code which are prepared using the text editor are read and used to

prepare relocatable programs composed of arrays of binary numbers.

This process can be broadly divided into four steps, as follows.

(I) Identifying label symbols and storing them in a symbol table.

(2) Identifying nmemonics and assembling their objects.

(3) Preparing assembly lists.

(4) Preparing relocatable files.

Assembler

(2)
START: LD A, B-+----+-------------·--·-·-·-+---~

(l)
-------+------+ ------------------ --·

0 1 1 1 1 0 0 0

'START'

Source program Relocatable program

Fig. 1-4 Functions of the assembler

1.2.4 Functions of the linker

Symbol table

The linker reads relocatable programs output by the assembler, converts them into the format in which

they are actually executed, then outputs them as object files. It is also capable of linking relocatable

program units to produce a single object file.

In other words, relocatable programs output by the assembler are normally organized around addresses

which are relative to address 0000. When such programs are executed, no problem results if they are

loaded starting at 0000 ; however, this is not normally the case. Thus, it is necessary to reorganize such

programs around the addresses into which they are loaded for execution. This is the function of the linker.

Also, in some cases a program references symbols which are defined in another program. Another

function of the linker is to link such programs and to ensure that external program references are made

properly.

0000

SUB: ENT

OAOOL-------~~
Relocatable program unit 1

oooor-------~~-

CALL SUB

03FO~---------~--
Relocatable program unit 2

0000

12AO

3000

3AOO

3DFO

Monitor

Unker

A
SUB: ENT(

"

CALL SUB

Main memory

Fig. 1-5 Functions of the tinker

7

--

1.2.5 Functions of the symbolic debugger
The functions of the symbolic debugger are similar to those of the linker, except that the symbolic

debugger operates on the premise that there is already an object program in executable format in the link

area. Debugging is then performed by actually executing the program.

Debugging is performed using break points. These break points are set at appropriately determined

locations in the program, and program execution stops at these points to allow the status of the system

to be determined.

The symbolic debugger is also capable of outputting object programs being debugged along with their

symbol tables as object files. This makes debugging easier when program units are linked to form a single

program. In other words, the symbolic debugger allows debugging to be reopened just by reading object

files output with symbol tables into the link area.

1.2.6 Functions of the PROM formatter

The PROM formatter is the system program which controls the tape puncher used by the PROM

writer ; it also controls the paper tape reader, and is equipped with functions which are identical to those

of the symbolic debugger.

There are many paper tape output formats; those which are provided are as shown below.

(I) BNPF format

(2) B 1 OF format

(3) Hexadecimal format

(4) Binary format
\

The functions of the PROM formatter are as shown in Figure 1-6.

Object program

Relocatable program t---+.:!>1

PROM formatter

Symbolic
de bugger
section

Debugging

Formatter section

Format control

Program execution

Fig. 1-6 Functions of the PROM formatter

8

Puncher

Reader

(

1.3 CONTROL KEYS OPERATIONS

This section explains the functions and use of the special control keys which are used in common by

the system programs.

1.3.1 Main keyboard

Except for the following, the control keys on the main keyboard are used in the same manner as under

the SB-1510.

iSHIFT I The scrolling speed of the display data is maintained at the preset speed while this key is
held down. When this key is released, the scrolling speed returns to the maximum speed.
The scrolling speed is set by modifying the value of address OOOF with monitor M corn-
mand as follows.

nn = 01- FF The speed slows down as the value of nn is increased.
nn=40 Normal speed

ISHIFTI + @] Deletes the portion of the line from the cursor position to the end of the line.

I SHIFT] + [I] Sets a tab at the cursor position.

1 smFtJ + rn Resets the tab at the cursor position.

i5H1Ff] + [I] Resets all tabs set by the above procedure.

I SHIFT I + IIl Sets the number of characters per line to 40.
The screen is cleared and the cursor is returned to the home position.

'•.

ISHIFT I +[I] Reverses the shift mode of the alphabetic keys.
Making these entries again resets the reversed shift mode.

I SHIFT I + []] Sets the number of characters per line to 80. The screen is cleared and the cursor is re-
turned to the home position.

1---
I SIIJFT I + I INST I Enables insertion of an arbitrary number· of characters at the cursor position. Pressing

I CR I terminates insertion.

I BREAK I
Terminates the program currently being executed, dispalys the message "Break" and
awaits entry of a new command.

I SPACE I Holding down the space key for a certain period of time suspends current program execu-
tion. The time differs according to the operation currently being executed. For example,
when the printer is operating, the space key must be held down until a carriage return is
performed. After program execution has been suspended, one of the following operations
is possible.

• Pressing I BREAK I: See the explanation above.
• Pressing I SPACE I : Resumes program execution.

The @] through [[] keys are on the numeric pad.

It is convenient to affix seals on which the following functions are printed to the front of the numeric

keys to identify the functions of I SHIFT I + [[] ~ m ' []] .
DELETE !sETTABl !cLRTABI lcLR l lcHR4o llcHANGEI !cHR8ol
TO EOL ALL TAB

9

1.3.2 Automatic repeat function
The auto repeat speed and the amount of time which keys must be depressed before auto repeat

operates can be modified using the monitor M command as follows.

*M
M - adr . $ 0 0 0 D

OOOD 2 0 s s I CR I

OOOE 1 0 t t I CRI

OOOF 4 0 I BREAK I

1.3.3 Cursor control keys

+-Enter M while the monitor is in the command wait state.

+- Specify address OOOD.

+-ss: Auto repeat speed; speed decreases as ss is increased from 01

toFF.

+- ss* tt: The amount of time keys must be depressed before auto

repeat operates; becomes longer as tt is increased from

01 toFF.

+- Press I BREAK I to terminate the M command.

Key entry Picture character Code Function

IGRPHI + m ~ 01H Moves the cursor down 1 line.

GRPHI + III il' 02H Moves the cursor up 1 line.

GRPHI + El S> 03H Moves the cursor to the right by 1 space.

GRPHI + El <? 04H Moves the cursor to the left by 1 space.

GRPHI + ~ lXI OSH Moves the cursor to the ho, position.

GRPHI + §) ~ 06H Clears the screen and moves the cursor to the home position.

SHIFT I + ~ ~ IFH Delirniter.

10

,
,,

~ J

1.4 PROCEDURE FOR USING THE SYSTEM PROGRAMS TO DEVELOP OBJECT PROGRAMS

Source file (80K) K-B converter Source file

I QD ~ Con.,nion ~~~§]
Source file

Media
conversion

PROM fonnatter

Text editor

Preparation

Revision

Relocatable me

link er

linkage

Object ftle (80K) K-B converter
Object me

QD r-- Conversion - QDI
J

(Execution)

Fig. 1-7

11

Assembler Assembly list

Assembly Printer

CRT screen

Symbolic Object me with
debugger symbol table

I O.buggingl ~· •§J

PROM~ tt er onna

Media
conversion

Object me

CJ
B NPF, hexadecimal, binary

nnats, etc. fo

CHAPTER 2

EDITOR-ASSEMBLER

13

2.1 OUTLINE OF THE EDITOR-ASSEMBLER
'

As its name indicates, the editor-assembler is the system program which includes both the text editor

and the assembler. This section discusses the editor-assembler in outline; see sections 2.2 and 2.3 for

details.

Control is transferred between the text editor and the assembler as indicated below.

Text editor

Assembler

--+ Assembler : 11 X 11 command

--+ Text editor: 11 BREAK 11 key

The reason for combining the text editor and the assembler in this manner is to eliminate the need to

change tapes when control is transferred between the two. That is, combining the text editor and the

assembler makes it possible to edit and assemble programs in one sitting by allowing the assembly list to

be reviewed and errors in the source program to be corrected immediately. For example, it is normal for

several errors to be made in keying and symbols during source program preparation; if it were necessary

to replace the tape each time an error was corrected, a great amount of time would be consumed. The

text editor eliminates this requirement and makes it possible to both edit the source program and check it

at the same time.

In the photo below, the editor-assembler is first loaded by the IPL, then three text lines are prepared

using text editor SB-2102 (which is activated .frrst); then the X command is executed to shift to assembler

SB-2202; finally, the BREAK key is pressed to return control to the text editor from the assembler and

the T command is executed.

14

CD : Editor-assembler loaded by IPL program.

® : Number of usable edit buffer bytes displayed.

@ : Three lines of text prepared using the text editor 11 I 11

command.
@ : 11 X 11 command executed to transfer control to the

assembler.

@ : Instruction entered in response to question from the
assembler.

® : Control returned to the text editor by pressing the
11 BREAK 11 key and the command wait state entered.

(J) : 11 T 11 command entered and text lines displayed. The

CP remains in the position it was in before control is

transferred to the assembler.

2.2 TEXT EDITOR

2.2.1 Outline of the text editor
The text editor is used to prepare source programs for the assembler and files (such as data files) which

consist of strings of ASCII characters. It is also used to read in and correct or edit such programs and files

and to output edited source files.

The following functions are provided for making modifications and revisions.

1. Insertion

2. Deletion

3. Change

Data input into the edit buffer is organized two dimensionally in lines and columns. A number which is

referred to as the line number is assigned to each line in sequence, starting with the first line in the edit

buffer.

Locations within the edit buffer which are to be modified are usually specified by means of a pointer

(which is referred to as the character pointer_, hereafter referred to as CP). Insertions, deletions, and

changes are made by moving the CP to the appropriate line and executing the appropriate command.

Revisions and modifications can be made in units of either lines or words. It is also possible to search

for or exchange character strings in character string units.

When the text editor is used, the memory is organized as shown in the figure below.

Cassette tape roo IQDI Monitor

., 12AO
Text editor

. ~ I o_ol
Read

Program unit 1

lo_ol Append
Program unit 2

Edit buffer

FFOO
Work area

15

-

Editor commands are listed in the following table. Commands are separated from each other with the

delimiter "fR!!" and are executed when I CRI is entered.

Command type

Input command

Output command

Type command

CP positioning
command

Correction
command

Search command

Comparison
command

Special command

Command name

R

A

w

T

nT

B
nJ
nL

L

nM
M
z
c

Q

nK
K

nD
D

s

V

=

&
X

!

Function

Clears the edit buffer and loads it with the input file indicated by the
fllename. The CP is positioned at the beginning of the edit buffer after
execution of tlus command.
Appends the input ftle indicated by the filename to the contents of the
edit buffer. The CP position is not changed.

Writes the edit buffer contents to the output file specified by the ftle
name in ASCII code.

Displays the entire contents of the edit buffer. The CP position is not
changed.
Displays n lines starting at the CP position.

Positions the CP at the beginning of the edit buffer.
Positions the CP at the beginning of the line indicated by n.
Moves the CP to the beginning of the line n lines after the current CP
position .
Moves the CP to the beginning of the current line. This is the same as
when n = 0 in the nL command.
Changes the CP position by n characters.
Does not move the CP. This is the same as when n = 0 in the nM command.
Moves the CP to the end of the text in the edit buffer.

Searches for the specified character string and replaces it with another
character string; the search starts at the current CP position and proceeds
to the end of the edit buffer. The CP is repositioned to the end of the
character string replaced.
Repeats the C command each time the specified character string is found
until the end of the edit buffer is reached. The CP is repositioned to the
end of the character string last replaced.
Inserts the specified character string at the position of the CP. The CP is
repositioned to the end of the character string inserted. Une\numbers are
updated when a line is inserted with this command.
Deletes the n lines following the CP. The CP position is not changed.
Deletes all characters preceding the CP position until a I CR I code is
detected. The I CRI code is not deleted.
Deletes the n characters following the CP.
No operation.

Searches for the specified character string, starting at the CP position and
proceeding to the end of the buffer. The CP is repositioned to the end of
the character string when it is found.

Compares the contents of the edit buffer with those of the input file
whose f!lename is specified. Does not move the CP.

Displays the number of characters stored in the edit buffer (including
spaces and CRs).
Displays the number of the line at which the CP is located.
Deletes the entire contents of the edit buffer.
Transfers control to the assembler.
Changes the list mode for listing to the printer.
Transfers control to the monitor.

Most of the above commands are compatible with those used in the NOVA editor program manufac

tured by the Data General Corporation.

16

2.2.2. Character pointer and delimiter

The character pointer (CP) is positioned at the boundary between two adjacent characters or the

beginning or end of the text. It does not point directly at any character.

Movement of the CP is explained below based on the assumption that the following text is stored in

the edit buffer.

1 LD A, 14H

2 LD B, 7

3 ADD A, B

4DAA

(Line numbers are not stored
in the edit buffer.)

The beginning of the edit buffer
(The beginning of text) CP

Command lL

Command B

CP

Command SM

CP

Command 3J

>--- The beginning of line 3 CP

-

L

D

[SP]

A

'
1

4 Edit buffer

H

!CRI
L

D

[SP)

B

'
7

I CRI
A

D

D

The B command moves the CP to the beginning of the edit buffer, the J command moves it to the top

of the specified line and the L command to the beginning of the nth line from the line in which the CP is

currently located; the top of the specified line is the boundary following the\ CR \code of a preceding line.

The delimiter is used to separate commands. Enter it by pressing I SHIFT I + IT AB I simultaneously.

When the delimiter is entered between individual commands, several commands can be entered together

and executed in sequence by pressing I CRI once. Thus, the two sequences shown below perform the same

function.

~0{~~~~ }<:;::::=:==) BB!Il!IOLB!Il!IK ICRI

IK ICRI

The I (Insert) command must be followed by a delimiter because it uses I CRI codes as character codes

for the source text.

The following example replaces ADD on line 3 in the above program with ADC.

3JmzMmlDmic m [Q!] or

17

- Screen editing-
Date can be changed or modified directly on the CRT screen.

After the data has been displayed using the T, C, Q, or S commands, the cursor is moved to lines dis

played on the screen and the data is rewritten. The line in which the cursor is positioned is changed when

I CRI is pressed, and the CP is positioned to the end of that line. It is also possible to change multiple lines

in succession.

It should be noted that line numbers change when the I, D, and K commands are used; this can make it

impossible to change the line desired.

Display text on the CRT screen with the 11 T 11 command.

(The 2nd and 6th lines require revision.)

Move the cursor to the point to be modified.

Make the change and press I CRI .

\

Move the cursor to the next line to be modified, make the

change, and press I CR I .

Return the text editor to the command wait state by

moving the cursor to a blank line and pressing I CR I ; or,

position the cursor immediately after 11 * 11 and enter the

next command immediately.

18

2.2.3. Text editor commands

-Input commands-

R (Read file) Command
This command clears the edit buffer area, then loads it with the source file (ASCII file) specified by the

filename; loading starts at the beginning of the edit buffer. The CP is positioned at the beginning of the

edit buffer after execution of this command.

* RFORMULA#l ICRI
* R ICRI

Reads source file FORMULA# I into the edit buffer.

Reads source file found first into the edit buffer.

- Key in R while in the command wait state (11 * 11
).

- Specify the filename immediately following R.

(The filename specification may be omitted.)

- The text editor locates the specified file and reads it when I CRI is pressed. If the filename is not

specified, the first file found is read.

- The file read is stored in the edit buffer, starting at the edit buffer's beginning. (See the figure below.)

-
11 OK 11 is displayed after t)1e file has been read ; the CP is positioned to the beginning of the edit buffer.

- Press I BREAK [to terminate the R command.

input file
CP

FORMULA#! Rcommand

Source file FORMULA#!

-
11 Check sum error 11 is displayed if an error occurs while a file is being read.

- The beginning of the edit
buffer

Edit buffer

- The message 11 Full buffer 11 is displayed when the buffer becomes full. In such cases, only part of the

input file has been read.

19

I
A (Append file) Command

This command appends the file specified by the filename to the contents of the edit buffer. The CP

position is not changed.

* AFORMULA#2I CRI Appends source file FORMULA#2 to the contents of the edit

buffer starting at the CP position.

Appends the first file found to the contents of the edit buffer

starting at the CP position.

-- Key in A while in the command wait state (" * ").
-- Specify the ftlename immediately following A.

(The ftlename specification may be omitted.)

-- The text editor locates the specified file and reads it when I CRI is pressed. If the fllename is not

specified, the first file found is read.

-- The file read is stored in the edit buffer, starting at the position of the CP. Use Z in order to position

the CP to the end of the text when an addition is to be made to its end. The figure below shows

addition of input file "FORMULA#2" to the end of text "FORMULA#!".)

input me
FORMULA#!

'-
___ F_O_RMUL----A-#2----J oomm~d P-~------------~ Source me

FORMULA#2

-The beginning of the edit
buffer

Edit buffer

\

-- "OK" is displayed after the file has been read; the CP is positioned to the beginning of the data added.

-- Press I BREAK I to terminate the A command.

-- " Check sum error" is displayed if an error occurs while a file is being read.

-- The message " Full buffer" is displayed when the buffer becomes full. In such cases, only part of the

input file has been read.

20

·--~

-Output command

W (Write) Command
This command outputs the entire contents of the edit buffer to the file specified by the filename

regardless of the CP position.

* WFORMULA#3 I CRI Specifies "FORMULA#3" as the filename for the file creat

ed in the edit buffer and outputs it to that file.

Outputs the file created in the edit buffer without specifying

a filename.

- Key in W while in the command wait state (" * ").
- Specify the filenan1e immediately following W.

- The filename specification may be omitted.

-The text editor begins outputting the text to the file when I CRI is pressed.

- "OK" is displayed after output to the file has been completed. The text editor then enters the

command wait state. The flle output is a source file.

Beginning of the-+
edit buffer

Edit buffer

Text editor

Text 1-- W command -
Filename " FORMULA#3" ~

- The CP position is not affected by execu tion of theW command.

- Press I BREAK I to terminate theW command.

21

Output ftle

FORMULA#3

source me

-Type command-

T (Type) Command

This command displays all parl of the contents of the edit buffer. The CP position is not changed.

Displays all of the contents of the edit buffer with line numbers attached. * TICRI

* nT !CRI Assigns line numbers to lines, starting at the CP position and continuing to the

line specified by n, then displays them. (Same as above when n = 0).

Key in the number of lines, n followed by T (Type) while in the command wait state.

- Press I CRI to display the contents of the edit buffer.

- The following are special cases of nT.

n = 0 : the same as T

n < 0 : results in the error message "???"

n ~m (where m is the number of lines from the one at which the CP is located to the end of the

buffer contents): only m lines are displayed.

- The current CP position can be determined with the nT command, since display starts with the charac

ter following the boundary at which the CP is located.

- Press I BREAK I to terminate the T command.

Press I SPACE I to suspend T command execution, and press it again to resume it.

Press I SHIFT I to slow down the display.

- The photograph at right shows the relationship

between the type command and the CP for the

following text.

l START: ENT

2 LD SF, START

3 CALL TIMST ; TIMER SET

4 CALL LETNL ; NEW LINE

5 END

•T

~ ClA~~ ~~~RT
3 .:ALL tiMST,TIMER SET
4 .:ALL LETNL,NEW LINE
~ END

•3Ja2r

3 CALL TIMST,TIMER SET
4 CALL LETNL,NEW LINE

i1118Mili2T

3 TIMEF' ·:.ET
4 Ct'1LL LETtlL.NEW LINE

•

- The error message "Large" is displayed when n exceeds 65535.

22

\

-CP positioning commands-

B (Begin} Command

* 8 JCRI Positions the CP to the beginning of the edit buffer.

- Key in 8 while in the command wait state.

- Press I C R 1.
- The 8 command is executed to position the CP to the beginning of the edit buffer.

- n8 performs the same function.

ZCommand

* ZICRI Moves the CP to the end of text in the edit buffer.

- Key in Z while in the command wait state.

- Press I CR 1.
- When the Z command is executed, the CP is positioned to the end of text in the edit buffer (to

immediately after the last character).

- nZ performs the same function.

J (Jump) Command

* nJ !CRI Positions the CP to the beginning of line n.

- Key in line number nand J while in the command wait state.

- Press I CR 1.
- The nJ command is executed to position the CP to the beginning of line n.

- The following are special cases.

n = 0 or 1 or n is omitted: the command performs the same function as the B command.

n < 0 : results in the error message "??? ".

n ~ m (where m is the number of lines of the edit buffer contents): the command performs the

same function as the Z command.

23

L (Line) Command

This command moves the CP forward or backward the specified number of lines. The CP is positioned

at the beginning of the specified line after execution.

* nL !CRI

* LICRI

Moves the CP to the beginning of the nth line from the line at which it is

currently located.

Moves the CP to the beginning of the line at which it is currently located.

Key in the number of lines, n and L while in the command wait state.

Press I CRI.
- The CP is positioned at the beginning of the specified line when the nL command is executed.

- The following are special cases:

n = 0 : the command functions in the same manner as the L command.

n ~ m (where m is the number of lines from the line on which the CP is located to the end of the

edit buffer contents): the command functions in the same manner as the Z command.

n < 0: the CP is moved I n I lines toward the beginning of the edit buffer.

In I~ Q - 1 (where Q is the number of the line at which the CP is currently located): the

command functions in the same manner as the B command.

M (Move) Command

This command moves the CP forward or backward by the specified number of characters. Spaces and

carriage returns are counted as characters, but line numbers are not.

* nM !CRI Moves the CP to the position which is n characters f10m its current position.

Key in the number of characters, n and M while in the command wait state.

-Press !CRI .
- Executing the nM command moves the CP to the specified boundary between characters.

- When n < 0, the CP is moved backward by I n I characters.

- The CP position is not changed when n = 0 or if it is omitted.

24

-Correction commands-

C (Change) Command

This command replaces a string in the edit buffer with another string. The search for the specified

string starts at the current CP position and proceeds toward the end of the edit buffer; the string is re

placed when it is found and the CP is positioned at the end of the string replaced.

* Cstring 1 11111 string 2 I CR I Searches for the character string specified by string 1, starting

* Cstring 1 I CRI

at the current CP position and proceeding toward the end of the

edit buffer; replaces the string with the one specified by string 2

when it is found.

Deletes the character string specified by string 1.

- Key in C while in the command wait state.

- Key in the string to be located followed by a delimiter.

- Key in the string which is to replace the one located.

- Press I CRI and a search is made for the first string. Only the first occurrence of the string is replaced.

The line including the string replaced is displayed and the CP is positioned at the end of that string.

- The message "Not found" is displayed if the specified string is not found and the CP is positioned

to the beginning of the edit buffer.

- String 1 and string 2 need not be of the same length.

Q (Queue} Command

This command repeats the function of the C command each time the specified character string is

found until the end of the edit buffer is reached. The CP is repositioned to the end of the string last

replaced.

* Qstring 1 e!a string 2 I CRI Causes the function of the C command to be executed

repeatedly.

* Qstring 1 I CRI Deletes all occurrences of the character string specified

by string 1.

- Key in Q while in the command wait state.

-The remainder of the operation is the same as for

the C command.

-The photograph at right shows the result of

execution of the Q command on the following

text.

1 LD BC, (XTEMP)

2 LD (XTEMP) . DE

3 .JP 12AOH

4 XTEMP : DEFS 2

25

I (Insert) Command

This command inserts the specified string at the CP position. A carriage return is performed on the CRT

screen if one is included in the string.

Line numbers are updated automatically when a new line is inserted. The CP is repositioned to the end

of the string inserted.

* Istring m 1 eR 1

* Istring 1 I CRI
string 21 CRI
string 3 I CRI

Inserts the specified string at the CP position.

Inserts the lines specified by string 1, string 2 and string 3 at the CP

position.

m I cRI A I CRI is treated as a character by the I command. Therefore, a

delimiter must be keyed in before I C'R I is pressed to execute the

command.

- Key in I while in the command wait state.

- Key in the string to be inserted.

- Characters keyed in are inserted starting at the CP position. Therefore, the edit buffer contents follow-

ing the CP are automatically shifted toward the end of the edit buffer.

- When a I CR I is keyed in, it is inserted as a carriage return code.

- Key in a delimiter ~ after all the strings have been keyed in.

- Press I CRI to execute the I command.

- The photograph at right shows an example of

using the I command.

Text:

l START:ENT

2 LD SP, START

3 CALL TIMST ;TIMER SET

4 CALL XTEMP ;SET TEMPO

5 END

LD A, 5 ;TEMPO 5 is inserted between lines 3

and 4 of the above text.

26

K (Kill) Command

This command deletes then lines preceding or following the CP from the edit buffer.

* nK I CRI

* KICRI

Deletes the n lines preceding or following the CP from the edit buffer.

If the CP is located in the middle of a line, the characters preceding the

CP are not deleted if n > 0 and the characters following the CP are not

deleted if n = < 0.

Deletes characters preceding the CP position until a I CRI is detected.

I CRI is not deleted.

- Key in the number of lines, nand K while in the command wait state.

- Press I CRI to execute the K command.

- Operation differs according to the value of n as follows.

n> 0: Deletes all characters following the CP until n I CRI codes are detected.

I CRI codes detected are also deleted. Command execution ends after the last I CRI

code has been deleted.

n < 0 : Deletes all characters preceding the CP until In I+ 1 I CRI codes are detected.

The (I n I+ 1)th I CR I code is not deleted.

n = 0 or Deletes all characters preceding the CP until a I CRI code is detected. That is,

not specified deletes the part of the line in front of the CP. The I CRI code detected is not

deleted.

- Line numbers are automatically updated after

deletion.

- The CP position is not changed.

- The photograph at right shows an example of the
I

result of execution of the K command with the

following text. (This text is presented only to

illustrate operation of the commad; it has no

meaning in assembly language.)

l AABBCC

2 DDEEFF

3 GGHHII

4 JJKKLL

27

D (Delete) Command

This command deletes the specified number of characters from the edit buffer, starting at the CP

position.

* nD !CRI

* DICRI

Deletes the specified number of characters from the edit buffer, starting

at the CP position.

A I CRI code is counted as a character.

(No operation results.)

Key in the number of character n and D.

Press! CRI to execute the command.

- Operation differs according to the value of n as follows.

n> 0:

n < 0:

n= 0 or
not specified

Deletes the n characters following the CP from the edit buffer.

A I CR I code is counted as a character.

Deletes the I n I characters preceding the CP from the edit buffer.

A I CRI code is counted as a character.

No operation results.

- Line numbers are automatically updated if necessary.

- The CP position is not changed.

- The photograph at right shows an example of the

result of execution of the D command with the

following text. (This text is presented only for

the purpose of this illustration; it has no meaning

in assembly language.)

1 ABCD

2 EFGH

3 IJKL

4 MNOP

28

-Search command-

S (Search) Command

This command searches for the specified character string in the contents of the edit buffer.

* S string I CRI Searches for the specified character string, starting at the current CP position;

the CP is repositioned to the end of the character string when it is found.

-Key inS.

- Key in the string to be located.

- Press I CRI to execute the S command.

- The search starts at the current CP position and proceeds toward the end of the buffer.

-When the specified string is found, the line containing it is displayed and the CP is positioned to the

end of the character string.

- If the specified string cannot be found, the message "Not found" is displayed and the CP is reposi

tioned to the beginning of the edit buffer.

- The photograph at right shows the result of a search for the character string "LETNL" in the follow

ing text. The line including "LETNL" is displayed following the S command. The 2T command

indicates that the CP is positioned to the end of the string.

1 START:ENT

2 LD SP. START

3 CALL TIMST ;TIMER SET

4 CALL LETNL ;NEW LINE

5 LD A. 04H ;TEMPO<- -4

6 CALL XTEMP

7 END

29

•T
1 START . ENT
~ LD SP START
~CALL tiMST ; TIMER SET
4 CALL LETNL~NEW LINE
5 LD A , 84H,T~MP0<--4
6 CALL XTEMP
7 END
.B.SLETNL
4 CALL LETNL , NEW LINE
•2T
4 , NEW LINE
5 LD A , 84H;TEMP0 <--4

•

-Verify command

V (Verify) Command
This commands verifies the contents of the edit buffer with the contents of the flle whose filename is

specified.

* VFORMULA#3 I CRI Verifies the contents of the edit buffer with the contents of

file FORMULA#3.

Verifies the contents of the edit buffer with the contents of

the input file.

- Key in V while in the command wait state.

- Key in the filename of the file whose contents are to be verified. (This step may be omitted.)

- Press I CRI ; the system then looks for the specified flle and starts verification.

When no filename is specified, the contents of the file first encountered are verified with the edit

buffer contents.

- "OK" is displayed when the input flle contents are the same as the edit buffer contents, otherwise

" Check sum error" is displayed.

- The CP position is not affected by execution of this command.

Beginning of the-.
edit buffer

Edit buffer

Text editor

Text
V command

~

30

Input file
\

FORMULA# 3

Source flle

Filename "Formula #3"

-Special commands-

=Command

Displays the total number of characters (including spaces and CRs) stored

in the edit buffer.

- Key in= (equal) while in the command wait state.

- Press! CRI; the total number of characters stored in the edit buffer is displayed .

. Command

Displays the number of the line on which the CP is located.

- Key in . (period) while in the command wait state.

- Press I CR l; the line number on which the CP is located is displayed.

&Command

* &lCRl Clears the contents of the edit buffer.

- Key in & (ampersand) while in the command wait state.

- Press I CRI; the contents of the edit buffer are then cleared.

X (TRANSfer) Command

Transfers control to the assembler.

- Key in X while in the command wait state.

- Press I CRI ; control is then trasferred to the assembler and an assembler message is displayed.

31

#Command

Changes the printer list mode.

Key in# (sharp symbol) while in the command wait state.

- Press! CRI; the printer list mode is then changed.

The printer list mode is disabled when the text editor is started. It is enabled when the # command is

executed once; executing it again disables it, and so on.

The following shows a listing obtained by executing the T command when the printer list mode is

enabled.

* 1
2 ;*** EDITOR LIST SAMPLE ***
3
4 START:ENT
5 MAIN1:ENT
6 LD SP,START ;INITIAL STACK POINTER
7 CALL LETNL
8 LD A,5

· 9 CALL XTEMP ;SET TEMPO TO 5
10 CALL CLTBL ; CLEAR TABLE
l1 XOR A
12 LD C?TABP),A ;INITIAL I / 0 #1
1 3 RET
14 ? TABP : DEFS 1
15 END

! Command

Transfers control to the monitor.

- Key in ! (exclamation mark) while in the command wait state.

- Press I CRI ; the following message is then displayed.

" M)onitor B)oot C)ancel ? "

Pressing the M key transfers control to the monitor.

Pressing the B key transfers control to the IPL.

\

Pressing the C key cancels the ! command and returns the text editor to the command wait state.

- There are two methods of returning control to the editor from the monitor.

Jump to address 12AO: The edit buffer contents are cleared. (cold start)

Jump to address 12A3: The edit buffer contents are not cleared. (warm start)

32

2.3 ASSEMBLER

2.3.1 Outline of the assembler

The assembler is a system program which assembles source files prepared and edited using the text

editor and outputs relocatable files (relocatable binary files). Relocatable files are the stage which is

between source ftles and object files, and are organized in such a manner as to be relocatable and linkable.

In other words, the fact that fmal determination of addresses is made by the linker means that the linker

can be used to combine various program units through the use of label symbol entry declarations (ENT

directive).

Source files consist of assembly language (in other words, label symbols, mnemonic symbols of

instruction codes, directives, comments, and end statements) which must be coded in accordance with the

assembler rules. Source programs edited with the text editor are output as ASCII code. The assembler

interprets the syntax of such output to produce relocatable files; messages are displayed at this time to

indicate the status of symbol address (data) definitions and syntax errors. These messages are output in

the assembly list message column of either the CRT screen or the printer.

-Starting the assembler-

Control is transferred from the text editor to the assembler by

entering the X command.

First, select whether or not a relocatable file is to be prepared.

No ---+ None
Yes ---+ Generate

Next, indicate what is to be displayed on the CRT screen.

Nothing ---+ None

Everything ---+ All

Error information only ---+ Error

Next, indicate what is to be printed on the printer.

Nothing ---+ None

Everything ---+ All

Error information only ---+ Error

Next, enter the listing bias (4 hexadecimal numerals; to be dis
cussed later).

When a relocatable me is to be prepared, enter the fJ.lename.

33

-2 pass system-=-

The assembler basically uses a 2 pass system. An assembler pass is the process of reading the source

program once from its beginning to end. Since the text editor must be started before the assembler, the

source program in memory has already been developed using the text editor; thus the assembler does not

read a external ftle but the source program in memory. The figure below shows assembler operation for

the 2 pass system.

Pass 1

~
Assembler

Symbol table

\ Source program

Pass 2

Assembler

C> Symbol table

Source program

Relocatable program Relocatable file (RB)

In pass 1, the assem bier stores label symbols permitted under the assem bier rules in the symbol table.

This is not only to express data and addresses in decimal or hexadecimal representation, but to make the

task of programming easier.

In pass 2, the relocatable program is prepared with reference to the symbol table and the assembly list

is output (either on the CRT screen or the printer). The specified fllename is then assigned to the

relocatable program prepared and it is output as a relocatable ftle.

34

-Listing bias and ORG directive-

In the sample listing below, the "ORG" directive at the beginning starts relative addressing at address

"2000 ". The assembly listing can be started at an appropriate address in the same manner to make it

easier to read.

This is the idea of the "listing bias" which was mentioned earlier. For example, a listing which is the

same as the one shown below can be obtained even without the ORG directive if a listing bias of 2000 is

specified.

Unlike the ORG directive, however, listing bias is effective only when a listing is being produced and has

no effect on the relocatable file created. Also, the ORG directive has priority when it is used even if

listing bias is specified.

The simple program shown below is provided for the purpose of helping to explain the functions of

the assembler; it has no meaning in execution.

** Z80 ASSEMBLER SB-2202 PAGE 01 **
01 0000
02 0000
03 0000
04 2000
05 2000 3E33
06 2002 FE43
07 2004 FE43
08 2006 FE05
09 2008 22
10 2009 27
11 200A 43
12 200B 02
13 200C 06050201
14 2010 0304
15 2012 7E
16 2013 7E
17 2014
18 2014
19 2014 C32120
20 2017 C30AOO
-?1 201A C31420
22 201D C30AOO
23 .2020 C32A20
24 .20.23 2100DO
25 .20.26 213930
26 20.29 212120
27 .202C 3EOD
28 .20.2E 3EFF
29 .2030 21FFFF
30 .2033 21FOFF
31 .2036 C335.20
32 .2039
33 .2039 CD4A20
34 .203C CD5420
35 203F C D4B20
36 2042 21FFFF
37 2045 21FEFF
38 2048 4920
39 204A 00
40 204B P

SAMPLE LIST

XYZ:

ABC:

ZZZ :
XXX:

ORG
LD
CP
CP
CP
DEFB
DEFB
DEFB
DEFB
DEFM

LD
LD

EQU
JP
JP
JP
JP
JP
LD
LD
LD
LD
LD
LD
LD
JP

CALL
CALL
CALL
LD
LD
DEFW
NOP
EQU

2000H
A,'3'
43H
·c·
. !HI .

·c·
·~·
• (\::!HI ~~<=::><?'

A, (HL)
A, M

10
ABC + XYZ
XYZ
ABC - 3
10
+ 10
HL,DOOO
HL,12345
HL,ABC +XYZ
A, XYZ + 3
A, - 1
HL, - 1
HL, - 10H
- 1

zzz
ZZZ + 10
ZZZ I XXX
HL, -XXX
HL, - XXX - XXX
zzz- xxx

1
41 204B

** Z80
END

ASEMBLER SB-2202 PAGE 02 **
ABO 0017 XYZ OOOA

35

; M may be used instead of (HL)

; Address definition symbol ± EQU definition symbol

; Absolute address 10
; Relative address 2AH (20H+l0)
; Interpreted as a hexadecimal]lumber

; EQU definition label ± numerical data
; Negative number is converted to one's complement

; Shows the contents of the symbol table

2.3.2. Assembly language rules

The source program must be coded according to assembly language rules. This paragraph describes tlJe

structure of the source program and the assembly language rules.

The assembly source program consists of the following.

Z80 instruction mnemonic codes

Label symbols

Comments

Assembler directives
(Pseudo instructions)

Defmition directives

Entry directives

Skip directives

End directive

Comments may be used as needed by the programmer; they have no effect on execution of the program

and are not included in the relocatable file.

All assembly source programs must be ended with the assembler directive END.

Z80 instruction mnemonic codes from the body of the assembly source program. These are explained

in a separate volume.

A mnemonic code consists of an op-code of up to 4 characters, separators (space, comma, etc.) and

operands.

A label symbol symbolically represents an address or data. A label symbol is either placed in the label

column and separated from the following instruction with a colon (:), or placed in an operand.

The first 6 characters of a label symbol are significant and the 7th and following characters (if used) are

ignored. Therefore, ABCDEFG and ABCDEFH are treated as the same label symbol.

Alphanumerics are generally used for label symbols, but any characters other than those used for

separators and special symbols may be used .

Comments are written between the separator 11
;

11 and a I CRI code; these have no influence on program

execution.

Assembler directives will be explained later in this manual. These are written in the same column as the

Z80 instruction mnemonic codes.

An END directive is one of the assembler directives; all assembly source programs must end with this

directive.

36

-Characters-

Characters which are used in an assembly source program are alphanumerics, sepecial symbols and other

characters. The special symbols have functional meanings. (Separators, I CRI , I SPACE I, etc.)

l)Alphabetic characters: AB CD E F G HI J K L M N 0 P Q R S TU V W X Y Z

These characters are used to represent symbols and instruction mnemonic codes. A - F are also used

for representing hexadecimal values. Further, D is used to indicate decimal and H is used to indicate

hexadecimal.

2) Numerics: 0 1 2 3 4 5 6 7 8 9

These are used to represent constants and symbols. Whether a constant is a hexadecimal number or a

decimal number is determined according to the rules of constants.

3)Space

Spaces are treated as separators except when they are used in comments. They perform the tabulation

function on the assembly listing when they are placed between op-code and operand or between ope

rand and comment as shown below:

Example: OR I SP I FOH! SP I; A<- XO l XYZ: PUSH / SPIAF Editor list
ADD ISP I HL, BC ISP I; BC =COUNT

...
OR FOH ;A<-XO

) Mrembly li•ting XYZ: PUSH AF
ADD HL, BC ; BC=COUNT

t t
Tab set Tab set

4)Colon " : "

A colon behaves as a separator when it is placed between a label symbol and an instruction. It performes

the tabulation function on the assembly listing.

Example: START: LD SP, START
MAIN:

t
Tab set

ENT
t
Tab set

An address is assigned to the label symbol even if no instruction follows. (See the paragraph on symbols.)

Example: ENTRY: +-"ENTRY" is assigned the same address as "TOPO".
TOPO: PUSH HL

5) Semicolon " ; "

A semicolon represents the beginning of a comment. None of the characters between a semicolon and a

I CRI code have any influence on execution of the program. The semicolon is placed at the top of a line

or the beginning of a comment column.

Example:
; SAMPLE PROGRAM) All tin"'" oommon".

CMMNT: ENT ; COMMENT

Comment column

37

6) Carriage return (I CH I)
A carriage return code represents the end of a line.

7) Other special symbols: + - ' () ,
All these are special symbols used in instruction statements.

8) Other symbols

Other characters are not generally used, although they may be used as symbol labels or in the comment

column.

-Line-

Each line of a source program is formed of alphanumerics and symbols, and is ended with a carriage

return. Except for comments, each line includes only one of the Z80 instructions, an assembler directive,

an end statement or an empty statement for a skip.

Components on each line are arranged according to the tab settings when it is listed. (See the assembly

listing on page 40.)

-Label symbols-

All characters other than special symbols may be used for label symbols, but generally alphanumerics

are used. Each label symbol can consist of up to 6 characters; the 7th and following characters, if used, are

ignored by the assembler.

Example: Correct ABC START BUFFER 50STEP

Incorrect (ABC) ,HL IY+3 XYZ+3 +-Special characters are used.

COMPAREO J
COMPARE! These are treated as the same label symbol," COMPAR ".

Assembler directive EQU defines data (I byte or 2 bytes) for a label symbol and assigns it to the label.

Example: ABC: EQU 3
CR: EQU ODH

VRAMO: EQU DOOOH

Assembler directive ENT defines a label symbol as a global symbol. A colon (:) placed between a

label symbol and a following instruction defmes the label symbol as a relocatable instruction address.

Example: RLDR: ENT

RLDRO: PUSH HL

When a label symbol is referenced (that is, when it is used as an operand), the assembler first searches

the symbol table for the specified label symbol; if it is not found, the assembler treats it as hexadecimal

data. For example, when CALL ABC is encountered, the assembler searches the symbol table for ABC;

if it is not found , the assembler treats it as OABCH and calls address OABC.

A label symbol used as an operand must be defined in the assembly source program unit in which it is

used, or must be defined as a global symbol in another assembly source program unit. Otherwise, it is

converted into binary and left undefined.

A label symbol which has once been defined cannot be defined again.

38

Multiple label symbols may be defined as relocatable instruction addresses as follows.

Example: ABCO:
EFGH:

IJK

ABCD:
EFGH:

IJK:

-Constants-

ENT

ENT

LO

LD'

A,B

A,B

)

Label symbols ABCD, EFGH and IJK are all defined
as relocatable addresses of LD A, B. ABCD and EFGH
are also defined as global symbols.

) Same as the above, except that ABCD and EFGH are not
global symbols.

There are two types of constants: decimal and hexadecimal. + and - signs can be attached to these.

A character string which is defined as a label symbol is treated as a label symbol even if it satisfies the

requirements for a constant.

The assembler treats a constant as a decimal constant when it consists of numerics only or it consists

of numerics followed by D.

Example: 23 999 +3 - 62 160 00030

16 3

The assembler treats a constant as a hexadecimal constant when it consists of 0-9, A, B, C, D, E a nd

I or F followed by H.

Example: 2AH COH +OIH - BH OOIOH OOADH OOH

A constant used in the operand of a JP, JR, DJNZ or CALL instruction represents an absolute address

when it has no sign and a location relative to the current address when it has a sign. In other cases, con

stants without signs and those with a + sign represent numerics, while those with a - sign are converted

into two's complement.

39

2.3.3. Assembly listing and assembler messages

When "A" is entered in response to "CRT?" or "LPT?" from the assembler, the assembly listing is

output on the CRT screen and/or printer. Examining the assembly listing is one of the most important

procedures in assembly programming since this is when a check is made for errors in the source program.

The assembler translates the specified source program and outputs the assembly listing, which includes

line numbers, relative addresses, relocatable binary codes, assembler messages and the source program list

(including label symbols, Z80 instruction mnemonic codes and comments). The assembly listing is paged

every 60 lines.

The comment column is displayed when the number of characters per line is set to 80, but is not dis

played when it is set to 40.

The assembly listing format is shown below. Tabs are set at the beginnings of labels, op-codes, operands

and comment columns.

Errors detected during assembly and definition conditions are indicated with assembler messages.

Relative
address

Line
number

J

n11

Relocatable
binary code

Assembler
message

l
n

Label Op-code Operand Comment
11 r------,

** Z80 ASSEMBLER SB- 2202 PAGE 01 ** ::J 'This message is output at the top of each page.

01 0000

02 0000

03 0000

04 0000 p

05 0000 p

06 0000

0? 0000

08 0000

09 0000 310000

10 0003 210000

ll 0006 DD210000

12 OOOA DD360000

13 OOOE 00

4? 005A lA

48 005B B?

49 005C 2000

50 005E EB

E

E

EE

Q

V

;ASSEMBLER LIST SAMPLE

LETNL: EQU 0?64H

MSG: EQU 06B5H

START: ENT ;ENTRY FROM UNIT#l

MAIN: ENT ;ENTRY FROM UNIT#2

LD SP,START ; INITIAL STACK POINTER

LD HL,TEMPO

LD IX,TEMPl

MAINO: LD (IX+ CONSTO) . CONSTl

XOA A ; A <- 00

MAIN?: LD A. (DE)

OR A

JR NZ.COMP

MAIN8: EX DE.HL ; EXCHANGE DE.HL

** Z80 ASSEMBLER SB- 2202 PAGE 02 ** ::J A new page is started when the number of
lines on the preceding page reaches 60.

40

-Definition condition messages-

E (External)

This message indicates that an external symbol reference is being made; i.e., the label symbol by the

operand is not defined in the assembly source program unit assembled.

The label symbol indicated must be defined as a global symbol in another. assembly program unit for

linkage with the current unit by the tinker. (See assembler directive" ENT" on page 43.)

An undefined byte of data is treated as "00 "; 2 undefined bytes of data (or an address) are uncertain.

Example: E LD B, CONSTO
L_The byte of data "CONSTO" is not defined in the program unit.
E CALL SORT
t_Address SORT is not defmed in the program unit.
EE BIT TOP, (IY+FLAG)
f L_ The byte of data" FLAG" is not defined in the program unit.
L__ The byte of data "TOP" is not defmed in the program unit.

P (Phase)

This message indicates that the label symbol is defined by an EQU statement with a constant value

assigned. A label symbol indicated by this message can be referenced from an external file. In this case,

however, the program unit including the EQU statement must be loaded before the other program units

which are to be linked with it.

The P message is displayed when a label symbol different from those stored in the symbol table during

PASS 1 is found.

Example: P LETNL: EQU 0762H

P DATAl: EQU 3

t_lnd.icates that LETNL and DATAl are defined by EQU.

The P message is displayed in the relocatable binary code column rather than in the assembler
message column.

-Error messages-

C (illegal Character error)

This message indicates that an illegal character has been used as an operand.

Example: C JP +1000-3

F (Format error)

This message indicates that the instruction format is incorrect.

N (Non label error)

This message indicates that ENT or EQU has no label symbol.

Example: N EQU 0012H ----....--
No label symbol

41

L (erroneous Label error)

This message indicates that an illegal label symbol is used.

Example: L JR XYZ
l___ XYZ is not defmed in the current source program.
No externally defmed global symbol can be used as an operand of the JR or DJNZ commands.
The L message is displayed if such a label symbol is specified.

M (Multiple label error)

This message indicates tliat a label symbol is defined two or more times.

Example: M ABC: LD DE, BUFFER

M ABC: ENT

L_Indicates that ABC is defmed more than once.

0 (erroneous Operand)

This message indicates that an illegal operand has been specified.

Q (Questionable mnemonic)

This message indicates that a mnemonic code is incorrect.

Example: Q CAL XYZ

CALL XYZ is correct.

Q PSH B

PUSH BC is correct.

S (String error)

This message indicates that single quotation mark(s) are omitted from a DEFM statement.

Example: S DEFM GAME OVER

DEFM 'GAME OVER' is correct.

U (Undefined parameter)

This message indicates that a parameter was not defined when a macro instruction was called.

(Example) u JP Z, @ 3

V (Value over)

This message indicates that the value of the operand is out of the prescribed range.

Example: V LD A, FF8H

V SET 8, A

V JR -130

42

2.3.4. Assembler directives

Assembler directives (also sometimes referred to as "pseudo instructions") control assembly, but are

not converted into machine language. However, in the DEFB, DEFW and DEFM directives, their operands

are sometimes converted into machine language.

-ENT (entry)-

This assembler directive defines a label symbol as a global symbol. Label symbols which are referenced

by two or more programs when multiple programs are linked must be defined by the entry directive.

Label symbols defmed by the entry directive are included in the relocatable file so that the linker can

identify them. The symbolic debugger can perform symbolic addressing using these label symbols.

Label symbols which are not defined by the entry directive contribute only to assembly of the current

source program unit, and are not included in the relocatable f.tle output by the assembler. However, labels

defmed by the EQU directive are exceptions since they are defined as global symbols and entry definition

is not necessary.

The example below shows label symbols being referenced between program units GAUSS-MAIN and

GAUSS-SR. The E message in the assembler message column indicates that a label symbol which is not

defined in the current program unit is being referenced externally.

Program unit 1
"GAUSS-MAIN"

Program unit 2
"GAUSS-SR"

Address undefmed
......--"----.

CDOOOO E

E message

Address undefmed

C30000 E

E message

; GAUSS-MAIN

MAINO: ENT

CALL CMPLX

CALL CMPLX+2

END

;GAUSS-SR

CMPLX: ENT

RET

JP MAINO

END

43

+- Entry definition of label symbol
MAINO

+- No offset can be added to a label symbol
which is defmed externally.

+- END is always required at the end of a
program unit.

+- Entry defmition of label symbol
CMPLX

-EQU (equate)-

This assembler directive defines a label symbol with a numeric value (or address) assigned. The numeric

value must be a decimal or hexadecimal constant. Any numeric value can be added to or subtracted from a

label symbol once it is defined with a numeric value assigned; this allows a new label symbol to be defmed.

The label symbol used as an address in the operand is generally treated as a relative address. However,

when a specific address is assigned to the label symbol with an EQU directive, the address is not changed

during assembly.

The EQU directive also defines a label symbol as a global symbol. A label defmed by the EQU directive

can be referenced by an external program unit. However, program units including such directives must be

loaded before other program units to be linked.

The following example illustrates use of the EQU directive to define label symbols as monitor sub

routine addresses and I /0 port numbers for a specific device. The P messages indicate that the EQU

directives define the label symbols as global symbols.

** Z80 ASSEMBLER SB-2202 PAGE 01 **
01 0000

02 0000 MONITOR SUBROUTINE

03 0000

04 0000 p BRKEY: EQU 0527H

05 0000 p GETKY: EQU 0610H

06 0000 p PRNTS: EQU 063AH

07 0000 p PRNT: EQU 063CH

08 0000 p MSG: EQU 06B5H

09 0000 p NL: EQU 0757H

10 0000 p LETNL: EQU 0764H

11 0000 p GETL: EQU OBE5H

12 0000 SKP 3

16 0000

17 0000 SET PORT# :PRINTER

18 0000

19 0000 p POTFE: EQU FER

20 0000 p POTFF: EQU POTFE + 1 +- POTFF is defmed with FF (hexadecimal)

21 0000 assigned.

22 0000 p CON1: EQU 1

23 0000 p CON2: EQU 2

24 0000 p CON3: EQU CON1 + CON2 <- This results in assignment of 3 to CON 3.
In this case, CON 1 and CON2 must be
defmed in advance.

44

-ORG (origin}-

This assembler directive determines the object program loading address. For example, when

ORG 2000H

is placed at the beginning of the program to be assembled, the assembler assembles the program with a

loading address of 2000H specified.

When a relocatable binary file generated with the loading address specified with the ORG directive is

linked with other programs by the tinker, the loading address specified with the ORG directive is effective

and that specified with the linker is not.

When relocatable files with loading addresses specified with ORG directives are linked, or when more

than one ORG directives is used in a program, the loading addresses specified must not overlap and must

appear in the sequential order.

01

02

03

04

os
06

07

08
09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

55

56
57

58

* * Z80 ASSEMBLER SB-2202 PAGE 01 **
0000

0000

2000

2000

2000 116220

2003 CDOOOO

2006 D8

2007 CDOOOO

200A CDOOOO

200D D8

200E FE2C

2010 3E03

2012 37

2013 CO

2014 CDOOOO

2017 D8

2018 3E08

201A 37

201B CO

201C OE80

201E D9

201F 0604

2021 D9

2062 88

2063 FF

2064

20E4

E

E

E

; TYPE COMMAND

ORG

.TYPE: ENT

LD

CALL

RET

CALL

CALL

RET

CP

LD

SCF

RET

2000H

DE, SWTBL

?GSW

c
C&L1

?SEP

c
2CH

A,3

NZ

E TYPEO: CALL ?LSW

REC c
LD A,8

SCF

RET NZ

LD c, 128

EXX

LD B,4

EXX

SWTBL: DEFB 88H

DEFB FFH

BUFFER: DEFS 128

END

* * Z80 ASSEMBLER SB-2202 PAGE 02 **

; DE:= SWITCH TABLE

; CHECK GLOBAL SWITCH

; SELECT CRT OR LPT

; CHECK SEPARATOR

; SEPARATOR= 11
,

11 ?

; 3 IS ERR CODE

; NO, ERR RETURN

; CHECK LOCAL SWITCH

; 8 IS ERR CODE

; ERROR, LSW EXIST

; LU#: = 128

; DEFAULT MODE= ASC

;/P
; END OF SWTBL

; 128 BYTE BUFFER

.TYPE 2000 BUFFER 2064 SWTBL 2062 TYPEO 2014 TYPE10 203C

TYPE20 2048 TYPEER 2058

45

-IF-ENDIF-

This assembler directive instructs the assembler as to whether or not assembler codes following it should

be assembled. If the value of the label symbol specified in its operand is zero, the assembler assembles

following instruction codes up to the next ENDIF assembler directive; otherwise the assembler ignores

them.

The label symbol specified in the operand must be defined on the preceding line. The operand of the IF

directive may be specified by adding or subtracting numeric data to/ from a label symbol.

01 0000 COND: EQU 0

02 0000 IF COND
03 0000 86] ADD A, (HL)
04 0001 12

Assembled because
LD (DE) , A

COND =0.
05 0002 23 INC HL
06 0003 END IF
0? 0003 IF COND + l
08 0003 SUB (HL)

] Not "''mblod 09 0003
because COND+ 1 4= 0

LD (DE) ,A
10 0003 DEC HL
11 0003 END IF

-MACRO- ENDM-
This assembler directive defines the macro instruction whose label is specified in the MACRO assembler

directive and executes instructions between the MACRO and ENDM assembler directives. Parameters are

indicated by serial numbers preceded by @, e.g., @I and @2. The maximum number of parameters is 7.

To caJI a macro instruction, use its label as a mnemonic code and specify operands corresponding to

each of its parameters in succession. The assembler assembles the instruction codes which correspond to

the macro instruction. The assembly list is printed out with the specified operands substituted for the

corresponding parameters.

Macro instructions can be defined anywhere in a program, but must be made before the macro

instruction is caJied. A macro instruction is similar to a subroutine, but control is not transferred to the

macro instruction and the instruction codes corresponding to the macro instruction are inserted during

assembly instead of the macro instruction.

46

12 0003 * MACRO INT

13 0003 LD A, (@l) A macro instruction is defmed

14 0003 LD B,OOH .whose label is INT.
This macro instruction uses 4

15 0003 @3: SUB @2 parameters.
16 0003 JR C, + 5

17 0003 INC B

18 0003 JR @3

19 0003 LD A,B

20 0003 LD (@4), A

21 0003 * ENDM

22 0003 * MACRO zzz
23 0003 @1@2@3] A m"m imt ruotion ;, dofinod

whose label is ZZZ.
24 0003 * ENDM

25 0003 * zzz ABC, DE, Fl
25 0003 00 Q ABCDEF

Code corresponding to macro
ZZZ is inserted.

27 0004 * ENDM

28 0004 * INT DIV,04H,LABEL,ANS

29 0004 3A2100 LD ~, (DIV) The instruction codes

30 0007 0600 LD B,OOH corresponding to macro

31 0009 D604 LABEL: SUB 04H
lNT are inserted. The
operands are substituted

32 OOOB 3803 JR C,+5 for the parameters.

33 OOOD 04 INC B

34 OOOE l8F9 JR LABEL

35 0010 78 LD A,B

36 0011 322200 LD (ANS) , A

37 0014 * ENDM

38 0014 * INT DE , (HL) , LOOP

39 0014 lA LD A, (DE) The instruction codes

40 0015 0600 LD B,OOH corresponding to macro

96 SUB (HL)
INT are inserted. Error

41 0017 LOOP: message "U" is dis-
42 0018 3803 JR C ,+5 played because the number

43 OOlA 04 INC B of operands specified is

44 OOlB l8FA JR LOOP
less than the number of
parameters defmed for

45 OOlD 78 LD A,B the macro instruction.

46 OOlE 320000 U E LD (@4), A

47 0021 * ENDM

48 0021 51 DIV: DEFB 5lH

49 0022 ANS: DEFS 2

50 0024 END

As shown above, the relocatable binary code columns of the MACRO and ENDM directives and macro

call instructions are filled with " * " .

47

-DEFB n {define byte)-

This directive sets constant n (1 byte) in the address of the line on which the directive is specified. A

label symbol defined with a constant (I byte) assigned may be used in place of n.

This directive (as well as DEFW and DWFM) is used to form message data or a graphic data group for a

code conversion table or other table.

The following example forms the message 11 ERROR 11 in ASCII code. Since it uses ODH as an end mark,

monitor subroutine MSG (06BSH) can be used to output the message.

13 1FF3 B? OR A

14 1FF4 CAOOOO E JP z. READY

15 1FF? 110020 LD DE. MESGO

16 1FFA CDB506 CALL MSG

17 1FFD C30000 E JP MAIN2

18 2000 p MSG : EQU 06B5H

19 2000

20 2000 ; MESSAGE GROUP

2 1 2000

22 2000 MESGO: ENT .. ERROR ..

23 2000 45 DEFB 45H

24 2001 52 DEFB 52H

25 2002 52 DEFB 52H

26 2003 4F DEFB 4FH

2? 2004 52 DEFB 52H

28 2005 OD DEFB ODH

- DEFB 'S', DEFB 11 Sll (define byte)-

This directive sets the ASCII code corresponding to the character enclosed in single or double quota

tion marks in the address of the line on which the directive is specified.

Since this directive converts characters to ASCII code, the above example can be rewritten as follows .

21 2000 MESGO: ENT .. ERROR''

22 2000 45 DEFB ' E'

23 2001 52 DEFB 'R'

24 2002 52 DEFB 'R'

25 2003 4F DEFB . o·
26 2004 52 DEFB 'R'

2? 2005 OD DEFB ODH
28 2006 06 MESG1 : DEFB

29 200? 03 DEFB 'Q'

30 2008 OD DEFB ODH
31 2009 2? MESG2: DEFB J Be sure to use single and

32 200A 22 DEFB double quotation marks correctly.

48

-DEFW nn' (define word)-

This directive sets n' in the address of the line on which the directive is specified and n in the following

address; in other words, it sets two bytes of data. A label symbol may be used in place of nn'.

39 5FF1 CMDT: ENT COMMAND TABLE

40 5FF1 41 DEFB 41H

41 5FF.2 0053 DEFW CMDA

4.2 5FF4 4.2 DEFB 4.2H

43 5FF5 1E53 DEFW CMDB + 3

44 5FF7 53 DEFB 53H

45 5FF8 0000 E DEFW CMDS

46 5FFA OD DEFB ODH

47 5FFB CONSTO: ENT

48 5FFB OF01 DEFW 010FH

49 5FFD CONST1 : ENT

50 5FFD 660D DEFW OD66H

-DEFM 'S', DEFM "S" (define message)-

This directive sets the character string enclosed in single or double quotation marks in ASCII code in

addresses starting at that of the line on which the directive is specified. The number of characters must

be within the range from 1 to 64. On the assembly listing, codes for 4 characters are output on each line.

The example on the preceding page can be written as follows with this directive.

21 2000 MESGO ENT "ERROR"

22 2000 455.25.24F DEFM ERROR'

23 2004 52

24 2005 OD DEFB ODH

25 2006 06034142 MESGl DEFM ' <C ~AB'

26 ZOOA OD DEFB ODH

27 ZOOB 41274227 MESG2 DEFM .. A' B' c· "

28 200F 4327 DEFB ODH

29 2011 OD

49

-DEFS nn' (define storage)-

This directive reserves nn' bytes of memory area starting at the address of the line on which the direc

tive is specified.

This directive adds nn' to the reference counter contents; the contents of addresses skipped are not

defined.

The following example reserves buffer areas.

02 4BB8 TEMPO: ENT BUF F ER A

03 4BB8 DEFS 1

04 4BB9 TEMP1 : ENT BUFFER B

05 4BB9 DEFS 2

06 4BBB TEMP2: ENT BUFFER 0

07 4BBB DEFS 2

08 4BBD TEMP3: ENT BUFFER D

09 4BBD DEFS 128

10 403D BFFR: ENT BUFFER E

11 403D DEFS OAH
12 4047 BUFFER: ENT BUFFER F

13 4047 DEFS 2

The addresses are increased by amounts corresponding to the values indicated by the respective DEFS statements.

50

-SKP n (skip n lines)-

This directive advances the assembly listing by n lines to make the list easy to read.

30

31 3£B8

32 3BB9

33 3BBC

34 3BBF

35 3BCO

39 3BCO

40 3BCO

41 3BCO

42 3BCO

AF

32B84B

110020

C9

COMMON: ENT

XOR A

LD (TEMPO}, A

LD DE,MESGO

RET

SKP 3

; ABNORMAL RETURN

ABNRET: ENT

-SKP H (skip home)-

; NORMAL RETURN

; A<- -00

; CLEAR CMD BUFFER

; "READY"

) 3 lioo foed• "" m•do.

; SET INVALID MODE

This directive advances the page during output of the assembly listing.

-END (end)-

This directive declares the end of the source program. All source programs must be ended with this

directive. Assembly operation is not completed if this directive is omitted.

The assembly outputs

END?

when it reads a source file which doesn't include an END directive.

51

2.4 ERROR MESSAGES OF THE EDITOR-ASSEMBLER

2.4.1. Text editor error messages

Error Messages Meaning Relevant commands

Full buffer Edit buffer is full . R,A

? ? ? n < 0 in an nT or nJ command. T, J

Large
n greater than 65535 was specified. T, J, L, M,

K,D,B,Z

Not found
The string (or string!) specified in Sstring, Cstringl ~ string2, or

S,C,Q
Qstringl 8!!l string2 was not found following the CP.

An illegal command was entered or an incorrect format was used.
Invalid Ex.) * HI CRI There is no H command. any case * S I CRI : A string should be specified.

Check sum
When the V command was executed, it was found that the contents
of the edit buffer differed from the contents of the input buffer; or, V, R, A

error an error occured while a me was being read.

52

~

2.4.2. Assembler messages

Defmition status message Meaning Example

Indicates that a label symbol is being E LD B,CONSTO
referenced externally; that is, the label l__The data byte "CONSTO" is undefined.
is not defmed in the current source E CALL SORT

E (External) program unit. l__The address "SORT" is undefined.
EE BIT TOP, (IY+FLAG)
t L_The da ta byte "FLAG" is undefmed.

The data byte "TOP" is undefmed.

Defmes a label symbol with a constant p LETNL : EQU 0762H
assigned. P DATAl : EQU 3

P (Phase)
This message is also output when a l__ LETNL and DATAl are defmed by EQU.
label symbol is encountered during The P message is displayed in the relocatable
pass 2 which was not encountered binary code column rather than in the assembler
during pass 1. message column.

Error message Meaning Example

C (illegal Character Indicates that an illegal character is c JP +1000- 3 error) used in the operand.

F (Format error)
Indicates that the instruction format
is incorrect.

N (Non label error)
Indicates that no label symbol is N EQU 0012H
specified for ENT or EQU. L_No label symbol

Indicates that an illegal Label symbol L JR XYZ
is used. L_ XYZ is not defined in the current program.

L (erroneous Label No externally defmed global symbol can be

error) used as the operand of a JR or DJNZ command.
If such a label symbol is specified, the L message
is displayed.

Indicates that a label symbol is defmed M ABC:LD DE, BUFFER
M (Multiple label two or more times. l

error) M ABC: ENT
L_ ABC is defmed twice.

0 (erroneous Indicates that an illegal operand is
Operand) specified.

Q (Qestionable Indicates that the mnemonic code is Q CAL XYZ
mnemonic) incorrect. CALL XYZ is correct.

s Indicates that single or double quota- s DEFM GAME OVER
(String error) tion mark(s) are omitted. DEFM 'GAME OVER' is correct.

The number of operands specified
U (Undefmed in a macro call instruction was less u JP Z, @3

parameter) than the number of parameters
defmed for the macro instruction.

V Indicates that the value of the operand V LD A, FF8H V SET 8, A
(Vaule over) is out of the prescribed range. V JR - 130

END?
Indicates that the END directive is
missing from the source program.

53

'--

CHAPTER 3

LINKER

56

3.1 OUTLINE OF THE LINKER

The linker inputs relocatable files generated by the assembler and generates an object file. Relocatable

files are files which contain program units in a form that can not be executed by the CPU, but which

contains relocation information to make the program units relocatable. They contain global symbols

which are declared to link multiple program units in ASCII code.

The linker receives this information and generates the object (machine language) program in the link

area while relocating each program unit by adding the programmer-specified assembly bias to each relative

address referenced in the program unit. With one or more relocatable files, subsequent relocatable ftles

are appended to preceding files during link/load operation, once the linking address is specified in the ftrst

ftle.

The. object file is output with a loading address and execution address specified.

Program unit 1

Program unit 2

Relocatable flies

Relocatable me

Link er

Unkage and relocation

link information
and symbol table

Object program

Object ftle

The tinker commands are listed below.

Command name

L (relocate Load)

N (Nextflle)

H (Height)

T (Table dump)

S (Save)

V (Verify)

X (TRANSfer)

* (clear table)
(change printer mode)

! (go to monitor)

Function

Loads a program.

Appends a program to a preceding program.

Displays the current assembly bias and load address.

Displays the contents of the symbol table.

Saves the object program in memory in a me.

Compares the contents of the object file generated by the S command with the
contents of the object program in memory.

Moves the specified memory block to the specified memory area.

Clears the symbol table and resets the assembly bias and link address to 0000.

Switches the printer mode.

Transfers control to the monitor.

56

3.2 SYMBOL TABLE

Symbols referred to by the linker and symbolic debugger are label symbols which are globally declared

in a source program; that is, label symbols defined with assembler directive ENT or EQU. They are stored
.

in ASCII code in relocatable ftles for use during program linkage.

When the tinker inputs a relocatable file, it enters each label symbol that it encounters into the symbol

table. The symbol table is located at the end of the link area that follows the Jinker. The higher order two

digits of the starting address of the symbol table must be specified by the user. For example, when the

user enters:

* TBL EO

the symbol table starting address is set to EOOO in hexadecimal.

The photo below shows the display when the tinker is started and the figure on the right is a memory

map for the Hnker.

0000

12AO

link area

Symbol table starting address is set to EOOO.

EOOO

FFOO

Monitor

link er

Load area

}
Symbol table
area

r--------------;

Work area

Each symbol table entry is 9 bytes wide and has the format shown in the figure below. When a new

symbol is encountered, the linker loads the table entry with the information shown in the figure. Refer to

Appendix 6 for the manner in which the linker links relocatable files using the symbol table information.

1 1 1 2 1 3 1 4 1 s 1 6 1 1 1 s 1 9 1

~--------------~~~--~

Status Address

L L Address of the instruction referencing the symbol

00 : Defmed 02 : Undefmed

Symbol name

57

3.3 LINKER BIAS AND ADDRESSES

The operator must specify four addresses in addition to the symbol table starting address when using

the linker or symbolic debugger. These addresses are assembly bias, the link address which is used when

inputting relocating files, and the execution address and load address which are used when an object file

is output.

These addresses determine some of the characteristics of the object program, and cannot be determined

arbitrarily ; attention must be paid to their interrelationship. These addresses are described below.

-Assembly bias-

Assembly bias is used to convert the addressing mode of the object program to absolute addressing.

It is added to all relative addresses of relocatable ftles to form absolute addresses.

Each relocatable ftle generated by the assembler uses relative addresses starting at OOOOH. To convert

the object program so that it starts at address 12AOH, for example, the user specifies 12AOH to the linker

as the assembly bias.

The function of assembly bias is illustrated below.

Relocatable file

oooo- Relative address

1000

Program unit 1 tinker

0000-+ Relative address

2000

Program unit 2

58

Object ftle

12AO -+Absolute address

Program unit 1
-- ---------------- -

22 A 0 -+Absolute address

Program unit 2

Assembly bias
12AO

Assembly bias
22AO

-Link address-

The link address specifies the starting address of a relocatable ftle in the link area. Generally, the address

in memory where an object program is to be loaded in the link area does not match the address where it

is to be loaded for execution. Since the link area is used to hold relocatable files only temporarily,

arbitrary addresses are selected to link relocatable ftles; therefore, link addresses are selected arbitrarily.

Note: The symbolic debugger has commands which can be executed immediately. To use them, the object

program must be in an executable form. In some cases, the link address for such programs is auto

matically determined when the assembly bias is specified.

The figure below shows the memory map set up when a link address of 3000H is specified to the linker

or symbolic debugger (the link address should normally be set to 3000H).

0000

12AO

Relocatable me Link address

Program unit I
~

\
3000

Relocatable me

V Program unit 2

EOOO

FFOO

Monitor

Program unit I

··-·-----------------------------------

Program unit 2

Symbol table

Work area

59

} Unker or symbolic debugger

link area (when the symbol table
starting address is set to EOOO)

-Execution and load addresses-

The execution and load addresses must be specified when an object ftle is to be generated by the tinker.

They cannot be specified arbitrarily, but must be determined according to how the object program is

created in memory. These addresses are stored as information data in the object file.

The load address specifies the starting address of an object program as it is loaded through the monitor.

The execution address determines the value to be set up in the program counter in the CPU after the

object program has been loaded. The figure below shows how an object program is loaded and given

control when a load address of 12AOH and an execution address of 1300H are specified.

Load address 0000

12AO Object program
CD

Execution address : 1300 ~
Load address : 12AO

Loaded by
monitor

FFOO

Monitor

--- ~- ---- --- ------- ----

Object program

Work area

P, y- Execution address
00

When an object program is loaded by the symbolic debugger or when it is linked to a BASIC program.

the execution address is ignored and control is retained by the system program. To execute the object

program in this case, it is necessary to transfer control to the program by means of the system program

execute command.

60

3.4 RELATIONSHIP BETWEEN THE ORG DIRECTIVE AND THE FOUR ADDRESSES

The load address can be specified by the tinker or by the ORG assembler directive. This section

describes the relationship between the ORG directive and the assembly bias, link address, load address,

and execution address.

Assume two programs TESTl and TEST2, whose starting addresses and program size are as follows:

TEST 1 : ORG 7000H specified, occupies 7000H to 7COOH

TEST2 : ORG 8000H specified, occupies 8000H to 8AOOH

When loading TEST 1 with an L command, it

is necessary to specify the assembly bias and link

address. In the example, any assembly bias value

specified is ignored and the assembly bias is auto

matically set to 7000H. The specified link address

remains valid.

When the command sequence

* LL 0000 3000

Filename? TEST 1

Monitor

Linker

3000
TEST!

3COO r-· ·····································

4000
TEST2

4AOO

} 400H (8000 - 7COO)

is executed, TESTl is loaded in the link area from address 3000H to 3COOH as shown in the figure above.

When an N command is entered to read in TEST2, TEST2 is loaded in addresses 4000H to 4AOOH,

resulting in an offset of 400H (8000H~7COOH). Note that the assembly bias for TEST2 is set to 8000H,

as with TEST 1.

The object file can be generated with. an S command. Since in this case TEST 1 and TEST2 have been

assembled with assembly biases of 7000H and 8000H, respectively, the load address must be set to 7000H

for the object program to run properly.

The memory map when the object program is

to be executed is shown at right.

7000

7COO

8000

8AOO

61

Monitor

TEST!

} 400H

TEST2

3.5 LINKER COMMANDS

L (relocate Load) Command

The L command loads relocatable files into the link area. Absolute addresses in the object file are deter

mined by specifying the assembly bias in this command.

* LL 12AO 3000

Loads a relocatable file while converting relative addresses to

absolute addresses. The assembly bias is set to 12AOH and the link

address is set to 3000H.

- Enter an L command in response to the prompt 11 * L 11
(

11 * L 11 is a prompt for a linker command).

- Enter assembly bias and link address values as 4-digit hexadecimal numbers. The assembly bias is used

to determine the absolute addresses of the label symbols in the object file. The ORG directive in the

program, if any, takes precedence over the assembly bias; that is, the assembly bias is ignored.

Since the link address determines the temporary location of the object program in the link area, it

may be specified as an arbitrary value within the link area, excluding the symbol table. Normally, the

link address should be set to 3000H as shown in the above example.

- The system then prompts for the name of the file to be read in with the message "Filename?."

- Enter the correct filename, then press I CRI . The system searches for the specified file and reads

it into the link area. If no filename is specified, the system reads in the first file encountered.

- The assembly bias and link address are updated when a file is read in. For example, if a relocatable

file which is 1 OOH in size is loaded with the above command, the assembly bias and link address are

updated to 13AO and 3100H, respectively.

- The system displays 11 OK 11 when the specified file has been read.

- The system displays the message " Check sum error" when an error occurs during the read.

- Press I BREAK I to terminate the file read.

- The photo at right shows how relocatable file

RELOC is loaded into the link area with the L

command. The assembly bias is set to 12AOH

and the link address to 3000H.

62

N (Next file) Command

TheN command link-loads the next relocatable ftle as specified by the current assembly bias and link

address values (which can be displayed with the H command).

Link-loads the next relocatable file as specified by the current

assembly bias and link address values.

- Enter an N command in response to the prompt 11 * 1.11

- The system then prompts for the name of the file to be read in with the message 11 Filename?. 11

- Enter the required ftlename and press I CRI . The system then searches for the specified file and reads

it into the link area. If no filename is specified, the system reads in the first relocatable file en

countered.

-The system uses the assembly bias and link address values set up immediately before theN command

is executed when loading the relocatable file. If the source program contains an ORG directive, it takes

precedence over the assembly bias value.

- Programs are appended and linked during loading.

-The system displays message 11 OK 11 when program loading is completed.

-The system issues the error message 11 Check sum error 11 if an error occurs during program loading.

- Press I BREAK I to terminate program loading.

H (Height) Command

Displays the current values of the assembly bias and link address

(the values cannot be changed).

- Enter a H command in response to the prompt 11 * L. 11

-The system then displays two 4-digit hexadecimal numbers indicating the current assembly bias and

link address.

63

T (Table dump) Command

The T command displays the contents of the symbol table. Each symbol table entry consists of a label

symbol name, its absolute address, and its definition status.

Displays the contents of the symbol table.

- Enter a T command in response to the prompt 11 * L. 11

- The system displays the label symbol name, absolute address (in hexadecimal), and definition status

for each symbol table entry. The operator can find invalid symbol defmitions by examining the

defmition status for each symbol.

- The photo at right shows an example of

execution of the T command following an L

command, to check symbol definitions for

validity. Note that undefined symbols are

identified by the character 11 U. 11

- Messages pertaining to the symbol definition

status are listed in the table blow.

Examples of link messages are given at next page.

Message Defmition status

u
M

X

H

D

Undefmed (address or data)

Multi-defmed (address or data)

Cross-defmed (address and data)

Half-defined (data)

EQU-defmed (data)

No message is issued for symbols defmed. Messages U, M, X, and Hare error messages.

64

- Link message examples -

First program unit loaded (UNIT -#1)

TMDLYH : LD HL,START
COUNT: ENT

DEC HL
LD A,H
CP CO UNTO
JR NZ, COUNT
LD A,L
CP COUNTl
JR NZ, COUNT
CP COUNT2
JR NZ,COUNT
RET

PEND: ENT
DEFM 'TMDLYH'
DEFB ODH

COUNT 1: EQU OOH

I
COUNTQ: EQU 50H

END

Second program unit loaded (UNIT -#2)

TMDLYL: LD HL, START
LOOPl: DEC H

LD A,H
CP COUNT
JR NZ, LOOPl
RET

PEND: ENT
DEFM 'TMDLYL'
DEFB ODH

START: EQU lOOOH
COUNT: EQU OOH

END
I

Third program unit loaded (UNIT -#3)

INPUT: CALL 0610H
CALL TMDLYL
CALL 0610H
LD HL,START
CP ODH
JR Z,END
LD (HL) , A
INC HL
JR INPUT

END: JP OOOOH
COUNT2: EQU l2

END

65

"START" X

START is not defined as an address in the

first program, but is defined as data in the

second or subsequent program with the

START: EQU statement.

Note:

The EQU statement should be placed at

the beginning of the program unit.

"COUNT2" H

COUNT2 is not defined as data in the first

program, but is defined as data in the third

program with the COUNT2: EQU state

ment.

"COUNTl" D

COUNT! is defined as data (D indicates no

error condition).

"COUNT" X

COUNT is defined as an address in the

first program while it is simultaneously

defined as data in the second program.

"PEND"M

PEND is defined as an address in the first

program while it is simultaneously defmed

as an address in the second program (dupli

cated definition).

"TMDLYL"U

TMDL YL is neither defined as an address

nor declared with the ENT directive in any

other external program unit.

S (Save) Command

The S command saves the object program generated in the link area by the linker with its filename,

execution address, and load address in an output file.

* LS

Filename? SAMPLE I CRI

From? 3000 To ? 3AOO

Load? 12AO Execute? 12AO

Saves the object program in the link area block starting at

address 3000H and ending at address 3AOOH. The filename

is
11

SAMPLE,
11

the load address is I 2AOH, and the execu

tion address is 12AOH.

- Enter an S command in response to the prompt 11 * L. 11

- The system displays the message 11 Filename? 11 on the next line to prompt for the name of file to be

created.

- Enter the filename and press I CR I

- The system displays the message 11 From? 11 on the next line and waits for the operator to enter the

starting address of the object program in the link area with a 4-digit hexadecimal number. The system

then prompts for the ending address with the message 11 To?. 11

- After the block of memory to be saved is specified, the system prompts for the load and execution

addresses.

The load address is the address in memory at

which the object program is to be loaded for

execution, and the execution address is the

address to which control is to be transferred

(i.e., the value that the program counter is to

assume) after the object program is loaded.

- The system starts saving the object program

after the execution address is specified.

tinker

3000
link area

Object program

3AOO

Object ftle "SAMPLE 11

S command
Load address : 12AOH
Execution address : 12AOH

- The system displays the message 11 OK 11 after the object program has been saved.

- Press I BREAK I to interrupt the save operation.

66

V (Verify) Command

The V command compares the contents of the object file whose filename is specified with the contents

of the Unk area.

Compares the contents of the object file with the contents

of the link area.

- Enter a V command in response to the prompt " * L. "

- The system then prompts for the name of the object file to be compared with the message

"Filename?."

- Enter the filename and press I CR 1.
- The system displays the starting and ending addresses which were specified in the S command when

the object file was generated, followed by the message " Top?." This message asks the operator to

specify the address in the link area at which comparison is to start. Specify the address that was

specified in the " From" clause of the S command.

When no filename is specified, the system performs the same operations for the flrst object flle that is

encountered.

- After the starting address is specified, the system starts comparing the contents of the link area and

the object ftle.

-The system displays the message "OK" if the

contents of the link area and object flle match,

and the error message "Check sum error " if

they do not match.

- Press I BREAK I to terminate the compare

operation.

- The photo on the right shows how the object

file "SAMPLE" is verifled.

X (data TRANSfer) Command

The X command moves the specified memory block to another specifled memory area.

* LX

From? 0000 To? 12AO Top? 3000 To 42AO

Moves memory block OOOOH "' 12AOH to the memory

area starting at 3000H.

-Enter an X command in response to the prompt " * L. "

-The system displays the message " From? " and waits for the operator to enter the starting address (a

4-digit hexadecimal number) of the memory block to be moved. The system then displays the message

"To?" to prompt for the ending address (a 4-digit hexadecimal number).

67

The system then prompts for the starting address (a 4-digit hexadecimal number) of the memory area

to which data is to be transferred with the message 11 Top?. 11 When the operator enters the starting

address of the destination area, the system computes and displays the ending address of the des

tination area and starts the data transfer. The system returns to the command wait state after the data

transfer is completed.

- The destination memory area must be within the link area.

* (CLEAR bias and table) Command

Resets the assembly bias and link address to OOOOH and clears

the symbol table.

- Enter a * command in response to the prompt 11 * L.11

- The system resets the assembly bias and link address to OOOOH and clears the symbol table.

But the starting address of the symbol table is not affected.

#Command

Switches the printer list mode on or off.

- Enter a# command in response to the prompt 11 * L. 11

- The system switches the printer list mode on or off. The printer list mode is disabled when the linker

is invoked. The# command switches the list mode each time it is issued. In the printer list mode, all

output is directed to both the CRT display and the printer.

Command

Transfers control to the monitor.

- Enter a! command in response to the prompt 11 * L 11 and press I CRI
- The system displays the message:

11 M)onitor B)oot C)ancel? 11

Enter M to transfer control to the monitor.

Enter B to transfer control to the IPL program.

Enter C to cancel the ! command and return control to the linker.

- There are two methods of returning to the linker mode from the monitor:

1) Jump to address 12AOH : The link area is cleared (cold start).

2) Jump to address 12A3H : The link area is not cleared (warm start).

68

3.6 ERROR MESSAGES OF THE LINKER

Error message Meaning Relevant commands

The specified address was outside the link area
? ? ? or the load address value was updated beyond L,N , S,X

the link area during a load operation.

The format of the specified command is invalid.

(Examples) * LL 12AO !CRI
Invalid The link address is missing. L,S,V ,X * LL 12 I CR I

Fewer digits than required were
specified.

A mismatch was found during a comparison
Oteck sum error between the contents of the link area and a L,N,V

fJle, or an l/0 error occurred during a fJle read.

No power or The printer is not turned on or is not connected # no connection to the system.

Alarm An error such as a paper jam occurred in the #
printer.

Paper empty Printer is out of paper. #

..

69

3.7 HOW TO USE MONITOR SUBROUTINES

The subroutines in the monitor program may be used to construct programs in assembly language.

There are two methods of using monitor subroutines.

(I) When there are only a few programs to be linked

Declare all monitor subroutines (e.g., GETKY, PRNT, etc.) at the beginning of the programs in

which they are to be referenced and call them by name; for example, 11 CALL GETKY 11 (see the figure

below). Although using addresses instead of subroutine names does not cause errors, it is recommneded

that monitor subroutines be referenced by name as shown below to improve readability and

maintainability.

··. Monitor
GETKY: EQU 06lOH
PRNT: EQU 063CH

MSGX: EQU 06AFH

CALL GETKY Program

(2) When there is a substantial number of programs to be linked

Using method (1) in this situation will be inefficient because of duplications and redundancies. One way

of alleviating this inefficiency is to extract all monitor subroutine declarations from all programs

referencing them to form a program consisting of monitor subroutine declarations, then to link this

program to the others. In this case, it is necessary to link the program unit containing EQU directives first

(actually, such a program is not linked as an independent program but is absorbed into the symbol table

as shown below).

·.
GETKY: EQU 06lOH

PRNT: EQU 063CH

MSGX: EQU 06AFH

LETNL: EQU 0764H

?PONT: EQU 0904H

TIMST: EQU 09CAH

··.

················· ...

························ ... !;
··t (
~~-----~

Symbol table

Monitor

Program 1

Program 2

Program 3

70

-Linking procedure-

The procedure for linking the monitor with a program using monitor subroutines and generating a file

that can be loaded by the IPL is given below.

As an example, consider the problem of link-

ing three program units with the monitor to

form an object program.

First, move the monitor (from addresses

OOOOH to 129FH) to the link area using the

linker X command.

* LX
From? 0000 To? 129F Top? 3000

Note that the current link address remains

unchanged (confirm this with the H command).

Link and load program 1 with the L com

mand. Specify 12AOH as the assembly bias

when loading the program immediately follow

ing the monitor program. Also specify the link

address which is equal to the starting address to

which the monitor program has been moved

plus 12AOH (normally, all that is required is to

enter 11 L 12AO 42A0 11
). Then link and load

programs 2 and 3 using N commands.

Finally, execute an S command to save the

link area block from the beginning of the

Monitor

X Command(l-----------1 link er

Monitor

Monitor

link er X Command
~~------------~

LCommand
Monitor

~f-·······································

NCommand

~
N Command ·

~

Program 1

Program 2

Program 3

moved monitor program to the end of program 3 into an object ftle.

Link area

-> S Command

If the load address and execution address are specified as OOOOH in this case, the program in the object

me will be loaded into memory starting at address OOOOH when it is loaded. When it is loaded, control is

transferred to address OOOOH; that is, to the beginning of the monitor. The monitor then initializes the

monitor area transfers control to address 12AOH; that is, to the beginning of program 1. Program 1

execution then starts.

Care should be taken when the JP OOOOH instruction (transferring control to the monitor) is used in a

program. When the monitor is loaded in memory, the instruction 11 JP ST 11 at address OOAE has been

resolved to 11 JP 12AOH 11 (see Appendix 14.3). Consequently, when control reaches address OOAEH after

the monitor receives control, control is again passed to the beginning of program 1. To return to the

monitor and enter the monitor command mode, it is necessary to replace this instruction with one which

is appropriate so that execution continues at address OOBIH (for example, change C3A012 to OIA012

(LD BC, 12AOH)).

71

CHAPTER4

SYMBOLIC DEBUGGER

73

4.1 OUTLINE OF THE SYMBOLIC DEBUGGER

The SHARP MZ-80B symbolic debugger links and loads one or more program units from relocatable

files to form an object program in memory in an immediately executable form and runs the object pro

gram for debugging. It provides the programmer with facilities for taking a memory dump of the object

program in the link area, for setting a breakpoint in the program, for displaying and altering the contents

of the CPU internal registers and for starting execution of the program at a given address with the CPU

internal registers set to specified values (indicative start).

Relocatable
file units (RB)

Linking
Symbolic de bugger

debugging operations
(program execution, breakpoint

setting, data alteration)

Debugging with the symbolic debugger

Program execution

The debugger is said to be "symbolic" since it permits the programmer to reference addresses (e.g.,

breakpoints) during debugging not only in absolute hexadecimal representation but with global symbols

declared as entry symbols in the source program with the ENT assembler directive. This releases the

programmer from the burden of remembering relative addresses in relocatable programs and offset values

specified when they are loaded.

When errors are detected during program debugging, it is necessary to reedit the source program after

the debugging session. After the debugging of all source program units is completed, the fmal object

program can be obtained using the tinker. The symbol table can be set up in the same manner as with

the linker.

Monitor

12AO Symbolic debugger

Y command

..
Relocatable fi1e #1

Object file ..
,.-"' S command

k Relocatable flle #2

~ Symbol table
FFOO Work area

Symbolic debugger fde processing

74

-Symbolic debugger command table-

Command type

link/load and
symbol table
commands

Debugging
commands

File I/0 commands

Special commands

Command name

L

N

H

Function

Loads a relocatable me into the link area. The program in the re
locatable me is loaded to form an object program through relocation
at the location designated by the assembly bias and link address
(relocate Load).

Appends a relocatable me to the end of the preceding program in the
link area (Next me).

Displays the current values of the assembly bias and link address
(Height).

T Displays the contents of the symbol table. Each table entry consists of
a label symbol name, its absolute address, and its definition status
(Table dump). * Clears the symbol table and current assembly bias and link address
values to OOOOH (CLEAR bias and table).

Bt Displays, sets or alters a breakpoint. (Breakpoint)

& Clears all breakpoints set. (CLEAR breakpoint)

Mt Displays the contents of the specified block in the link area in hexa
decimal representation or alters them. (Memory dump)

Dt Displays the contents of the specified block in the link area in hexa
decimal representation with one instruction on a line.
(memory list Dump)

Wt Writes hexadecimal data, starting at the specified address in the link
area. (data Write)

Gt
I

A

c

p

R

X

s

y

V

Executes the program at the specified address. (Goto)

Executes the program at the address designated by PC with the
register buffer data set to the CPU internal registers.
(Indicative start)

Displays the contents of registers A, F, B, C, D, E, H and L in hexa
decimal representation or alters them. (Accumulator)

Displays the contents of complementary registers A', F', B', C' , D',
E', H' and L' in hexadecimal representation or alters them.
(Complementary)

Displays the contents of registers PC, SP, IX, IY and I in hexadecimal
representation or alters them. (Program counter)

Displays the contents of all registers in hexadecimal representation.
(Register)

Transfers the specified memory block to the specified address.
(TRANSfer)

Saves the object program in the link area in an output me with the
specified name. (Save)

Reads the object program from the object me with the specified
filename into memory. (Yank)

Compares the me whose fllename is specified with the contents of
the link area. (Verify)

Switches the printer list mode for listing printout.

Transfers control to the monitor.

Note: Commands marked by a dagger permit symbolic operations.

75

4.2 BREAKPOINTS

A breakpoint is a checkpoint set up in the program at which program execution is stopped and the

contents of the CPU registers are saved into the register buffer. At this point, the programmer can examine

and alter the memory and ·register contents. He can also restart the program at this point. Thus, break

points facilitate program checking and debugging.

The symbolic debugger allows a maximum of nine breakpoints. When setting a breakpoint, the pro

grammer must specify not only its address but also its count. The count specifies the number of allowable

passes through the breakpoint in a looping program before a break actually occurs. The maximum allow

able value of the break count is E in hexadecimal (14 in decimal).

When a breakpoint is set in a program, the debugger saves the operation code at that location (address)

in the break table and replaces it with code F7. The debugger creates one breaktable entry for each break

point as shown below.

Saved operation code

Breakpoint address
(label symbol)

Break count Variable count

Breaktable entry

F7

Object program

Hexadecimal code F7 is the operation code for RST 6, which initiates a break operation. When the

RST 6 instruction, which is a 1-byte CALL instruction, is executed, the contents of the program counter

are pushed into the stack and the program counter is loaded with new data 0030H; that is, program

control jumps to address 0030H in the monitor, from which point control is immediately passed to the

debugger. The debugger searches the breaktable for the pertinent breakpoint. If the breakpoint is not

found, the debugger displays error message "RST6?." Thus, the RST 6 instruction is used in the system

and cannot be used by user programs.

When the debugger finds the required breakpoint in the table, it checks the corresponding count and

decrements the variable count (this count is initially set to the break count) by one. If the variable count

reaches zero, the debugger performs break processing; otherwise, it continues program execution.

76

4.3 SYMBOLIC DEBUGGER COMMANDS

-Link/load commands-

L (relocate Load) Command
The L command loads a relocatable ftle generated by the assembler into the link area in memory. The

operator must specify the assembly bias in this command, taking into consideration the fact that the

symbolic debugger presumes that any program loaded under symbolic debugger control is executable.

* DL 3000 3000
Loads a relocatable file into memory with an assembly bias

of 3000H and a link address of 3000H.

-Enter an L command in response to the prompt "* D" (" * D" is a prompt for a debugger

command).

- Enter assembly bias and link address values as 4-digit hexadecimal numbers. The debugger will create

an immediately executable object program in the link area as explained in Section 3.3. Normally, the

assembly bias and link address should be set to the same address in the link area as shown above. If

the corresponding source program contains an ORG directive, the specified assembly bias is ignored.

-The system then prompts for the name of the file to be read in with the prompt message "Filename?."

- Enter the correct filename, then press I CRI . The system searches for the specified file and reads it

into the link area. If no filename is specified, the

system reads in the first file that is encountered.

- The system displays the message " Check sum

error" if an error occurs during the read.

-Press I BREAK I to terminate the file read.

-The photo at right shows how relocatable file

"FORMULA# I" is loaded into the link area at

address 3000H.

77

N (Next file) Command

The N command links and loads the next relocatable file in the location determined by the current

assembly bias and link address values (which can be verified with the H command).

* DN
Link-loads the next relocatable file as specified by the

current assembly bias and link address values.

- Enter an N command in response to the prompt " >i< D."

- The system then prompts for the name of the ftle to be read in with the message " Filenarne?."

- Enter the required ftlename and press I CRI . The system searches for the speci fied file and reads it

into the link area. If no ftlename is specified, the system reads in the first relocatable ftle that is

encountered.

- The system uses the assembly bias and link address values set up immediately before theN command

is executed when loading the relocatable file. If the source program contains an ORG directive, it takes

precedence over the assembly bias value.

- The program is appended and linked during loading.

- The system issues the error message" Check sum error" if an error occurs during program loading.

- Press ~KJ to terminate program loading.

H (Height) Command

Displays the current values of the assembly bias and link

address (the values cannot be. changed).

- Enter a H command in response to the prompt " * D."

- The system then displays two 4-digit hexadecimal numbers which indicate the current values of the

assembly bias and link address. These values connot be manually changed.

78

-Symbol table command

T (Table dump) Comman d

The T command displays the contents of the symbol table, that is, the label symbol name, its absolute

address and its definition status.

* DT Display s the contents of the symbol table:

- Enter a T command in respon se to the prompt 11 * D. 11

- The debugger displays the la bel symbol name, its absolute address (in hexadecimal) and the definition

entry. The programmer can detect symbol definition errors by checking

splayed label symbols.

status for each symbol table

the defmition status of the di

- Messages pertaining to the s

The definition status message

ymbol table definition status are identical to those issued by the linker.

s are listed below, followed by examples.

-Two symbol table entries are

and four entries are displayed

displayed on a line when the number of characters per line is set to 40

on a line when it is set to 80.

e Messag Definition status

u
M
X

H
D

Undefined symbol (address or data)

Multi-defmed symbol (address or data)

Cross-defined symbol (address and data)

Half-defined symbol (data)

EQU-defined symbol (data)

No messag e is attached to symbols for which an address has been defined.

d H indicate error conditions. U,M, Xan

*(CLEAR bias and table)

* D *

Command

Resets the assembly bias and link address to OOOOH and

clears the symbol table.

- Enter a * command in respon se to the prompt 11 * D. 11

-The system resets the assembl y bias and link address to OOOOH and clears the symbol table.

symbol table is not affected. But the starting address of the

79

Link message examples

First program unit loaded (UNIT -#1)

TMDLYH: LD
COUNT: ENT

DEC
LD.
CP
JR
LD
CP
JR
CP
JR
RET

PEND: ENT
DEFM
DEFB

COUNTI: EQU
CO UNTO: EQU

END

Second program unit loaded (UNIT -#2)

TMDLYL: LD
LOOP!: DEC

LD
CP
JR
RET

PEND: ENT
DEFM
DEFB

START: EQU
COUNT: EQU

END

Third program unit loaded (UNIT -#3)

INPUT: CALL
CALL
CALL
LD
CP
JR
LD
INC
JR

END: JP
COUNT2: EQU

END

HL,START

HL
A,H
CO UNTO
NZ, COUNT
A,L
COUNT!
NZ, COUNT
COUNT2
NZ, COUNT

'TMDLYH'
ODH
OOH
SOH

HL, START
H
A,H
COUNT
NZ, LOOP!

'TMDLYL'
ODH
lOOOH
OOH

OOlBH
TMDLYL
OOlBH
HL, START
ODH
Z,END
(HL), A
HL
INPUT
OOOOH
12

80

"START" X

START is not defined as an address in the

first program, but is defined as data in the

second or subsequent program with the

START : EQU statement.

Note: The EQU statement should be placed

at the beginning of the program unit.

"COUNT2" H

COUNT2 is not defined as data in the first

program, but is defined as data in the third

program with the COUNT2 : EQU state

ment.

"COUNT!" D

COUNT 1 is defmed as data (D indicates no

error condition).

"COUNT" X

COUNT is defined as an address in the first

program while it is simultaneously defined

as data in the second program.

"PEND" M

PEND is defmed as an address in the first

program while it is simultaneously defmed

as an address in the second program (dupli

cated definition).

"TMDLYL" U

TMDLYL is neither defined as an address

nor declared with the ENT directive in any

other external program unit.

B (Breakpoint} Command

The B command sets or changes a breakpoint. A breakpoint occurs after instructions immediately

preceding the breakpoint are executed the number of times specified in the break counter. When a break

point is taken, program execution is interrupted and control is passed to the debugger. The debugger saves

the contents of the CPU registers into the register buffer and waits for a debugger command. The program

mer can specify the breakpoint with either an absolute hexadecimal address or a label symbol. The dis

placement applied to the label symbol (11 +5L 11 in example 3 and 11 -9 11 in example 4 below) must be

a decimal number from 1 to 65535 in line or from ±1 to ±65535 in byte.

addr count

5111

Sets a breakpoint.

The breakpoint is address 7530 and the break count is 2.

The breakpoint is the address represented by label symbol 11SORT3 11 and

the break count is 1.

The breakpoint is the address of the instruction 5 lines away from the

address represented by label symbol 11 SORT3 11 and the break count is I.

The breakpoint is the address of the instruction 9 bytes before the

address represented by label symbol IIMAINOII and the break count is 2.

(The breakpoint and the break count must be separated by at least one

blank (denoted by .._,).)

- Enter a B command in response to the prompt " * D."

- The debugger carries out a new line operation and displays "addr count." It then performs a new line

operation and displays the breakpoint number followed by a space and the cursor to prompt the

programmer to enter a breakpoint address and a break count.

The programmer may specify a breakpoint address with a 4-digit hexadecimal number or a global

symbol (see the example above). In either case, enter an address followed by a space and a break

count. The break count specifies the number of allowable passes through the breakpoint before a

break actually occurs. The programmer can specify a hexadecimal value from 1 to E.

When a break count is entered, the debugger performs a new line operation and displays the next

breakpoint number tp prompt for the next breakpoint address.

- When a label symbol is entered as a breakpoint address, the de bugger displays message "???" and waits

for a new command if the pertinent symbol is not defmed or if the symbol is a data defming symbol.

- To clear a previously set breakpoint, enter that breakpoint address with a break count of 0 (use the &

command to clear all breakpoints).

The debugger displays message 11 ? 11 and waits for a command when an attempt is made to clear

an undefmed breakpoint.

- The programmer can specify a maximum of nine breakpoints. When the programmer specifies nine

breakpoints, the debugger displays "X" on the next line instead of the next breakpoint number. This

requests the programmer to clear a breakpoint or change a break count, not to set a new breakpoint.

81

If the programmer attemps to set a new breakpoint, the debugger will not accept it and prompts for

a new command with message "Over".

When a B command is entered after breakpoints are set, the debugger displays them; in this case, the

hexadecimal address is displayed first, followed by the break count format.

- The programmer can use I DEL I while setting breakpoints. When I CR I is pressed, the debugger

is returned to the command wait state.

82

& (CLEAR breakpoint) Command

Clears all the breakpoints which have been set.

- Enter the & command in response to the prompt" * D."

- The debugger clears all breakpoints set and waits for entry of a new command.

- The photo at right shows an example of setting

breakpoints. The breakpoints are set with a

4-digit hexadecimal number (absolute address), a

global label symbol, a label symbol plus a line

specification and a label symbol plus a byte

displacement.

- The photo at right shows that breakpoint

"KEYIN" has been cleared on the line identi-

fled by "X".

- The photo at right shows an example of display

ing previously set breakpoints with a B command.

Breakpoints are displayed with hexadecimal

absolute addresses shown first, followed by the

break counts and the label symbols.

- The photo at right shows that a break occurred

immediately when the program was executed

from address 6302 with a G command with a

breakpoint at 6302 and a count of 1. As soon as

a breakpoint was taken, an R command was

executed to display the status of the CPU re

gisters.

83

M (Memory dump) Command

The M command displays the contents of the specified memory block in hexadecimal representation.

The memory block may be specified with either absolute hexadecimal addresses or label symboJs. The M

command permits the programmer to alter data with the cUisor.

* DM 7800L-J7850 I CRI

* DM STEP0-9L-JSTEP3+15L ICRI

Displays the contents o(the memory block from 7800

to 7850.

Displays the contents of the memory block from the

address identified by "MATN7" to the address identified

by "MAIN9."

Displays the contents of the memory block from the

address 9 bytes before the address identified by label

symbol "STEPO" to the address of the instruction 1 5

lines away from label symbol "STEP3."

- Enter an M command in response to the prompt 11 * D. 11

- The debugger displays the cursor with a space between the cursor and the letter M and waits for the

programmer to enter the starting and ending addresses of the memory block to be dumped. The pro

grammer may specify the starting and ending addresses of the memory block with either 4-digit

hexadecimal numbers or global symb.ols.

- The starting address must be smaller than or equal to the ending address. Otherwise, the debugger will

display the message 11 ?. 11

- When a memory block in the link area is specified, the debugger displays a dump of memory contents

on the screen with 8 bytes on a line in the 40 characters per line mode and with 16 bytes on a line in

the 80 characters per line mode.

- If the printer is placed in the enable mode, the debugger prints the memory dump on the printer with

16 bytes on a line.

- The cursor appears on the screen when the memory block dump is completed. The programmer can

then alter byte data in the memory dump by moving the cursor to the desired byte position on the

screen, entering the new byte data in hexadecimal and pressing I CRI. The byte data under the cUisor

is overwritten with the new data. The de bugger displays the message "Error 11 if the data entered does

not match the byte format.

- When I CRI is pressed with the cursor on a memory dump line, the data on that line is reentered into

memory. The debugger is returned to the command mode, however, when I CRI is pressed with the

cursor at the beginning of a line containing no data.

- Press I SPACE I to suspend display of the memory dump. To resume display, press I SPACE I again.

Press I SHIFT I to slow down the speed of display.

-Press I BREAK I to force the debugger into the command mode.

84

D (memory list Dump) Command

The D command displays the contents of the specified memory block in hexadecimal representation

with one instruction on a line. The memory block may be specified with either absolute hexadecimal

addresses or label symbols. The programmer cannot alter memory contents through cursor manipulation.

* DD 7800 L.J 7850 I CRI Displays the contents of the memory block from addresses

7800 to 7850 with one instruction on a line.

Displays the contents of the memory block from the

addresses identified by "START" to the address identified

by "MAINO" with one instruction on a line.

* DD 7500L...JSTART+l2L I CRI Displays the contents of the memory block from address

7500 to the address of the instruction 12 lines away from

the label symbol"START" with one instruction on a line.

- Enter a D command in response to the prompt " * D."

- The debugger displays the cursor with a space between it and the letter D, then waits for the pro-

grammer to enter the starting and ending addresses of the memory block to be dumped. The pro

grammer may specify the starting and ending addresses of the memory block either with 4-digit

hexadecimal numbers or global symbols. As with the M command, the starting address must be smaUer

than or equal to the ending address.

- Press I CRI after specifying the required memory block ; the debugger then displays an address and

machine language code on each line.

Consider the source program shown below,

which contains the label symbols "START" and

"MAINO". Assume that the corresponding object

code is loaded in memory starting at address

7500. When a D command is entered, the de

bugger displays a dump listing on the screen as

shown in the photo at right.

START: ENT
LD SP, START
CALL MSTP
XOR A
LD (? TABP), A
LD B, A

MAINO: ENT
LD A, OFH

- It must be noted that the memory block starting address specified in the D command must contain

an operation code. If the starting address contains a data byte, subsequent lines dumped will display

meaningless instructions which read that data byte as an operation code. The same note applies

to the data areas (defined by DEFB and DEFW, etc.) in the memory block.

85

- Display of the memory dump listing can be suspended and resumed with I SPACE 1.
Press I SHIFT I to slow down the speed of display.

-The D command does not allow memory alteration; after the memory dump is completed, the de

bugger is returned to the command wait state.

- Press I BREAK I to terminate this command in the middle of a dump.

W (data Write) Command

The W command writes hexadecimal data, starting at the specified memory address. The memory

address may be either an absolute hexadecimal address or a label symbol.

* DW 8000 !CRI

* DW DATAIICRI

Writes machine language data, starting at address 8000.

Writes machine language data, starting at the address identified by label

symbol "DATAl".

- Enter a W command in response to the prompt " * D."

The debugger displays the cursor with a space between it and the letter W, then waits for the program

mer to enter the starting address of the memory area to be written.

The programmer may specify the memory block starting address with a 4-digit hexadecimal number or

a global symbol.

- The memory area to be written must be inside the link area.

*DW 1111 }
1 111 Address 1111 is not in the link area.

? ? ?

-When the programmer presses I CRI after specifying an address, th~ debugger displays that address

on the next line to prompt the programmer to enter 2-digit hexadecimal data.

The debugger enters a space each time 2-digit data is entered and performs a new line operation and

displays a new address each time eight bytes of data are entered.

- To correct the data just entered, press EJ to

return the cursor to the byte of data just en

tered and correct it. The photo at right shows an

example. As the photo shows, when B is press

ed, the cursor is placed on the next line and the

address of the byte of data to which the cursor is

moved is displayed.

To specify a displacement for a JR, DJNZ or other Z80 relative jump instruction, enter a period;

the debugger waits for the programmer to enter an absolute address (no label is allowed) with a 4-digit

hexadecimal number as the destination of the jump. When the programmer enters a 4-digit hexa

decimal address, the debugger computes the displacement and stores the 1-byte result in the current

byte position. The seventh and eighth lines in the photo above show an example of specifying a

displacement.

86

- After the necessary data has been written, press I CRI; the debugger then returns to the command wait

state.

G (Goto) Command

The G command transfers program control to the specified address. This command is also used to

restart the program following a break.

* DG 7700 !CRI

* DG START I CRI

* DG !CRI

Executes the program at address 7700.

Executes the program at the address identified by label symbol "START".

Restarts the program at the breakpoint. The restart address and CPU

register data are stored in the register buffer.

- Enter a G command in response to the prompt "* D."

- The debugger then waits for entry of an execution address. The programmer can specify the execution

address with either a 4-digit hexadecimal number or a global label symbol defined with the ENT

assembler directive.

When using a label symbol, the programmer can specify the execution address on a line or byte basis.

* DG MAINO Executes the program at address "MAINO."

* DG MAIN0+3L Executes the program at the address 3 lines after "MAINO."

* DG MAIN0- 12 Executes the program at the address 12 bytes before the address identi

fied by "MAINO."

- To restart the program at a breakpoint, enter a G command and press! CR 1. If this operation is initiated

when no breakpoint is taken, the debugger returns to the command wait state without executing the

program.

The contents of the CPU registers to be restored when the program is restarted are displayed with the

R command. The value in the program counter (PC) is used as the restart address. Since the PC value

can be changed with the P command, it is possible to restart the program at an address other than the

breakpoint.

-To execute the program and return to the symbolic debugger at a certain point, use the following

command.

JP 12A3H

Address 12A3 is the warm start address for the de bugger; at this address, " * D" is displayed to

prompt for command entry without the contents of the link area being lost. (If a start is made from

address 12AO, it is a cold start and the link area, symbol table, and bias are cleared.)

-The only methods of stopping program execution are to use a jump instruction to return to the

symbolic debugger or to set a breakpoint.

- Press I BREAK I to terminate entry of a G command.

87

I (Indicative start) Command

The I command executes the program with the CPU registers loaded with the register buffer contents.

The execution address is designated by the program counter. The contents of the CPU registers can be

specified by the programmer through use of the A, C and P commands.

*DI Executes the program at the address
A F B c D E H L designated by the program counter
01 23 45 67 89 AB CD ED
A' F' B' C' D' E' H' L' with the data shown on the screen

01 23 45 67 89 AB CD EF loaded in the CPU registers.

PC SP IX IY I
78AB lFEA SF70 4F50 00
Start OK? 11111

- Enter an I command in response to the prompt" * D."

- The debugger displays the 2- and/or 4-digit hexadecimal values to be loaded into the CPU registers.

These values are stored in the register buffer. They can be displayed with the R command.

- The debugger then displays message "Start OK?." To start the program in this environment, press

I CR 1. The debugger then executes the program, starting at the address designated in the program

counter. To change register values or terminate the I command, press I BREAK I ; the debugger then

returns to the command wait state.

- The figure below shows how the CPU registers are set with the I command.

Register buffer

General register AF BC DE HL CD
set AF' BC' DE' HL' Z80 CPU

Special-purpose SP IX IY I
register set PC

The CPU general registers and special-purpose registers SP, IX, IY and I are loaded first; the program

counter is then loaded with the execution address and the program is executed.

- The photo at right shows how the debugger

responds to the I command and executes the

program (at address 7500 in this example.)

88

A (Accumulator) Command

The contents of the Z80 CPU registers are saved in the register buffer when a breakpoint is taken; the

contents of the primary general registers saved can be displayed with the A command. The buffer contents

can also be altered using cursor manipulation.

* DA
A F B C D E H L
01 23 45 67 89 AB CD EF

- Enter an A command in response to the prompt 11 * D. 11

Displays the contents of primary register

pairs AF, BC, DE and HL.

- The debugger displays the contents of accumulator A, flag register F, and general register pairs BC, DE

and HL with 2-digit hexadeciaml numbers. These values represent the contents of the primary CPU

registers set up when a break occurs at a breakpoint. They are stored in the register buffer for use in

subsequent restart operations (see the G command description) at the breakpoint.

- If necessary, the programmer can alter the register contents. io change a register value, place the

cursor on the desired register value, overwrite it with a new value, and press I CRI .
The register values displayed or altered with the A command are those values which will be restored

to the CPU internal registers on a restart at a breakpoint or on an indicative start with the I command.

- Press I CRI ; the debugger then returns to the command wait state.

C (Complementary) Command

The C command displays the contents of the complementary general-purpose registers set up on the last

break. The programmer can alter their contents through cursor manipulation.

*DC
A' F'
01 23

B'
45

C' D'
67 89

E' H' L'
AB CD EF

-Enter a C command in response to the prompt 11 * D. 11

Displays the contents of complementary

register pairs AF', BC', DE' and HL'.

- The debugger displays the contents of accumulator A', flag register F' and general-purpose register

pairs BC', DE' and HL' with 2-digit hexadecimal numbers. The contents of the registers and the mean

ings of the register contents and data altered through cursor manipulation are the same as with the

A command. They are used for restart at a breakpoint or with the I command.

- Press I CRI ; the debugger then returns to the command wait state.

89

P (Program counter) Command

The P command displays the contents of the special-purpose registers set up on the last break. The

programmer can alter their contents through cursor manipulation.

* DP
PC
78AB

SP
lFEA

IX
5F70

IY
5F50

I
00

- Enter a P command in response to the prompt " * D."

Displays the contents of special-purpose

registers PC, SP, IX, IY and I.

- The debugger displays the contents of special-purpose registers PC, SP, IX, IY and I with 2- and/or

4-digit hexadecimal numbers. The meanings of the register contents and the data altered through

cursor manipulation are the same as with the A and C commands.

Register values displayed or altered through cursor manipulation are restored t<;> the pertinent

registers upon restart at a breakpoint or upon indicative start with the I command. The program does

not have to restart at the breakpoint; the programmer can specify another restart address by altering

the PC value.

- Press I CRI ; the de bugger then returns to the command wait state.

R (Register) Command

The R command displays the contents of all CPU internal registers set up on the last break or altered

with the A, Cor P commands. The programmer cannot alter their contents.

*DR Displays the contents of all CPU
A F B c D E H L registers.
01 23 45 67 89 AB CD EF
A' F' B' C' D' E' H' L'
01 23 45 67 89 AB CD EF
PC SP IX IY I
78AB 1FEA 5F70 5F50 00

- Enter an R command in response to the prompt" * D."

- The debugger displays the contents of all CPU registers with 2- and/or 4-digit hexadecimal numbers.

The cursor does not appear in the screen, so the programmer cannot alter their values.

The same data is automatically displayed when a break occurs or when an indicative start is initiated

with the I command.

- The debugger enters the command wait state after displaying all the register contents.

- The above display is on 1 line in the 80 characters per line mode.

90

Using register commands A, C, P and R

Values displayed with register commands (A, C, P and R) are the actual contents of the register buffer

in the debugger. The register buffer in the debugger contains values loaded when breaks occur or when

changes are made through cursor manipulation with the A, C or P command. The values are restored

to the CPU registers when a restart is made from a breakpoint or when an indicative start is made.

The figure below shows the relationship between the CPU registers and the register commands; the

photos show examples of use of the register commands.

I Z80 CPU REGISTER J
BREAKPOINT

CPU REGISTER BUFFER

MAIN REG SET AF BC DE HL - A command

COMPLEMENTARY REG SET AF' BC' DE' HL' - Ccommand

SPECIAL PURPOSE REG SET PC SP IX IY I - Pcommand

RESTART FROM B.P. ! OR - INDICATIVE START
Rcommand

l Z80 CPU REGISTER I

A command Pcommand

Ccommand Rcommand

91

X (data TRANSfer) Command

The X command trasfers the contents of the specified memory block to the specified memory area.

* OX Transfers the contents of the memory block

From? 7500 To? 811F Top? 9000 To 9C1F from addresses 7500 to 811F to the memory

area starting at address 9000.

- Enter an X command in response to the prompt " * D."

The debugger displays the message "From?" and waits for the programmer to enter the starting

address of the source memory block with a 4-digit hexadecimal number. When the starting address

is entered, the debugger displays the message "To?" to prompt the programmer to enter the ending

address of the source memory block with a 4-digit hexadecimal number. When the ending address

is entered, the debugger displays the message "Top?" to prompt the programmer to enter the starting

address of the destination memory area with a 4-digit hexadecimal number (No global symbol can be

used to specify these addresses.)

- After all addresses are specified, the system computes and displays the ending address of the des

tination area and starts transferring data. The system waits for another command after the data

transfer is completed.

The source and destination memory blocks must be located within the link area.

Data trasfer is accomplished successfully even if the source and destination memory blocks overlap

as shown below. The memory block shown in the figure at left may be transferred to the memory

block shown in the figure at right and vice versa.

Link area

Symbolic debugger

Memory block
(Memory area)

Symbol table

- The photo at right shows how the debugger trans

fers the memory block starting at address 7500

and ending at address 750F to the memory area

starting at address 7508.

Compare the memory contents displayed with

the two M commands.

The contents of 8 memory bytes are displayed

on each line in the 40 characters per line mode

and the contents of 16 memory bytes are dis

played on each line in the 80 characters per line

mode.

92

Symbolic debugger

Memory area
(Memory block)

Symbol table

Link area

-Object file 1/0 command-

S (Save) Command

The S command saves a specified block of the object program in the symbolic debugger link area into

a named output me in immediately executable form. The contents of this me can be restored to the link

area with the Y command.

l os
Filename ? SAMPLE

From ? 3000 To ? 4BFF

Load ? 3000 Execute? 3100

Saves the immediately executable object program in the link

area starting at address 3000 and ending at address 4BFF along

with the symbol table contents into an external file with the

filename "SAMPLE."

- Enter an S command in response to the prompt " * D."

-The system displays the message "Filename?" on the next line and waits for the output file name to

be specified.

-Specify the filename and press I CRI .

-The system then displays the message "From?" on the next line and waits for the starting address of

the block of the link area to be output to be specified as a 4-digit hexadecimal number. Then the

message "To?" is displayed and the system waits for the end address of the same block to be specified

as a 4-digit hexadecimal number.

-The system then displays the message " Load?" on the next line and waits for the loading address of

the block to be specified as a 4-digit hexadecimal number. Next, the message" Execute?" is displayed

and the system waits for the execution address to be specified in the same manner. (For details, see

page 60.)

-After the four addresses indicated above have been specified, the specified memory block and symbol

table contents are output to the external file (object file with symbol table).

-The figure below shows how the S command is used to specify the block from 3000 to 4BFF for

output to its output flle with the filenan1e "SAMPLE," a loading address of 3000, and an execution

address of 3100 specified.

Symbolic debugger

3000
Object program in
inlmediately executable

form I
4BFF~

EO 0 0 Symbol table

S command

93

Output file

Object flle " SAMPLE "
with symbol table
Loading address : 3000
Execution address : 3100

V (Yank) Command

TheY command reads a named object file with a symbol table into the link area.

Clears the link area and reads an object file with a symbol

table into the location determined when the file is created.

- Enter aY command in response to the prompt" * D. 11

- The system prompts for the name of the file to be read with the message 11 Filename?. 11

- Enter the name of the required ftle and press I CR 1. The system then searches for the specified file and

reads it into memory. If no filename is specified, the system reads the first object ftle with a symbol

table that is encountered.

- The program in the object file is loaded as is between the starting and ending addresses that were

specified when the ftle was saved with the S command. The symbol table in the object ftl e is re

produced in memory under the conditions set up when the S command was executed, except that it

is placed at the beginning of the area set up with the * TBL command. The de bugger will read in only

object ftles generated by the linker since they contain no symbol table.

- The system displays the message 11 OK" when the file read is completed.

- The system issues the error message 11 Check sum error 11 if an error occurs during the file read.

- Press I BREAK I to terminate the read.

Object file with
Symbolic debugger

a symbol table

Object program in

immediately executable from

Symbol table

- The S, V, and Y commands of the symbolic debugger are provided to facilitate creation of external

files from an absolute-form programs being debugged. Without these commands, it would be necessary

to restart debugging from the program linkage, when the debugging session is interrupted. The Y

command permits the program, as well as the symbol information, to be restored.

94

V (Verify) Command

The V command compares the contents of the specified object file with symbol table with the contents

of the link area.

*DV

Filename? SAMPLE

Compares the contents of the object file with symbol table

indicated by filename "SAMPLE" with the contents of the

link area

-Enter a V command in response to the prompt " * D."

-The system then prompts for the name of the object fil e to be compared with the message

"Filename?."

-Enter the required filename and press I CRI .
-The system displays the starting and ending addresses which were specified in the S command when

the file was generated, followed by the message" Top?." This message asks the operator to specify

the address in the link area at which comparison is to start. Specify a 4-digit hexadecimal number.

When no filename is specified, the system performs the same operations on the first object file that is

encountered.

-After the starting address is specified, the system starts comparing the contents of the link area and

object me.

-The system displays the message "OK" if the contents of the link area and object file match, and the

error message " Check sum error" if they do not match.

- The photo at right shows how the object file

"SAMPLE" with symbol table is compared with

the contents of the link area. The "OK" message

indicates that the contents of the link area have

been copied into an output file without any

errors.

Symbolic debugger

• ~ ' =
~~~~Q 3 ~~~~~~~~E770B 
~~3d- 7~00 E - ecute~ 7~00 
·~ · - 1 T 1 ,-,-~, ·:-~r·lF'LE -., 
~ ~·y -=-,-, ~ r,·,.;. -:··:.Hr·1F'LE 
;:- -:·•_,,-,., :.~r·1F·L E 
;:-roM -~oo To 770B Top- 7~00 
.'-? ,- : • 'c' : .- , ~· :. r'1 1·1 F· LE . -

Output file 
3000 Object program in V command 

immediately executable form 

/ Object file "SAMPLE" 
with symbol table 

Symbol table 

4BFF 

EOOO 

95 



  

#Command 

Switches the list mode for printout on the printer. 

- Enter a# command in response to the prompt " * D." 

The debugger then switches the list mode. When the debugger is invoked, the printer list mode is set 

to the disable mode. The mode alternates between enable and disable each time a # command is 

entered. In the enable mode, all output is directed to both the screen and the printer (except with the 

M command). 

- The system issues the error message "No power or no connection (Printer)" if the printer is not 

turned on or is not connected to the system. 

- The system issues the error message "Alarm" if an error occurs in the printer. 

- The system issues the message "Paper empty" when the paper has run out. 

! Command 

Transfers control to the monitor. 

- Enter an ! command in response to the prompt " * D." 

- The system displays the message: 

"M)onitor B)oot C)ancel? " 

Enter M to transfer control to the monitor. 

Enter B to transfer control to the IPL program. 

Enter C to cancel the ! command and return control to the symbolic debugger command mode. 

- There are two methods of returning to the symbolic debugger from the monitor: 

1) Jump to address 12AOH : The link area is cleared (cold start). 

2) Jump to address 12A3H :The link area is not cleared (warm start). 

96 



  

4.4 ERROR MESSAGES OF THE SYMBOLIC DEBUGGER 

Error message Meaning Relevant commands 

?!? An attempt was made to access a location outside the link area. B , W , X , S , V 

An incorrect number of digits was specified or a digit other than a 
EJTor hexadecimal digit was entered during execution of a register (or M,A , C , P 

memory) change command. 

RST6? A break point was set at an RST6 instruction. B 

0\er More than nine breakpoints were set. B 

Invalid The format of the entered command is incorrect. X , S , V 

o An invalid symbol (undefmed label symbol or nonlabel symbol) B , W 
was specified. 

o An attempt was made to clear a break point which was not set. B 
o An attempt was made to set the break counter more than 14 (E B 

? in hexadecimal) times. 
o The format of the specified address is incorrect. M , D , G 
o The starting address is not smaller than or equal to the ending M , D , W 

- address. 
0 The destination and source blocks overlap. X 

0 A mismatch was found between the contents of the link area and V 
Deck sum error the object me being verified. 

0 An error occurred while a me was being read. L ,N, Y 

No power or The printer is not turned on or is not connected to the system. # 
DO connection 

Alum An error such as paper jam occurred in the printer. # 

Paper empty Printer is out of paper. # 

97 



  



  

CHAPTER 5 

PROM FORMATTER 

99 



  

5.1 OUTLINE OF THE PROM FORMATTER 

The rapid advances in LSI technology have allowed the functions of a computer's CPU to be concen· 

trated onto a single semiconductor chip. These microprocessors are becoming ever more sophisticated, 

while at the same time they are becoming less expensive. As a result, the range of fields in which micro

processors are being utilized is growing rapidly. One subject of great importance to the development of 

new device applications is that of developing efficient application programs; it is not too much to say that 

the quality of the application program determines how well a newly developed device performs. 

On the other hand, developments in LSI technology have also stimulated efforts to develop low cost, 

large capacity memory elements (RAM and ROM). The increased availability of PROMs which are erasable 

with ultraviolet rays has had a particularly strong influence on the development of devices which incorpo

rate microprocessors. 

The procedure which is most suitable for efficiently developing application programs is to create an 

object file from a source ftle created through assembly programming using an assembly language, then to 

reassemble it after debugging. The function of the PROM formatter is to load one or more object pro

grams created with the assembler and linker, then to output it to a paper tape puncher after converting 

it to PROM writer format. 

Relocatable 
program 

Object program 

PROM formatter 

Symbolic debugger 
section 

Debugging 
Program execution 
Breakpoint setting 
Data alternation 

Formatter section 

Format control 
Format conversion 
Puncher output 
Reader input 

Program execution 

PROM formatter operation 

1'----1 Tape 
~puncher 

Reader 

A PROM writer is required to write programs into PROM devices. There are a number of PROM writers 

on the market (e.g., Takeda Riken, Minato Electronics, etc.). Those PROM writers, however, use different 

formats (in which the PROM writer reads input data from the tape reader). Programs debugged and 

completed by the symbolic debugger* section of the PROM formatter are converted to a format suitable 

for the PROM writer used and output to the tape puncher by the formatter section. 

*: See Chapter 4 for the symbolic debugger. 

The PROM formatter can also read in programs written in one format on paper tape and output them 

in a different format. During this format conversion, it is also possible to debug the programs and alter 

their data using the symbolic debugger section (except program execution and symbolic debugging). 

100 



  

The following formats are provided in the PROM formatter: 

1. BNPF 0000 

• Britronics Monitor 

• Intel 12AO 
PROM forrnatter 

• Takeda Riken 

2. 810F 
• Takeda Riken Unk area 

3. HEXADECIMAL 
• Britronics FFOO 

Work area 
• Takeda Riken 

• Minato Electronics PROM forrnatter memory map 

4. BINARY 
• Britronics 

The PROM formatter commands are listed below. In addition to these commands, it is possible to use 

the symbolic debugger commands under the PROM formatter program. 

Command name Function 

FP (Format Punch) Punches a specified link area block on paper tape. 

FC (parity Form Change) Changes the parity of the input or output tape. 
-----------4--------------------------------------------------~ 

FR (Format Read) Reads a formatted program from paper tape into the link area. 

FM (Format Message) Displays a list of the formats available for the PROM formatter. 

101 



  

5.2 PROM WRITER FORMATS 

PROM writers are provided in many formats by different companies. This section discusses forms which 

are converted by the PROM formatter; refer to the individual PROM writer manuals for details. 

(

The examples in the figures include the filename "AAA", the address "0000", and the l 
data "SC", "BD" and "27". The leader section for the start of punched output and the 

trailer section for the end of punched output are created automatically. 

5.2.1 BNPF 

a) Britronics (Format A) ~ SP indicates a space code 

A A A C L S B N p N p p P N N F S B p N P p p p N p F ~ B N N p N N P p p F ~ B R F p p 

\File 1 \ se BD 27 
name Data 

- The filename is punched in ASCII code (if one is specified). (Using the character "B" as a filename 

will result in incorrect identification of the beginning of data.) 

-I CR I and I LF I are punched in ASCII code. 

- The space code (20H) and the byte of data at the address specified for "RAM from?" are punched in 

BNPF format. The address is incremented successively. 

- I CR I and I LF I are punched after each 6 items of data are punched in the BNPF format. 

- Punching is performed in BNPF format up to the address specified for "To? . " 

b) lntel (Format D) 

This is the same as the Britronics format. The BNPF format is one which has a relatively high degree 

of standardization; thus, the PROM formatter can also be used with devices other than those which 

aie discussed in this manual. 

102 



  

c) Takeda Riken (Format E) 

S A A A ~ ~ # 0 0 0 ~ B N I> N p p p N N F S p B P N p p p p N p F S p B N p F ) 

\. File .J \....Address _J se BD 
name Data 

-The "$" mark, which denotes the filename, is punched in ASCII code. 

- The filename is punched in ASCII code (if one is specified). 

- J CRI and I LF I are punched. The "$" mark is regarded as denoting the beginnning of a comment 

statement ; the end of a comment statement is denoted with an I LF I code. 

- The "#" mark (which indicates the beginning of an address) is punched, followed by the first three 

digits of the address specified for "PROM address?." The separator between the address and the data 

is punched as " . ". 

- The data item at the address specified for" RAM from?" is punched in BNPF format. The address is 

incremented successively. 

- I CRI and I LF I are punched after each 6 items of data are punched in the BNPF format. 

- A tape leader stop mark " ) " is punched after the data has been punched up to the address specified 

for"To?." 

Note: Care must be taken to ensure that characters which act as control characters (B, :, $,#,etc.) are 

not used when a filename is specified. (Otherwise, incorrect operation will result.) 

5.2.2 B10F 

a) Takeda Riken (Format F) 

S A A A ~ ~ # 0 0 0 ~ B 0 I 0 I I I 0 0 F ~ B I 0 I I 1 I 0 I F 0 F l 

'- File ..J \ se BD 
name Address Data 

- Except for the NP section, this is the same as Takeda Riken's BNPF format. 

- The BlOF format corresponds to the BNPF format in that I= P and 0 =N. 

103 



  

5.2.3 HEXADECIMAL 

a) Britronics (Format B) 

c 
+-

T 
A A A R CL 5 c ~ B D S 3 5 ~ 3 D ~ 0 5 s 0 B ~ 0 D S 1 5 ~ 1 B ~ 1 D S 2 5 ~ L R F p p p p 

/ 
A 

\File L5 C-' '-s o..J \._3 5_J 3 oJ'-o 5_}'-o B-' '- o D-' '-1 5-' '-1 s '-1 o.J '-2 5J 
name Data 

- The ftlename is punched in ASCII code (if one is specified). 

- The "CTRL/A" mark (OlH) indicating the beginning of data is punched. 

- I CR] and I LF I are punched. 

- The data item at the address specified for "RAM from?" is punched as a 2-digit ASCII code, then a 

space code is punched. 

I CRI and I LF I are punched after 16 bytes of data have been punched. 

Data is punched up to the address specified for "To?." 

b) Takeda Riken (Format G) 

+- $ A A A C L • 0 0 0 s 5 c 0 ~ B D ~ 3 5 ~ 3 D • ~ 0 5 R F p 

'- File J \._Address \..se '-BD..J 3 5 \...3o..J '-o s.J 
name Data 

- The " $ " mark, which denotes the ftlename, is punched in ASCII code. 

- The ftlename is punched in ASCII code (if one is specified). 

~ 0 B D . ) 

- After I CRI and I LF I are punched (followed by the address specification mark "#" and 3 digits of the 

address specified for "PROM address?"). The separator" . " is punched. 

- The space code is punched, followed by the 2-digit ASCII code for the data at the address specified 

for "RAM from? ." The separator". "is punched after the data item. 

- I CRI and I LF I are punched after 16 bytes of data have been punched. 

- Data is punched up to the address specified for "To? " , at which point the tape leader stop mark " ) " 

is punched. 

104 



  

c) Minato Electronics (Format H) 

( # 0 0 0 ~ 5 c s B D ~ 3 5 ~ 3 D ~ 0 5 s 0 B ~ 0 D ~ 1 5 s A A A p p p 2 5 1 

\File Address 5 C-' '-B D-' '-3 5 L 3 o....J o 5.....1 Lo s LO D_J '-1 5.J 

name Data 

- The filename is punched in ASCII code when filename is specified. 

- The start-of-data mark " [ " is punched. 

- The address designation mark " # " is punched, followed by a 3-digit ASCII code for the address 

specified for "PROM address?." 

- A space code is punched, then the data at the address specified for "RAM from?" is converted to a 

2-digit ASCII code and punched. 

- 16 combinations of space codes and data items are punched, then I CRI and I LF I are punched. 

- The end-of-data mark " ] " is punched after data has been punched up to the address specified for 

"To?." 

5.2.4 BINARY 

a) Britronics (Format C) 

3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I I 1 1 I 1 1 1 5 5 MSD (upper 4 bits) 
A A A 

0 0 0 0 5 c B D 3 5 3 D 0 5 0 B I 5 I B 1 D 2 5 2 B D D F D 2 LSD (lower 4 bits) 

File I \ AddressJ Data 
name Block 

- In the binary format, the 4-bit mark section and the 4-bit data section are expressed together as one 

character (8 bits). The mark section is punched as the upper 4 bits of the paper tape, while the data 

section is punched as the lower 4 bits. 

- The filename is punched in ASCII code (if one is specified). Specifications which result in a " 3 " in 

the upper 4 bits of the ASCII code filename are not permitted. Such specifications will result in in

correct operation, since incorrect determination that the lower 4 bits of the filename are an address 

will result. 

- Three binary digits for the address specified for "PROM address?" are punched in the lower 4 bits. 

The address designation mark ("3 ")is punched in the upper 4 bits. 

- A data mark ("1 ") is punched in the upper 4 bits and data at the address specified for "RAM from? " 

is punched in the lower 4 bits. 

- Data is punched 4 bits at a time (with the upper and lower 4 bits punched in alternation) up to the 

address spe9ified for "To?." 

-Check sum marks ("5") are punched in the upper 4 bits, followed in alternation by check sum data in 

the lower 4 bits. 

105 



  

5.2.5. Performance boards of various companies 
(Note: Consult the various manufacturers for details.) 

a) lntel 
2716 
2732 
8748/8741 
3621,3602, 3622,3602A, 3622A, 3604, 3624, 3604A,3624A, 3605,3625, 3605A,3625A,3628,3608, 
3604AL-6, 3604AL 
8702A/1702A 
8708/8704/2708/2704 
8755A 

b) Britronics 

Company Element 

Intel 3602 A / 22 A, 3604 A / 24 A. 3604A L / 24L, 3605/ 25, 3608/ 28 

Intersil 5600/ 10, 5603 A / 23. 5604/ 24, 5605/ 25 

Fujitsu 7055, 7051, 7052, 7058, 7053, 7059, 7054, 7057 

5330 / 6330, 5331 / 6331 , 5300/ 6300, 5335/ 6335, 5336/ 6336, 5308{ 6308. 5309/ 6309. 

Monolithic 53134/ 63134, 53135/ 63135, 5305/ 6305, 5306/ 6306, 53137/ 63137. 53141/ 63141 . 

Memory 5340/ 6340, 5341 / 6341. 5348/ 6348. 5349/ 6349. 5350/ 6350, 5351 / 6351, 5352/ 6352. 

5353/ 6353, 5380/ 6380. 5381 / 6381, 5384/ 6384. 5385/ 6385, 5386/ 6386. 5387/ 6387 

7602/ 03, 7610A / 11A. 7620A / 21A. 7640A / 41A. 7640AR / 41AR , 7642/ 43, 

7644, 7646R / 47R. 7648/ 49, 7608, 7680/ 81, 7680R / 81R. 7680P / 81P. 
Harris 

7680RP / 81 RP. 7683. 7684 / 85, 7684P / 85P, 7686/ 87. 7686R / 87R. 7686P / 87P . 

7686 RP / 87 RP 

Fairchild 93417 / 27. 93436/ 36, 93438/ 48. 93452/ 52 

National 54/ 745387. 54/ 74 5 287, 54/ 74 5470, 54/ 745471, 54/ 74 5 570. 54/ 74 5 571. 

Semiconductor 77/ 87 5295 , 77/ 87 5 296. 54/ 74 5473, 54/ 74 5 472, 54/ 74 5 572, 54/ 74 5 573 

NEC 4030, 4060 

Raytheon 29660/ 61. 29600/ 01, 29612/ 13 

Signetics 
82 5 114 / 115, 82 5 126/ 127. 82 5 130/ 131, 82 5 140/ 141. 82 5 136/ 137. 82 5 180 / 181. 

82 5 2708, 82 5 184/ 185, 82 5 190/ 191 

Texas 54/ 7488A. 54/ 74 5 / 88. 54/ 74 5288, 54/ 74 5 470, 54/ 74 5 71, 54 / 74 5 73. 
Instruments 54/ 74 5 72. 54/ 74 5 75 

c) Minato Electronics 
Adaptable to all PROMs. 

106 



  

... c .....
 

d
) 

T
a

k
e

d
a

 R
ik

e
n

 

M
O

S
 T

yp
e 

E
le

m
en

t 
B

it
 c

on
fi

gu
ra

ti
on

, c
ap

ac
it

y
 

(w
or

ds
 x

 b
it

s=
 c

ap
ac

it
y)

 
O

k
iD

en
k

i 
T

os
hi

ba
 

N
E

C
 

H
it

ac
hi

 
F

uj
it

su
 

25
6 

X
 8

 °
 2

04
8 

~
P
D
•5

•
D
@
 

H
N

35
17

02
A

(!
) 

M
IJ

85
03

 
M

88
51

3 

5
1

2
x

4
•2

0
4

8
 

T
M

M
I2

1
C

 
T

M
M

I2
1

C
-I

 

M
O

S 
51

2 
X

 8
 •

 4
09

6 

10
24

 X
 8

 °
 8

1
9

2
 

M
5M

37
58

(i
) 

'T
M

M
3

2
2

C
(i

) 
~
P
D

45
1
D
@
 

H
N

46
27

08
(i

) 
M

8
85

18
(i

) 

20
48

11
11

8
. 

16
38

<t
 

T
M

M
3

2
3

C
@

 
,.

P
0

2
7

16
0

(i
) 

H
N

 .
.
 21

16
C

i)
 

M
B

IS
IO

C
i)

 

4
09

6 
X

 8
 °

 J
2

7
6

8
 

5
1

2
x

8
•4

0
9

6
 

C
M

O
S 

10
14

 X
 4

 •
 4

0
9

6
 

1
0

2
4

x
 8

. 
81

92
 

C
om

po
un

d 
M

O
S 

B
ip

ol
ar

 T
yp

e 
B

it 
co

nf
ig

ur
at

io
n,

 c
ap

ac
it

y 
E

le
m

en
t 

(w
or

ds
 x

 b
it

s=
 c

ap
ac

it
y)

 
N

E
C

 
H

it
ac

hi
 

F
uj

it
su

 
M

it
su

bi
sh

i 
In

te
rs

il
 

ln
te

l 

M
B

70
51

 
IM

S6
00

 
J
h

8
. 

25
6 

M
54

13
0 

M
B

70
56

 
IM

S
61

0 

2
5

6
.4

. 
10

24
 

~
P
I
U
O
l
l
l
®
 

~=
~:
~~(

i) 
M

54
10

0 
IM

S6
03

A
 

36
01

 
IM

S6
23

 
36

21
 

2
5

6
. 8

• 
2

0
4

8
 

5
1

2
x

 4
 •

 2
04

8 
~=

~:
~®

 
IM

S&
O

• 
36

02
 

IM
S

62
' 

36
22

 

~
P
B

•0
5
o
 

IM
S

60
5 

3
6

0
.A

 
5

1
2

x
 8

 •
 4

09
6 

u
P

B
42

SD
 

IM
S6

25
 

l6
24

A
 

B
ip

ol
ar

 

10
24

 X
 4

 •
 4

0
9

6
 

::
::

~:
~®

 
~=~

:~:
® 

IM
S6

06
 

36
05

A
 

IM
S6

26
 

36
25

A
 

10
24

 X
 
8 

° 
8

1
9

2
 

::
::

!~
~®

 
~=
~:
~®
 

36
01

A
 

36
28

A
 

2
0

4
8

.4
.

8
1

9
2

 

20
48

 •
 8

 •
 1

63
84

 
36

36
 

-
-
-
-

-
-
-

-
-

-
-

-

E
le

m
en

ts
 a

nn
ot

at
ed

 w
it

h 
th

e 
sa

m
e 

fi
gu

re
s 

in
 c

ir
cl

es
 c

an
 b

e 
us

ed
 w

it
h 

th
e 

sa
m

e 
pe

rf
or

m
an

ce
 b

oa
rd

s. 

M
ak

er
 n

am
e 

' 

M
it

su
bi

sh
i 

ln
te

rs
il

 
ln

te
l 

T
ex

as
 

F
ai

rc
hi

ld
 

A
M

D
 

In
st

ru
m

en
ts

 
S

IG
N

E
 

I 

M
5L

I7
02

(!
) 

:~
~:

 <D
 

A
M

I7
02

A
(!

J 
17

02
A

 
cr;

J 

21
04

 
w

 
M

5L
27

08
@

 
21

08
 
~
 

21
58

 
<i>

 
T

M
5

2
7

0
8

®
 

F
27

01
 

<J
) 

A
M

27
01

 
<J

) 
27

01
 

®
 

M
SL

21
16

C
i)

 
27

16
 

(j
) 

T
M

52
71

6<
J)

 
T

M
5

2
5

1
6

®
 

27
32

 
T

M
5

2
5

3
2

 
1M

ii
6S

4!
i)

 
IM

66
53

(j
) 

M
S8

46
0 

5 

87
55

 

M
ak

er
 n

am
e 

T
ex

as
 

!I
ns

tr
um

en
t 

H
ar

ri
s 

F
ai

rc
hi

ld
 

R
ay

th
eo

n 
M

M
I 

A
M

D
 

S
IG

N
E

 

5N
74

18
8A

 
H

M
76

02
 

H
M

7
6

L
5

0
3

 
63

30
-1

 
A

M
27

51
8 

8
2

5
2

3
 

5
N

74
5

1
8

1
 

5
N

7
4

5
2

1
1

 
H

M
76

03
 

63
31

-1
 

A
M

27
51

9 
1

2
5

12
3 

29
66

2 
5

N
7

4
5

2
1

7
 

H
M

76
10

A
 

H
M

76
10

 
93

41
7 

29
66

3 
63

00
-1

 
A

M
27

52
0 

8
2

5
1

2
6

 
5

N
7

4
5

3
1

7
 

H
M

76
11

A
 

H
M

76
11

 
93

42
7 

29
66

0 
63

01
-1

 
A

M
27

52
1 

1
2

5
1

2
9

 
29

66
1 

63
01

-1
 

H
M

76
25

R
 

63
09

-1
 

~~
~:
~:~

~ (
j)

 
29

60
0 

63
35

-1
 

1
2

5
1

1
4

 
29

60
1 

H
M

76
29

 
63

36
-1

 
63

13
5-

1 
H

M
76

20
 

H
M

76
20

A
 

93
43

6 
29

61
2 

63
05

-1
 

A
M

2
7

5
1

2
 

1
2

5
1

3
0

 
H

M
76

21
 

H
M

76
21

A
 

93
44

6 
29

61
3 

63
0(

i-
l 

A
M

27
51

3 
12

51
31

 

5
N

74
5

47
2

 
H

M
76

40
 

H
 M

76
40

A
 

63
41

-1
 

H
M

76
41

 
H

M
76

,1
A

 
A

M
27

51
5 

8
2

5
1

1
5

 

~~
~:
~:
~!
® 

93
<3

1 
63

<
0-

1 
H

M
76

40
A

R
 

H
M

76
41

A
R

 
93

U
8 

8
2

5
1<

0 
H

N
76

-t
7R

 
63

48
 I

 
A

M
2

1
5

U
 

8
2

S
U

J 
5

N
7

4
5

4
1

5
 

H
M

7
6

'8
 

H
M

76
<9

 
63

<
9

-1
 

A
M

27
52

7 

H
M

76
42

 
H

M
76

42
A

 
63

50
-1

 
H

M
76

43
 

H
M

76
43

A
 

93
45

2 
63

51
-1

 
A

M
27

53
2 

1
2

5
1

3
6

 
H

M
76

44
 

H
M

76
"

A
 

93
<5

3 
63

52
-1

 
A

M
27

5
3

3
 

8
2

5
1

3
7

 
H

M
76

42
P

 
H

M
76

43
P

 
63

53
-1

 
H

M
76

10
 

H
M

76
11

 
63

10
-1

 
H

M
76

10
P

 
H

M
7

6
1

1
P

 
63

11
-1

 
8

2
5

1
8

0
 

H
M

76
10

R
 

H
M

76
11

R
 

63
1<

 
I 

8
2

5
1

8
1

 

H
M

7
6

1
0

R
P

 
H

M
7

6
1

1
R

P
 

9
34

50
 

63
15

-1
 

93
<5

1 
63

86
-1

 
H

M
76

01
 

63
17

-1
 

82
52

10
1 

H
M

76
13

 
63

13
3-

1 
H

M
76

1<
 

H
M

76
15

 
H

M
76

1<
P

 
H

M
76

1S
P

 
H

M
76

86
 

H
M

76
17

 
1

2
5

1
8

4
 

H
M

76
86

P
 

H
M

76
17

P
 

8
2

5
1

8
5

 
H

M
76

86
R

 
H

M
76

17
R

 
H

M
76

86
R

P
 

H
M

76
17

R
P 

H
M

76
16

 
8

2
5

1
9

0
 

H
M

76
16

0 
H

M
76

16
1 

12
51

91
 



  

5.3 PROM FORMATTER COMMANDS 

The PROM formatter is a system program which is based on the symbolic debugger. See Chapter 4 for 

the commands available with the PROM formatter symbolic debugger section. This section describes the 

commands available for the formatter section. 

-Formatting commands-

FP (Format Punch) Command 

The FP command punches the contents of the specified relocatable program or data block from the link 

area onto paper tape in the specified format. When this command is to be used for a relocatable program, 

all breakpoints set in the specified block must be cleared. 

* PFP 
no parity 

Filename? PROM # 1 

Port? FC 

Format? C 

From? 5000 To? 5100 

PROM address? 0000 

Outputs the contents of the object program from addresses 

SOOOH to SlOOH of the link area onto paper tape in format 

C. The PROM load address is specified as OOOOH and the 

filename as PROM#l. 

Enter an FP command in response to the prompt " * P " ( " * P" represents the PROM formatter). 

The system prompts for the name of the flle to be output with the message " Filenarne?." Press I CRI 

when no ftienarne is required. 

Enter the required filenarne and press J CRI 

The system displays the message "Port?" and waits for the port number of the interface to which the 

paper tape puncher is connected. Specify it as a 2-digit hexadecimal number. The port must be a 

output data Port. The associated control port number is the data port number plus I. The PROM 

formatter accepts only even port numbers to prevent entry of invalid port numbers. 

The system then dispalys the message "Format?" and waits for format command A to H. Enter the 

required format command and press I CRI . The format commands are described later. 

The system displays the message " From? " and 

waits for the starting address of the object 

program to be punched out. Specify a 4-digit 

hexadecimal number. The system then displays 

the message "To?" and waits for the ending 

address. 

108 



  

Depending on the format command specified, the system prompts for a PROM load address with 

the message 11 PROM address?. 11 Specify the required address with a 3- or 4-digit hexadecimal 

number. 

After completing the punch operation, the system waits for another PROM formatter command 

with the prompt 11 * P. 11 

Press I BREAK I to interrupt the punch operation. 

The photo shows that the program block from addresses SOOOH to SlOOH has been punched out 

through port FCH in format C with the filename 11 PROM#l. 11 

PROM formatter Formatting program 

5ooo I ~~ 
PROM#! object program ~FP .. .. d.~ comman 

5100 

The formatter program will return to the command wait state after examining the punch status if no 

punch is connected, if the puncher is not turned on, or if an invalid port is specified. Press I BREAK \ 

if control is not restored within a few seconds. 

It is recommended that the contents of the output file be verified with the FR command. 

FC (parity Form Change) Command 

The FC command changes the parity of the tape to be read with the FR command and of the tape to 

be punched. There are three types of parity specifications (no parity, even parity, and odd parity). 

even parity 
Specifies that even parity is to be used for parity checking. 

Enter an FC command in response to the prompt 

"* P. 11 

The system displays the current parity scheme, 

which switches cyclically (in the order even 

parity, odd parity, and no parity) each time 

the FC command is entered. 

The system then displays a list of format com

mands A to H and returns to the command 

wait state. 

109 

•PFC 
even par1t',:f 

Format command table 

A BNPF <Br1ghtronics RPG-8764) 
B He ·><adec1mal 

~ ~~~,ry(lntel MDS888) 
E BNPF <Takeda T318/28) 
F B18F 
G Hexadecimal 
H M1nato -format 

•P 



  

FR (Format Read) Command 

The FR command reads a program on a formatted tape into the link area from the reader. After the 

program read is completed, the ending address of the program is displayed. 

* PFR 
no parity 

Filename? PROM#2 

Port? FC 

Clears the link area and reads program " PROM#2 11
, stored 

on tape in format C, from the reader into the link area 

starting at address SOOOH. 

Format? C 

From? 5000 

- Enter an FR command in response to prompt 11 * P. " 

- The system prompts for the name of the file to be read with the message "Filename?. 11 

- Enter the required filename and press I CRI . Press only I CR I if no filename is specified. 

- The system then displays the message 11 Port? 11 and waits for the port number of the interface to 

which the reader is connected. Enter it as a 2-digit hexadecimal number. The port must be a input data 

port. The associated control port number is the data port number plus I. The PROM formatter accepts 

only even port numbers to prevent entry of invalid port numbers. 

- The system then displays the message "Format?" and waits for a format command. Enter a format , 
command (A to H) and press I CR I . If an incorrect format command is specified, the system displays 

the message "Format 11 and returns to the command wait state after having read the specified flie. 

- The system then displays the message "From? " and waits for the address at which the program is to 

be stored. Enter this as a 4-digit hexadecimal number; the system then starts reading the specified file. 

After completing the read, the system dispalys the message "To " followed by the ending address, 

then returns to the PROM formatter command wait state. 

- Press I BREAK I to interrupt the file read operation. 

- The read program can be debugged using the 

symbolic debugger section of the PROM for

matter. Symbolic debugging and program execu

tion, however, are not allowed because no 

symbols are loaded in the symbol table. 

- The photo at right shows how a program stored 

on tape in format C with the filename "PROM 

#2" is read into the link area (starting at address 

SOOOH) from the reader through data port FC. 

- The system returns to the PROM formatter 

command wait state if no reader is connected 

or no paper tape is loaded. 

- Tapes punched with other than this PROM formatter program cannot be read because the PROM 

writer formats supported by this program contain a degree of redundancy. 

110 



  

PROM formatter 

PROM#2 object program 
Formatting program 

FM (Format Message) Command 

The FM command displays a list of formats provided by the PROM formatter. 

)l::: PFM Displays a list of available formats. 

- Enter an FM command in response to the prompt 

"* P." 

The system then displays a list of available for

mats, as shown in the photo at right. 

-Format commands-

Format commands are specified by the operator in response to the prompt message "Format?" during 

execution of the FP or FR command. Selecting one of these commands during execution of the FP 

command determines whether data is to be punched in BNPF, HEXADECIMAL or other format. Failure 

to specify the correct format command during execution of the FR command will result in failure to 

correctly read the program into the link area. 

A Command 

- Used to specify the Britronics BNPF format. The control character "B " may not be used when the 

filename is specified. 

BCommand 

- Used to specify the Britronics HEXADECIMAL format. 

CCommand 

-Used to specify the Britronics BINARY format. Numerals and the codes (:;<=>?)may not be used 

when the filename is specified. 

-During execution of the FP command, the system displays the message "PROM address?" to prompt 

for a PROM load address. Specify a 4-digit hexadecimal number. 

111 



  

- The system writes check sum bytes at the end of each data block punched out (FP command), or 

displays the error message "Check sum" if a check sum error occurs (FR command). 

- Data from the address specification to the check sums constitutes one block ; if data is to be loaded 

into an address which has been skipped, the operation must be divided into two or more parts. This 

also applies when two or more blocks are read in with the R command. 

D Command 
- This command is used to specify the Intel BNPF format. The character "B" cannot be used in the 

filename. 

E Command 
- This command is used to specify the Takeda Riken BNPF format. The character " B" may be used in 

the filename. 

- A file is a block which begins with "$" and ends with " ). " 

- During execution of the FP command, the system displays the message " PROM address? " to prompt 

for a PROM load address. Specify the low order 3 digits of the required load address. 

- If two or more blocks are to be read out or written in, the operation must be divided into two or more 

parts. 

F Command 
- This command is used to specify the Takeda Riken B lOF format. The character" B" may be used in 

the filename. 

- A file is a block which begins with " $ " and ends with " ). " 

- During execution of the FP command, the system displays the message "PROM address? " to prompt 

for a PROM load address. Specify the low order 3 digits of the required load address. 

- If two or more blocks are to be read out or written in, the operation must be divided into two or more 

parts. 

G Command 
- This command is used to specify the Takeda Riken HEXADECIMAL format. 

- A file is block which begins with "$" and ends with " ). " 

- During execution of the FP command, the system displays the message "PROM address? " to prompt 

for a PROM load address. Specify the low order 3 digits of the required load address. 

- If two or more blocks are to be read out or written in, the operation must be divided into two or more 

parts. 

H Command 
- This command is used to specify the Minato Electronics HEXADECIMAL format. 

- The start-of-data symbol " [" may not be used in the filename. 

- During execution of the FR command, the system displays the message "PROM address? " to prompt 

for a PROM load address. Specify the low order 3 digits of the required load address. 

- Denote the end of data with the symbol "] ". 

112 



  

5.4 ERROR MESSAGES OF THE PROM FORMATTER 

Error message Meaning Relevant commands 

? ? ? An attempt was made to access a location outside the link area. FP , FR 

? 
The specified starting address is not smaller than or equal to 

FP 
the ending address. 

Not found The specified file was not found . FR 

Format? 
The format of the paper tape to be read does not match the 

FR 
specified format command. 

Parity? 
The parity scheme of the paper tape to be read does not match 

FR 
the specified parity scheme. 

Check sum 
A check sum error occurred while a paper tape in format C FR(with format ) 
was being read. command C only 

Invalid A command was specified in an invalid format. FP , FR 

(Note) The error messages associated with the symbolic debugger section are identical to those associated with the symbolic 
debugger. 

113 



  



  

CHAPTERS 

SAMPLE PROGRAM 

116 



  

' 

6.1 DRAWING AN APPROACHING SQUARE 

Let us prepare a program which draws squares which get bigger and bigger as they approach. We want 

a small square drawn at the upper left corner of the screen to appear as if it were approaching us. This can 

be accomplished by drawing squares with sides of increasing length one over another with a slight 

displacement. 

The photo above shows a square which 

apparently approaches us as it grows bigger 

and bigger. 

MAIN 

Set start address on 
screen and initialize 
side length to mini· 
mum 

Call DSQR to draw 
one side of square 
(side length = C) 

SUB-ROUTINE 
DSQR 

(display square) 

Move cursor .----0-r-aw-ri ..... gh_t_SJ_. d-e--, 

to home J 
1 

C+-1 t 

Draw left side 

!I 

Set up time 

'-------.-----' delay count 

YES 

116 



  

** Z80 ASSEMBLER SB-2202 PAGE 01 

01 00130 
02 eeee APPROACHING 
133 0000 
~4 0000 p CHR1: EQU 
05 0000 p CHR2: EQU 
06 eee0 p CHR3: EQU 
07 0000 p CHR4: EOU 
08 0000 p CHR5: EQU 
09 0000 p CHR6: EQU 
10 0000 MNTR: EQU 
11 0000 p GETKY: EQU 
12 0000 p PRNT: EQU 
13 0000 
14 0000 119A0e 3DG0: LD 
15 0003 CD9100 CALL 
16 0006 0E01 LD 
17 0008 41 30G1: LD 
18 0009 CD3E00 CALL 
19 000c coea00 CALL 
20 000F 3E03 LD 
21 0011 CD3C06 CALL 
22 0014 3E01 LD 
23 0016 CD3C06 CALL 
24 0019 ac INC 
25 001A 79 LD 
26 0018 FE0D CP 
27 0010 20E9 JR 
28 001F 110020 LD 
29 0022 18 3DG2: OEC 
30 0023 CD1006 CALL 
31 0026 FE21 CP 
32 0028 CA3100 JP 
33 0028 7A LO 
34 002C 83 OR 
35 0020 20F3 JR 
36 002F 18CF JR 
37 0031 21AE00 MNTR1: LD 
38 0034 3601 LD 
39 0036 C30000 JP 
40 0039 
41 0039 SUB ROUTINE 
42 0039 
43 0039 3E98 OSQR0: LD 
44 0038 CD3C06 CALL 
45 003E 10F9 DSQR: DJNZ 
46 0040 3E95 LD 
47 0042 41 LO 
48 0043 1802 JR 
49 0045 3E9A DSQR1: LD 
50 0047 CD3C06 CALL 
51 004A 3E01 LD 
52 004C CD3C06 CALL 
53 004F 3E04 LD 
54 0051 CD3C06 CALL 
55 0054 10EF DJNZ 
56 0056 3E96 LD 
57 0058 41 LO 
58 0059 1802 JR 
59 0058 3E98 DSQR2: LD 
60 0050 cn::::ce6 CALL 

117 

** 

SQUARE 

9BH 
95H 
9AH 
96H 
98H 
97H 
(3000H 
0610H 
063CH 

OE,DSP1 
CPRNT 
c, 1 
BtC 
DSQR 
TMOLY 
At03H 
PRNT 
At131H 
PRNT 
c 
AtC 
13 
NZr3DG1 
DEr2000H 
DE 
GETKY 
' I ' 

ZtMNTR1 
A tO 
E 
NZt3DG2 
3DG0 
HLr00AEH 
<HL> t01H 
MNTR 

AtCHR1 
PRNT 
OSQR0 
At CHR2 
8rC 
+4 
AtCHR3 
PRNT 
Ar01H 
PRNT 
At04H 
PRNT 
DSQR1 
A, CHR4 
Bt C 
+4 
At CHRl 
PRNT 

Defines graphic 
characters for 
drawing squares. 

Symbol 

CH RI 

CHR2 

CHR3 

CHR4 

CHR5 

CHR6 

J 
Defines monitor 
subroutine addresses. 

Otaracter 

8 
EiJ 
m 
e:J 
[S 

::2 

J Cle~ screen and positions cursor at initial 
position. 

::J Determines side length of square to be 
drawn first. 

Draws one square whose side length is 
specified in C, then determines next position 
after a delay. 

] 

Increments C (which contains the side 
length). Exits this loop when C reaches 13. 

Gets character with a delay. 
Returns to monitor if " ! " is entered; 
otherwise, returns to beginning of the 
program. 

l D"M '"' •W• or "'""•· 

Draws right side. 

l Draws bottom side. 



  

** Z80 ASSEMBLER SB-2202 PAGE 132 ** 
01 0060 3E04 LD Attl4H 
02 0062 CD3C06 CALL PRNT 
03 0065 3E04 LD At04H 
04 0067 CD3C06 CALL PRNT 
05 006A 10EF DJNZ DSQR2 
06 006C 3E98 LD AtCHR5 
07 006E 41 LD BtC 
08 006F 1882 JR +4 
09 0071 3E9A DSQR3: LD AtCHR3 Draws left side and returns. 

10 0073 CD3C06 CALL PRNT 
11 0076 3E02 LD At02H 
12 8078 CD3C06 CALL PRNT 
13 0078 3E04 LD At04H 

' 14 0070 CD3C06 CALL PRNT 
15 0080 10EF OJNZ DSQR3 
16 0082 3E97 LD AtCHR6 
17 0084 CD3C06 CALL PRNT 
18 0087 C9 RET 
19 008S 
20 00S8 110020 TMDLY: LO DE,2000H l Loo<h ""'" '"'"' (200011) '"'" OE 21 0088 18 DEC DE register pau. 

22 ease 7A LD A,D 
23 0080 83 OR E 
24 00SE 20F8 JR NZ,-3 
25 0090 C9 RET 
26 0091 
27 0091 CPRNT: ENT Prints message designated by DE register 

28 0091 1A LD A, <DE> pair. 

29 0092 87 OR A 
30 0093 CS RET z 
31 0094 C03C06 CALL PRNT 
32 0097 13 INC DE 
33 0098 i8F7 JR CPRNT 
34 009A 
35 009A 06 OSP1: DEFB 06H l "''' ~ .. 36 009B 01 DEFB 01H 
37 009C 03 DEFB 03H 
38 0090 00 DEFB 0eH 
39 009E END 

118 



  

Consider the problem of sorting a block of data (e.g., AOH bytes of data), starting at the beginning of 

monitor area, into a ascending order. We first move the contents of that data block to the memory area 

at address 3000H, then sort them using the bubble sort method. In the bubble sort method, two 

ldjacent data items are compared and immediately interchanged if they are out of order. This is the 

sorting method. As bubble sorting is applied to the block from beginning to the end, the largest 

item is bubbled to the end of the block. This first sorting process is called pass 1. N data items can be 

with a maximum of n passes. In this example, AO (in hexadecimal) passes are required. 

Data sorting plays an important role in data base management, as well as data retrieval. There are a 

ruiety of sorting methods whose efficiency differs depending on the data type and volume. 

The program below moves AO (in hexadecimal) bytes of data from the block starting at address OOOOH 

(the monitor area) to the memory block starting at address 3000H, sorts the data, and displays the sorted 

data on the CRT display. 

Bubble sort passes 

Pass 1 Pass 2 

2A (A) 0 3 

( 5} 
0 3 2A 

0 3) 3 3 (: !j 3 3 (! ( l) 0 2) 1 F 

0 2) 1 F 3 5 

IF 4 1 4 1 

The figure above shows how data 

items are interchanged during sorting 

passes. It can be seen that after pass n, 

at least n data items are placed in their 

proper positions, starting with the 

largest data item. 

This program references the follow

ing monitor subroutines: 

PRNT 

PRNTS 

LETNL 

GETKY 

SORTING DATA OUT 

PASS 

119 



  

** Z80 ASSEMBLER SB-2202 PAGE 01 ** 
01 0000 
02 e0ee SORTING 
03 eeee 
04 0eea RDADR: EQU BB013H 

J 
Defines source address, destination address, 

05 0000 p STADR: EQU 3000H and data block length. 

06 0000 p BSIZE: EQU 00A0H 
07 0000 MNTR: EQU 0000H 

] 
Defines monitor subroutine addresses. 

ea 0000 p GETKY: EQU 0610H 
89 0000 p PRNTS: EQU 063AH 
10 0000 p PRNT: EQU 063CH 
11 0000 p LETNL: EQU 0764H 
12 0000 
1.:3 0000 21 0eee SORT0: LD HL , RDADR 

J 
Moves monitor data to block indicated by 

14 0003 110038 LD DE,STADR STADR. 

15 8806 01A800 LD BC,BSIZE 
16 0009 EDB0 LDIR 
17 800B 01A000 LD BC,BSIZE J Loads BC register with number of passes. 
18 000E 08 DEC BC 
19 e00F oo2t0030 SORT1: LD IXtSTADR J Uses index register IX for sorting. 

20 0013 ~ LO o,B 
21 0014 59 LD E,c 
22 0015 OD7E00 LD At<I X+0l 

l 
Exchanges if following data is smaller than 

23 0018 DDBE01 CP <I X+ 1l preceding data. 

24 0018 3809 JR c . s oRT2 
25 801D 006601 LD Ht<IX+1 l 
26 0020 DD7701 LD <IX+1l•A 
27 8023 D07480 LO < IX+8l, H 
28 8026 DD23 SORT2 : INC IX Tests pass number. 

29 0028 lB DEC DE 
30 0029 7A LD A, D 
31 082A 83 OR E 
32 002B 20EB JR NZt SORT1+6 
33 082D 0B DEC BC 
34 002E 78 LD A,B 
35 002F Bl OR c 
36 0030 20DD JR NZ,SORTl 
37 0032 
38 0032 HEXA DATA OUT 
39 0032 
40 0032 3E86. HOUT0: LD AI06H J Oears screen. 
41 0034 CD3C06 CALL PRNT 
42 0037 218830 LD HL,STADR 
43 003A 81A800 LD BCtBSIZE 
44 0030 1E08 HOUT1: LD E,8 ] Prints 8 bytes on a line. 

45 083F CD3A86 CALL PRNTS 
46 0042 1602 LD [1,2 
47 0044 AF HOUT2 : XOR A 

Loads 4 high order bits of memory location 
48 0045 ED6F RLD J 
49 0847 C630 ADD A, 30H 

indicated by HL register into Ace. 

50 0049 FE3A CP 3AH Converts hexadecimal code to ASCII code and 

51 8048 3802 JR CtHOUT3 prints it (All sorted data bytes are displayed). 

52 004D C607 ADD A,07H 
53 004F CD3C06 HOUT3: CALL PRNT 
54 0052 15 DEC [I 

55 0853 20EF JR NZtHOUT2 
56 0055 1D DEC E 
57 0056 200B JR NZtHOUT4 
58 0058 CD6407 CALL LETNL 
59 8058 23 INC HL 
60 ease 0B DEC BC 

120 



  

** Z80 ASSEMBLER SB-2202 PAGE 02 ** 
01 01350 78 LD A,B 
02 0135E 81 OR c 
03 1305F 213DC JR NZ,HOUT1 
04 0061 1806 JR HOUT5 
05 0063 2':1 

~· HOUT4: INC HL 
0(:. 0064 138 DEC BC 
07 131365 78 LD A,B 
0B 0066 81 OR c 
09 1306 7 213[1(:. .JR NZ ,HOUT1+2 
10 0069 CD1006 HOUT5: CALL GETKY 

l 
Checks character input and returns to monitor 

11 13136C FE21 CP I I I if "! " is entered. 
12 006E 20F9 JR NZtHOUT5 
13 13070 21AE00 LD Hlt00AEH 
14 007::: 3601 LD <HU 1131H 
15 13075 C300130 ,]p MNTR 
1(:. 0078 END 

Run the program with various data sizes. 

Consider how to modify the program to sort data in descending order. 

121 



  

6.3 MAKING A DIGITAL CLOCK 

Let us construct a 24-hour digital clock using the built-in timer facility. To read the built-in timer, use 

the monitor subroutine TIMRD (Time Read). The timer can be started using the monitor subroutine 

TIMST (Time Start). 

The program below uses the built-in timer only to detect lapses of one second. The program also 

contains BELL subroutines to produce (or stop) a beeper tone each second. 

Setting time 

When started, the program asks for 

the current time by flashing the cursor. 

Enter the time, minute, and second 

with 2-digit numbers. Press the 11 & 11 

key if you enter an invalid value. Press 

the 11 ! 11 key to return to the monitor. 

Note that this program does not 

check for invalid time values (e.g., 25 

hours 70 minutes). Also the program 

does not accept characters other than 

numeric character. 

After the timer is started, it dis

plays the current time and sounds the 

beeper tone every second. The beeper 

(BELL) mode is switched on or off 

each time the 11 $ 11 key is pressed. 

This program references the follow

ing monitor subroutines: 

TIMST 
TIMRD 
GETKY 
BELL 

LETNL 
MSG 
PRNT 
? ? KEY 

MAIN 

122 



  

** Z80 ASSEMBLER SB-2202 PAGE 01 ** 
01 0080 
02 €11:300 DIGITAL CLOCK 
133 013013 
04 13000 MNTR: EQU 130130H Defines monitor subroutine addresses. 
0s 0000 p GETKY: EQU 0610H 
06 0000 p PRNT: EQU 063CH 
137 130013 p MSG: EQU 13685H 
08 00013 p LETNL: EQU 13764H 
139 00013 p TIMST: EG!U 09CAH 
10 0000 p TIMRD: EQU OA16H 
11 0000 p BELL: EQU 0A80H 
12 0000 p ??KEY: EQU 0D77H 
13 01300 p I8UFE: EQU 1180H 
14 0000 
15 0000 318011 START: LD SP, I8UFE 
16 0003 CDEC00 CALL MESG0 J Displays message and clock frame and waits for time 
17 0006 CD8200 CALL INTIME to be specified. 

18 0009 CD0501 CALL MESG1 
19 000c AF XOR A J smru b•at-m tim" 20 e0eo 47 LD 8tA Set B to 00 to indicate it possible to switch BELL 
21 000E 110000 LD DEt0000H mode. 

22 0011 CDCA09 CALL TIMST 
23 0014 CD160A CLK0: CALL TIMRD J Reads timer value and stores it in C. 
24 0017 48 LD c,E 
25 0018 CD1006 CALL GETKY Gets character . 
26 0018 FE21 CP I I I Returns to monitor if "!" is entered, switch BELL 

27 13010 CAAA00 JP z,MNTR1 mode if " $ " is entered, and returns to start of 

28 8020 FE26 CP '&' program if"$" is entered. 

29 0022 28DF JR ZtSTART+3 
30 0024 FE24 CP '$' 
31 0826 2804 JR z,+6 
32 e02s 0000 LD 8d3H J Enables BELL mode switching. 

33 e82A 180C JR CLK1 
34 ee2C A0 AND 8 J Disables mode switching if BELL mode has been 

35 0e20 2009 JR NZtCLK1 switched (B = FFH) 

36 002F 3A 1202 LD A, (PI PP I ) J Switches BELL mode 
37 ee32 2F CPL Complements data (00 to FFH or FFH to 00) in 

38 0033 321202 LD <PIPPI> ,A (PIPPO 

39 01336 06FF LO 8tFFH ] Loads B with BELL mode switching status. 

40 e038 CD160A CLK1: CALL TIMRD J ChooQ wh<<h" t;m" '""' • "''"'"'(I "''""' h~ 41 01338 78 LO AtE elapsed). 

42 003C 89 CP c 
43 13030 2809 JR ZtCLK8+4 
44 1303F 3A 1202 LD A, <PIPPI) J R;«g,.ho b<U "(PIPPO • 00 
45 0042 87 OR A 
46 0043 2003 ,JR NZ,+5 
4 7 0045 C0800A CALL BELL 
48 0048 CD26B 1 CALL CS I NIT Reads one's digit of second value and increments it. 

49 01348 216901 LO HLtDTS0 If there is a carry, sets it to 0 and increments the 

se ae4E 7E LD At <HU ten's digit by 1. 

51 004F 3C INC A U there is no carry, returns to timer read subroutine 

52 ease FE3A CP 3AH 
(CLKO) . 

53 0e52 2806 JR z,CLK2 
54 e054 77 JRCLK0: LD <HU,A 
55 ee55 C03C06 CALL PRNT 
56 13058 188A JR CLK0 
57 13e5A C01301 CLK2: CALL SETZR 
58 13050 7E LD A, <HU 
59 13e5E 3C INC A 
be 005F FE36 CP ' 6' 

123 



  

** Z80 ASSEMBLER SB-2202 PAGE 132 ** 
01 0061 20Fl JR NZ,JRCLKI3 Increments minute and resets second to 00 
02 0063 3E30 LD At30H when second reaches 60. 

03 0065 77 LD <HU •A 
04 0066 C03C06 CALL PRNT 
05 0069 C041301 CALL CSL7B 
06 006C 28 DEC HL 
137 0060 7E LO A, (HU 
08 006E 3C INC A 
09 006F FE3A CP 3AH 

] 
Checks whether there is a carry in one's 

1(1 0071 20E1 JR NZ,JRCLK0 digit of minute value and increment ten's 

11 0073 C01301 CALL SETZR digit by I if there is a carry. 

12 0076 7E LO A, <HU 
13 0077 3C INC A 
14 0078 FE36 CP '6' Increments hour by 1 when minute reaches 60. 

15 007A 2008 JR NZ,JRCLK0 
16 007C 3E30 LD At30H 
17 007E 77 LD (HU tA 
18 007F C03C06 CALL PRNT 
19 0082 CD4001 CALL CSL7B 
20 0085 28 DEC HL 
21 0086 7E LO At <HU 
22 0087 3C INC A 
23 0088 FE34 CP '4' Resets hour to 00 when it reaches 24. 
24 008A 200E JR NZtCLK3 
25 00ac 2B DEC HL 
26 0080 7E LO At<HU 
27 008E FE32 CP '2' 
28 0090 2013 ,JR NZtCLK4 
29 0092 23 INC HL 
30 0093 CD1301 CALL SETZR 
31 0096 3E30 LO At30H 
32 0098 18BA JR JRCLK0 
33 009A FE3A CLK3: CP 3AH 
34 0e9c 2eso JR NZ,JRCLK0 
35 009E C01301 CALL SETZR 
36 00A1 34 INC <HU 
37 00A2 7E LO A, <Hll 
38 00A3 1880 JR JRCLK0+1 
39 00AS 23 CLK4: INC Hl 
40 00A6 34 INC <Hll 
41 00A7 7E LO At<HU 
42 00A8 18AB JR JRCLK0+1 
43 00AA 21AE00 MNTR1: LD HL,00AEH J Returns to monitor with patch on it . 

44 00AD 3601 LD <HU t01H 
45 00AF C30000 JP MNTR 
46 0082 
47 0082 SUB-ROUTINE 
48 0082 
49 0082 216401 INTIME: LO HL, OTH1 Gets hour, minute, and second values. 

se 0085 CD2601 CALL CS I NIT 
51 0088 C04C01 CALL CSL18B 
52 0088 COC700 CALL INPUT 
53 008E CDS801 CALL CSL4F 
54 00C1 COC700 CALL INPUT 
SS 00C4 C05801 CALL CSL4F 
56 00C7 
57 00C7 1E02 INPUT: LD Et02H J Loads E with 2 to get 2 numeric characte~. 

58 00C9 CD770D CALL ??KEY l 
Returns to monitor if"! " is entered. 

59 e0cc FE21 CP I I I 

60 00CE CAAA00 JP z,MNTR1 

124 



  

** Z8e ASSEMBLER SB-2202 PAGE 03 ** 
01 0001 FE26 CP '&' 

Returns to start of program if 11 & 11 is 02 B0D3 CA0300 JP z,START+3 entered. 
03 0006 FE30 CP 30H Only numeric characters (ASCII code) 0 to 
84 0008 3E:EF JR c, INPUT+2 9 are allowed; number input is displayed on 
05 000A FE3A CP 3AH the screen. 
06 00DC 30EB JR NCtlNPUT+2 
07 000E 77 LO <HU tA 
BB 00DF CD3C06 CALL PRNT 
09 00E2 3E03 LD At03H 
10 00E4 C03C06 CALL PRNT 
11 00E7 23 INC HL 
12 B0E8 1D DEC E 
13 0BE9 200E JR NZtiNPUT+2 
14 00E8 C9 RET 
15 00EC 
16 00EC 11bA01 MESG0: LD DEtDATAl Displays message and clock frame. 

17 00EF CD0C01 CALL NLMSG 
18 00F2 119001 LD DEtDATA2 
19 00FS CD0C01 CALL NLMSG 
20 00F8 11AE01 LD DEtDATA3 
21 09F8 COOC~H CALL NLMSG 
22 00FE 11CE01 LD DEtDATA4 
23 0101 CD0C01 CALL NLMSG 
24 0104 C9 RET 
25 0105 
26 0105 11EC01 MESG1: LD DEtDATA5 

J 
Displays message indicated by DATA5. 

27 0108 C00C01 CALL NLMSG 
28 0108 C9 RET 
29 010C 
30 0 10C COb407 NLMSG: CALL LETNL J Prints newline and message. 

31 010F CD8506 CALL MSG 
32 0112 C9 RET 
33 0113 
34 0113 F5 SETZR: PUSH AF Sets '' 0 '' in location indicated by HL, 

35 0114 3E30 LD At30H displays 11 0 11 on screen, and moves cursor 

36 0116 77 LD <HU tA to next position. 

37 0117 CD3C06 CALL PRNT 
38 011A 2B DEC HL 
39 0118 0603 LD Bt03H 
40 0110 3E04 LD At04H 
41 011F CD3C06 CALL PRNT 
42 0122 10F9 OJNZ -s 
43 0124 Fl POP AF 
44 01 25 C9 RET 
4S 0126 
46 ~H26 F5 CS I NIT: PUSH AF Moves cursor to one's place of second value. 

47 0127 3E05 LD At05H 
48 0129 CD3C06 CALL PRNT 
49 012C 0618 LO 8t18H 
sa B12E 3Ee3 LD At03H 
51 0130 CD3C06 CALL PRNT 
52 01 33 10F9 DJNZ -5 
53 0135 0608 LO 8 t08H 
54 0137 3E01 LD At01H 
SS 0139 CD3C06 CALL PRNT 
~6 013C 10F9 DJNZ -5 
57 013E F1 POP AF 
58 013F C9 RET 
:59 0140 
60 0140 FS CSL7B: PUSH AF l Moves cursor 7 columns to left. 

125 



  

** Z80 ASSEMBLER SB-2202 PAGE 04 ** 
01 0141 0607 
02 0143 3E04 
03 0145 CD3Ce6 
04 0148 10F9 
e5 et4A Fl 
06 0148 C9 
07 014C 
ea e14C F5 
09 e14D 0612 
10 e14F 3Ee4 
11 e151 CD3C06 
12 e154 1eF9 
13 0156 F1 
14 0157 C9 
15 e158 
16 0158 F5 
17 e159 e604 
18 e15B 3E03 
19 0150 CD3Ce6 
20 016e 10F9 
21 0162 F1 
22 e163 C9 
23 0164 
24 e164 
25 e164 
26 0164 
27 0165 
28 0166 
29 0167 
30 0168 
31 0169 
32 e16A 
33 016A 0601 
34 016C e101 
35 e16E e1e1 
36 0170 0101 
37 0172 e101 
38 et74 B9DEDDBB 
39 0178 DEB220C9 
40 et7C 20BCDEBA 
41 e180 B820A62e 
42 0184 BEAFC420 
43 e188 BCC388Ce 
44 e18C DEBBB2 
4s etBF eo 
46 019e 
47 019e 20202020 
48 e194 2e20202e 
49 0198 97989098 
se 019C 9s2e2e2e 
51 01A0 97989098 
52 e1A4 95202e2e 
53 01A8 97989098 
54 01AC 95 
55 01AD eo 
56 01AE 
57 01AE 20202e20 
58 0182 2e202020 
59 0186 9A202020 
60 e1BA 9A204820 

LD 
LD 
CALL 
DJNZ 
POP 
RET 

CSL18B: PUSH 
LD 
LD 
CALL 
DJNZ 
POP 
RET 

CSL4F: PUSH 
LD 
LD 
CALL 
DJNZ 
POP 
RET 

DATA 

DTH1: DEFS 
DTHe: DEFS 
DTM1: DEFS 
DTMe: DEFS 
DTSl: DEFS 
DTse: DEFS 

DATAl: DEFW 
DEFW 
DEFW 
DEFW 
DEFW 
DEFM 

DEFB 

DATA2: DEFM 

DEF8 

DATA3: DEFM 

B,07H 
Ad34H 
PRNT 
-5 
AF 

AF 
B,12H 
A,04H 
PRNT 
-5 
AF 

AF 
Bt04H 
A,03H 
PRNT 
-5 
AF 

1 
1 
1 
1 
1 
1 

13106H 
0101H 
0HHH 
0101H 
01e1H 

Moves cursor 18 columns to left. 

Moves cursor 4 columns to right. 

Data areas fo r storing hour, minute, and 
time values. 

j 
Cursor con trol codes for moving cursor 
down 9 Lines after returning cursor to home 
position and clearing screen. 

'PLEASE SET THE CURRENT TIME' 

0DH 

0DH 

I H I I M I I S' 

126 



  

** Z80 ASSEMBLER SB-2202 PAGE (15 ** 
91 01BE 9A202020 
92 01C2 9A204D20 
93 01C6 9A202020 
94 131CA 9A2(153 
95 01CD 0[1 DEFB 0DH 
06 01CE 
97 01CE 2021320213 DATA4: DEFM L.......L....J L.......L...J L.......L...J I 

08 0102 20202020 
09 01(16 989B9C9B 
10 01DA 96202020 
11 01DE 98989C9B 
12 01E2 962021320 
13 01E6 989B9C9B 
14 01EA 96 
15 BlEB 0D DEFB 0DH 
16 01EC 
17 01EC 0501 DATA5: DEFW 0105H ] C.no< <Mtrol <odn [o< mo•mg <=0< do~ 9 

18 01EE BHH DEFW 0101H lines after returning cursor to home position. 

19 BlHl 0101 DEFW 0101H 
20 01F2 0101 DEFW 0101H 
21 01F4 0101 DEFW 0101H 
22 01F6 C0C0DEB2 DEFM 'THE CURRENT TIME IS 
23 131FA CF20C920 
24 01 FE BCDEBAB8 
25 0202 20CA2020 
26 0206 20202020 
27 020A 20202020 
28 020E 202020 
29 0211 BD DEFB 0DH 
30 0212 
31 0212 ee PIPPI: DEFB 00H ] Data area for storing BELL mode status. 

32 0213 END 

[Application 1] 

Add a timer function to this clock program. Modify the program so that if "25 hours 63 minutes 80 

seconds " is entered, for example, it is converted to "02 hours 04 minutes 20 seconds. " 

[Application 2] 

BASIC TI$ is a string variable which contains 6 characters indicating the hour, minute, and time 

read into the DE register through the TIMRD monitor subroutine. Construct a program which displays the 

6-character time each time the operator enters "PRINT TI$" as in BASIC. 

127 



  

6.4 MULTIPLYING HEXADECIMAL NUMBERS 

Let us prepare a program for multiplying 8-digit hexadecimal numbers. This is to be done by ex

pressing the numbers to be multiplied in binary format and shifting them to the left the number of times 

necessary to achieve the product. For example, when the 2-digit hexadecimal numbers 23H and 14H are 

multiplied, the equivalent binary expression would be as follows. 

00100011 X 00010100 

Multiplication is performed by shifting the 11 I 's 11 the applicable number of places to the left, then 

adding the numbers. 

10001100 . . ... numbers shifted to the left 2 places. 

+) 1000110000 ..... Numbers shifted to the left 4 places. 

1010111100 

Thus, the answer is 2BC. 

Further, the SRL and RR instructions are to be used to read in the numbers to be multiplied. For 

example, the numbers are shifted and rotated as shown below if stored in addresses 4000 to 4003. 

SRL RR RR RR 

4000 1 ---~--- 1 4001 1 ---~- 1 4002 1--- @J---1 4ooa 1---@J 

At this point, all that is required is to check whether CY for the last RR instruction executed (i.e. , the 

one on the far right) is 11 I " or 11 0 11
• 

The memory areas used for multiplication are allocated as follows: 

Used for storing 
intermediate results 8-digit data 

MLTPRO-+ L..-..l.._l -l.._l -'-~--J--1 ..1.----...1..----'----11 · · · · · · a 

ML TPR4 8-digit data 

MLTCD4-+ L--.......__......L-__.___,1 ...... b 

Computation results 

I I I=J j ...... c 

RSLT 

RSLTO-+ 

128 



  

The re~ults of multiplication are displayed 

on the screen as shown in the photo below. 

The program flowchart is shown at right. 

129 

Display result 



  

** Z80 ASSEMBLER SB-2202 PAGE 01 ** 
01 eeee 
02 0000 UNSINED 8 BYTES BINARY MULTIPLY 
03 0000 
04 0000 MNTR: EQU 0800H 

l 
Defmes monitor subroutine addresses. 

e5 0000 p GETKY: EQU 13610H 
06 0000 p PRNT: EQU 063CH 
07 eee0 p MSG: EQU 068SH 
08 eeee p LETNL: EQU 0764H 
09 0000 p ??KEY: EQU 0077H 
10 0000 p LOOP: EQU 20H J Loop count. 
11 0000 ' 12 0000 CDD600 START: CALL DSPM J Displays message. 
13 0003 CD1201 CALL CSLIN l Input a (MLTPR). 
14 0006 DD21AC01 LO IX,MLTPR 
15 000A COA800 CALL KEY IN -' 

16 0000 CD6407 CALL LETNL 

J 

Input b (ML TCD). 
17 0010 CD6407 CALL LETNL 
18 0013 C02401 CALL CSLFW 
19 0016 00218401 LD IXtMLTCD 
20 001A CDAB00 CALL KEY IN 
21 0010 0021A801 LO IX,MLTPR-1 

J 
Converts a to hexadecimal -> MLTPR4 

22 0021 F021C001 LO IY,MLTPR4 
23 0025 C02E01 CALL CONV84 
24 0028 00218301 LO IX I MLTCD-1 J Converts b to hexadecimal - MLTCD4 
25 002C F021C401 LO IYtMLTC04 
26 0030 C02E01 CALL CONV84 
27 0033 C06301 CALL OSANS Initialize. 
28 0036 0E20 LD CtLOOP 
29 0038 0608 LO 8t08H 
30 003A D021C801 LO IXrRSLT0 
31 003E 00360000 LD < IX+0) t00H 
32 0042 0023 INC IX 
33 0044 10F8 OJNZ -6 
34 0046 0604 LO B,04H 
35 0048 0021BC01 LO IXtMLTPR0 
36 004C 00360000 LO <I X+0), 00H 

J 37 0050 0023 INC IX 
38 0052 10F8 DJNZ -6 
39 0054 F021C401 MULT0: LO IYtMLTCD4 

l 
Shifts bone bit to the right. 

40 0058 0603 LO Bt03H 
41 005A FOC8003E SRL <IY+0) 
42 005E F023 INC IV 
43 0060 FDC8001E RR <IY+0) 
44 0064 10F8 DJNZ -6 
45 0066 3014 JR NCtMULT2 J Check CY. 
46 0068 AF XOR A c +- c +a 
47 0069 D021C001 LO IXtMLTPR4 
48 0060 21CF01 LD HLtRSLT 
49 0070 0608 LO 8t08H 
50 0072 OD7E03 MULTl: LO At<IX+3) 
51 0075 SE ADC At<HU 
52 0076 77 LO <HUtA 
53 0077 0028 OEC IX 
54 0079 28 DEC HL 
55 007A 10F6 OJNZ MULTl 
56 007C OD21C001 MULT2: LD IX,MLTPR4 

l 
Shifts a one bit to the left. 

57 0080 0607 LO 8t07H 
58 0082 OOCB0326 SLA <IX+3 ) 
59 0086 0028 OEC IX 
60 0088 OOCB0316 RL <IX+3) 

130 



  

** Z80 ASSEMBLER SB-22132 PAGE 02 ** 
01 e0sc 10FB DJNZ -c. 
02 008E eo DEC c J Repeat number of times specified in loop 
03 008F 20C3 .JR NZtMULTe counter. 

04 0091 CD7E01 CALL DPRST ] Displays result. 
05 0094 C01006 MULT3: CALL GETKY Gets character and returns to monitor if 
06 0097 FE21 CP I I I 11 ! 11 is entered; returns to beginning of pro-
07 0099 CAA300 JP ZtMNTRl gram if 11 & 11 is entered. 

08 009C FE26 CP '&I 

09 009E CA0000 JP z,START 
10 00A1 18Ft JR MULT3 
11 00A3 21AEOO MNTRl: LD HLt00AEH 
12 00A6 3601 LD <HL> t01H 
13 00A8 C30008 JP MNTR 
14 00AB 
15 00AB SUBROUTINE 
16 00AB 
17 08AB 1E08 KEY IN: LO Et08H Input an 8-digit hexadecimal number in 

18 00AD CD7700 CALL ??KEY ASCH code. 

19 0080 FE21 CP I I I 

20 0082 CAA300 JP ZtMNTRl 
21 0085 FE26 CP '&' 
22 0087 CA0000 JP ZrSTART 
23 BBBA FE30 CP '0 ' 
24 ease 3BEF JR CtKEYIN+2 
25 BBBE FE47 CP 'G' 
26 eec0 30EB JR NCtKEYIN+2 
27 00C2 FE41 CP 'A' 
28 00C4 3004 JR NCt+6 
29 00C6 FE3A CP 3AH 
30 00C8 30E3 JR NC,KEYIN+2 
31 00CA 007700 LO ( IX+0) tA 
32 0eco C03C06 CALL PRNT 
33 0000 0023 INC IX 
34 0002 10 DEC E 
35 0003 2008 JR NZ, KEYIN+2 
36 0005 C9 RET 
37 0006 
38 0006 11 oee 1 OSPM: LO DE,MSGl Displays message on CRT screen. 
39 0009 C00801 CALL MSGNL2 
40 0eoc 11 F201 LD DEtMSG2 
41 000F COOl 01 CALL MSGNL 
42 00E2 1106(~2 LO OE1MSG3 
43 00E5 C00101 CALL MSGNL 
44 00E8 11F201 LO DEtMSG2 
4S 00EB C00801 CALL MSGNL2 
46 00EE 111AB2 LD DEtMSG4 
47 00F1 C00801 CALL MSGNL2 
48 0BF4 112702 LD DE,MSG5 
49 00F7 C00801 CALL MSGNL2 
se 00FA 113Be2 LD DE tMSG6 
SI 09FO COB506 CALL MSG 
52 0100 C9 RET 
53 0101 
54 0101 COB506 MSGNL: CALL MSG 
55 0104 C06407 CALL LETNL 
56 01{37 C9 RET 
S7 0108 
S8 0108 COB506 MSGNL2: CALL MSG 
S9 0108 C06407 CALL LETNL 
be 010E C06407 CALL LETNL 

131 



  

** Z80 ASSEMBLER S8-2202 PAGE 03 ** 
01 0111 C9 RET 
02 0112 
03 0112 3E05 CSLIN: LD At05H Positions cursor at initial position. 

04 0114 CD3C06 CALL PRNT 
05 0117 0608 LD Bt08H 
06 0119 3E01 LD Ad31H 
07 0118 CD3C06 CALL PRNT 
08 911E 10F9 DJNZ -5 
09 0129 CD2401 CALL CSLFW 
Hl 9123 C9 RET 
11 0124 .I 
12 0124 060B CSLFW: LD Bt0BH J ""'~ """" 11 ~l•mo.to n,J><. 
13 0126 3E03 LD At03H 
14 0128 CD3C06 CALL PRNT 
15 0128 10F9 DJNZ -5 
16 0120 C9 RET 
17 012E 
18 012E 1600 CONV84: LD Dt00H Converts 8-<ligit ASCII code to 4-<ligit 

19 0130 01::04 LD Ct04H hexadecimal number. 

20 0132 DD23 INC IX 
21 0134 DD7E00 LD At< I X+0 l 
22 13137 5F LD EtA 
23 0138 E6F0 AND F0H 
24 013A FE30 CP 30H 
25 013C 2805 JR Zt+7 
26 013E 78 LD AtE 
27 013F C609 ADD At09H 
28 0141 1801 JR +3 
29 0143 78 LD AtE 
30 0144 E60F AND 0FH 
31 0146 14 INC D 
32 0147 2800 JR Z1CONV1 
33 0149 0604 LD Bt04H 
34 0148 C927 SLA A 
35 0140 10FC DJNZ -2 
36 014F FD7700 LD < IY+0l 1A 
37 0152 16FF LD DtFFH 
38 0154 18DC JR CONV84+4 
39 0156 FDB600 CONV1: OR < IY+0l 
40 0159 FD7700 LD < IY+0) 1A 
41 e15c eo DEC c 
42 015D ea RET z 
43 015E FD23 INC IY 
44 0160 1800 JR CONV84+4 
45 0162 C9 RET 
46 0163 
47 0163 3E05 DSANS: LD At05H Displays- result message. 

48 0165 CD3C06 CALL PRNT 
49 0168 0600 LD Bt0DH 
50 016A 3E01 LD Ad31H 
51 016C CD3C06 CALL PRNT 
52 016F 10F9 DJNZ -5 
53 0171 114F02 LD DEtMSG7 
54 0174 CD0801 CALL MSGNL2 
55 0177 115802 LD DEtMSG8 
56 017A CDB506 CALL MSG 
57 0170 C9 RET 
58 017E 
59 017E 21C801 DPRST: LD HltRSLT0 l Displays result. 

60 0181 1E08 LD Et08H 

132 



  

** Z80 ASSEMBLER SB-2202 PAGE 04 ** 

01 0183 1600 LD Dt00H 
02 0185 7E DPRST1: LD At<HU 
03 0186 14 INC D 
04 0187 2800 JR ZtDPRST2 
05 0189 0604 LD Bt04H 
06 0l8B CB3F SRL A 
07 0180 10FC DJNZ -2 
08 018F CDA001 CALL APRNT 
09 0192 16FF LD DtFFH 
10 fH 94 18EF JR DPRST1 
11 0196 E60F DPRST2: AND 0FH 
12 0198 CDA001 CALL APRNT 
13 0198 1D DEC E 
14 019C CS RET z 
15 0190 23 INC HL 
16 019E 18E5 JR DPRST1 
17 01A0 
18 01A0 FE0A APRNT: CP 0AH 

l 
Converts hexadecimal number to ASCII 

19 01A2 3802 JR Ct+4 code and displays on CRT screen. 

20 01A4 C607 ADD At07H 
21 01A6 C630 ADD At30H 
22 01A8 CD3C06 CALL PRNT 
23 01AB C9 RET 
24 01AC 
25 01AC DATA AREA 
26 01AC 
27 01AC MLTPR: DEFS 8 Reserved for computation. 

28 01B4 MLTCD: DEFS 8 
29 01BC MLTPR0: DEFS 4 
3e 01C0 MLTPR4: DEFS 4 
31 01C4 MLTCD4: DEFS 4 
32 01C8 RSLT0: DEFS 7 
33 01CF RSLT: DEFS 1 
34 0100 0.6 MSGl: DEFB a~.H 

35 0101 554£5349 DEFM 'UNSIGNED 8 BYTES BINARY MULTIPLY' 
36 0105 474E4544 
37 0109 20382042 
38 01DD 59544553 
39 01E1 2042494E 
40 01E5 41525920 
41 01E9 4D554CS4 
42 01ED 49504C59 
43 01Fl eo DEFB 0DH 
44 01F2 20202020 MSG2: DEFM *************, 
45 01F6 20202A2A 
46 01FA 2A2A2A2A 
47 01FE 2A2A2A2A 
48 0202 2A2A2A 
49 0205 00 DEFB 0DH 
50 0206 20202020 MSG3: DEFM * c = A * B *' 
51 020A 20202A20 
52 020E 43203020 
53 0212 41202A20 
54 0216 42202A 
ss 0219 eo DEFB 0DH 
56 021A 504C4541 MSG4: DEFM 'PLEASE INPUT' 
57 021E 53452049 
58 0222 4E505S54 
59 9226 eo DEFB 0DH 
60 0227 20202020 MSG5: DEFM A = ********' 

133 



  

** Z80 ASSEMBLER SB-2202 PAGE 05 ** 

01 0228 20202041 
02 022F 203n202A 
03 0233 2A2A2A2A 
04 0237 2A2A2A 
05 e23A en DEFB 0DH 
06 0238 20202020 MSG6: DEFM 8 = ********' 
07 023F 20202042 
ea 0243 203n2e2A 
09 0247 2A2A2A2A 
10 0248 2A2A2A j 

11 024E en DEFB 0DH 
).2 024F 414E5345 MSG7: DEFM 'ANSWER IS' 
13 0253 52204953 
14 0257 eo DEFB 0DH 
15 0258 20202020 MSG8: DEFM c = 
16 025C 20202043 
17 0260 203020 
18 0263 eo DEF8 0DH 
19 0264 END 

[Application] 

Modify the program so that it can multiply decimal numbers. 

Expand the program so that it can perfrom all basic ( 4) arithmetic operations on decimal numbers. 

134 



  

6.5 DISPLAYING BINARY DATA IN HEXADECIMAL REPRESENTATION 

Let us construct a subprogram to display binary data in hexadecimal. The subprogram must display the 

contents of the HL register pair as a 4-digit hexadecimal number, the contents of the accumulator as a 

2-digit hexadecimal number, and the lower 4 bits of the accumulator as a 1-digit hexadecimal number. The 

subprogram must also place a space before the displayed number. 

The subprogram has six entry points as follows: 

CALL 4HEXO (4hexa data out) Displays the HL contents. 
CALL PS4HX (print space, 4hexa data out) : Displays a space and the HL contents. 

CALL 2HEXO (2hexa data out) Dispalys the Ace. contents. 
CALL PS2HX (print space, 2hexa data out) : Displays a space and the Ace. contents. 

CALL IHEXO (lhexa data out) Displays the lower 4 bits of Ace. 

CALL PSlHX (print space, lhexa data out) : Displays a space and the lower 4 bits of Ace. 

The above subprograms are closely related to one another; 4HEXO calls 2HEXO twice and 2HEXO calls 

IHEXO twice. The program flows are as shown below. 

PS4HX 

(Monitor 
U-----r---......u subroutine) 

4HEXO 

START 

PS2HX 

2HEXO 

START 

135 

PSlHX 

lHEXO 

START 

YES 

(Monitor 
U-----r--~ subroutine) 



  

** Z80 ASSEMBLER SB-2202 PAGE 01 ** 
01 ea ea 
02 eee0 ; 4 HEXA DATA OUT <DESTROYED:A> 
03 0000 CALL 4HEXO 
04 0000 CALL F'S4HX <PRINT SPACE> 
as 0000 
06 0000 PS4HX: ENT 
07 0000 FS PUSH AF 
08 0001 co0e0e E CALL PRNTS 
09 0004 F1 POP AF 
10 0005 4HEXO: ENT 
11 0005 7C LD 1\IH l C.U. 2HEXO w;oh H '"' L "'" ;o A~. 
12 0006 CD1300 CALL 2HEXO 
13 0009 70 LD AIL 
14 000A CD1300 CALL 2HEXO 
15 0000 C9 RET 
16 000E 
17 000E ;2 HEXA DATA OUT <DESTROYED:A> 
18 000E CALL 2HEXO 
19 000E CALL PS2HX 
20 000E 
21 000E PS2HX: ENT 
22 e0.0E F5 PUSH AF 
23 000F CD0000 E CALL PRNTS 
24 0012 F1 POP AF 
25 0013 2HEXO: ENT 
26 0013 FS PUSH AF l Ro""' A~ <o oho righ< 4 Umu. 27 0014 0F RRCA 

RRCA .lj 7 - 0 jl.~ 28 0015 0F RRCA 
29 0016 0F RRCA Ace 

j0 0017 0F RRCA Calls 1 HEXO twice to display the 
31 0018 E60F AND 0FH lower 4 bits of Ace. 
32 001A CD2900 CALL 1HEXO 
33 0010 F1 POP AF 
34 001E E60F AND 0FH 
35 0020 CD2900 CALL 1HEXO 
36 0023 C9 RET 
37 0024 
38 0024 ; 1 HEXA DATA OUT <DESTROYED: A> 
39 0024 CALL lHEXO 
40 0024 CALL PSlHX 
41 0024 
42 8024 PSlHX: ENT 
43 0024 F5 PUSH AF 
44 0025 CD0000 E CALL PRNTS 
45 0028 F1 POP AF 
46 0029 lHEXO: ENT 
47 0029 FE0A CP 0AH 
48 002B 3006 JR NC1HXTl 
49 0020 C630 ADD AI30H ] Adds 30H to convert digits 0 to 9 to 
se 002F co0000 E HXHI: CALL PRNT their ASCII representations. 

51 0032 C9 RET 
52 0033 C637 HXT 1: ADD AI ~:7H ] Adds 37H to convert digits A to F to 
53 0035 18F8 JR HXT0 their ASCII representations. 
54 0037 END 

Monitor subroutines PRNTS and PRNT must be defined in another program unit for the above sub-

routines to function properly. 

136 



  

6.6 ENTERING HEXADECIMAL DATA 

Let us construct a subprogram to read hexadecimal data from the keyboard, with the cursor to blink 

when prompting for data. Data is to be entered as one, two, or four digits, and the cursor is to flash until 

the required number of digits have been entered. A subprogram is to generate a beeper tone when an in

valid code is entered, and the subprogram is to return with the Z flag set when a carriage return is entered. 

The subprogram has six entry points as follows: 

CALL GET4K (get 4hexa data) Enters a 4-d.igit hexadecimal number into the HL register pair. 

CALL PSG4K (print space, get 4hexa data) Prints a space, then enters a 4-digit hexadecimal number into 
the HL register pair. 

CALL GET2K (get 2hexa data) Enters a 2-d.igit hexadecimal number into Ace. 

CALL PSG2K (print space, get 2hexa data) 
CALL GETlK (get lhexa data) 

CALL PSGlK (print space, get lhexa data) 

Prints a space, then enters a 2-d.igit hexadecimal number into Ace. 
Enters a 1-d.igit hexadecimal number into the lower 4 bits of Ace. 

Prints a space, then enters a 1-d.igit hexadecimal number into 
lower 4 bits of Ace. 

The above subprograms are related to one another; GET4K calls GET2K twice and GET2K calls 

GETIK twice. GETlK also calls monitor subroutine "??KEY ", which waits for character input while 

flashing the cursor. The flowcharts for these subprograms are as shown below. 

PSG4K 

(Monitor 
u.....---,~---LI subroutine) 

GET4K 

YES 

YES 

PSG2K PSGlK 

GET2K 

YES 

YES 

137 



  

** Z80 ASSEMBLER SB-2202 PAGE 01 ** 
01 00130 
02 0000 ;GET 4 CHARACTER<DESTROYED:A,H,L> 
03 0000 CALL GET4K 
04 00ee CALL PSG41( 
05 0000 EXIT:HL <--XXXX X:HEXA 
06 0000 
07 13000 PSG4K: ENT 
08 0000 F5 PUSH AF 
09 0001 coe000 E CALL PRNTS 
10 0004 F1 POP AF 
11 0005 GET4K: ENT J 
12 e005 CD1500 CALL GET2K Calls GET2K twice. 
13 0008 C8 RET z 
14 0009 67 LD HtA 
15 000A CD1500 CALL GET2K 
1 e· 0000 ea RET z 
17 000E 6F LD LtA 
18 000F C9 RET 
19 0010 
20 0010 ;GET 2 CHARACTER<DESTROYED:A> 
21 0010 CALL GET2K 
22 0010 CALL PSG2K 
23 0010 EXIT:A <--XX X:HEXA 
24 0010 
25 0010 PSG2K: ENT 
26 0010 F5 PUSH AF 
27 0011 co0000 E CALL PRNTS 
28 0014 Fl POP AF 
29 0015 GET2K: ENT Loads 4 bits into Ace. by calling GETIK, 
30 0015 CD2B00 CALL GET1K rotates Ace. 4 bits to the left to move data 
31 0018 C8 RET z into the higher 4 bits in Ace., and saves Ace. 
32 0019 07 RLCA data into B. 

33 001A 07 RLCA 
34 0018 07 RLCA 
35 001C 07 RLCA 
36 01310 CS PUSH BC 
37 001E 47 LD B,A 
38 001F CD2B00 CALL GET1K l C.Uo GET!K oo~ m~o <o lo>d 4 biu ""' 
39 0022 2802 JR Z I +4 Ace. and merges two digits in Ace. by 

40 0024 BB OR B ORing Ace. with B; INC B is used to reset Z 

41 0025 04 INC B flag. 

42 0026 Cl POP BC 
43 13027 C9 RET 
44 0028 
45 0028 ;GET 1 CHARACTER<DESTROYED:A> 
46 01328 CALL GETlK 
47 0028 CALL PSGlK 
48 0028 EXIT:A<--0X )(:HEXA 
49 ee2s 
se 0028 PSG1K: ENT 
51 0028 coeeee E CAL-L PRNTS 
52 0028 GET1K: ENT 
53 002B coe000 E CALL ??KEY l RoW= " CR U ooOO<od. 
54 0132E FEBD CP 13DH 
55 0830 C8 RET z 
56 0831 FS PUSH AF 
57 0032 FE30 CP I e I 
58 0034 3810 ,JR CtGGG2 
59 0836 FE3A CP 3AH 
60 0838 31308 ,JR NCtGGG0 

138 



  

** ZE:0 ASSEMBLER SB-2202 PAGE 02 ** 
01 003A coe000 E CALL PRNT 
02 IH33D Fl POP AF 
03 003E 0630 SUB 30H 
04 8040 180E JR GGGl 
05 0042 FE41 GGG0: CP I A I 

06 8044 3800 JR CtGGG2 
07 0046 FE47 CP 47H 
08 8048 3009 JR NC,GGG2 
09 804A co0000 E CALL PRNT 
10 8040 Fl POP AF 
11 004E 0637 SUB 37H 
12 8050 FEF0 GGG1: CP F0H 
13 0052 C9 RET 
14 8053 Fl GGG2: POP AF 
15 8054 co0000 E CALL BELL 
16 8057 1802 JR GETlK 
17 0059 END 

This subprogram references the following monitor subroutines: 

PRNTS 

PRNT 

BELL 

??KEY 

063AH 

063CH 
OA80H 

OD77H 

Otecks whether input data is a hexadecimal 
character; if so, converts it to binary and 
loads converted data into the lower 4 bits 
of Ace. 

J Returns with Z flag reset. 

mput. 
J ?enerates a beeper tone if an invalid code is 

For this subprogram to be used as a subroutine, the above addresses must be defined in the calling 

program. 

[Application] 

Add a delete function to the above subprogram to make it possible to cancel invalid key entries. 

For example, if 

3 A !R3! 

were entered during execution of the GET4K subroutine, all that would be required to change character 

A to character B would be to backspace with the DEL key once to delete character A, then to enter 

character B. Prepare a subroutine which performs as stated above. . 

139 



  

6.7 DISPLAYING A MEMORY BLOCK 

Let us construct a program which uses the hexadecimal data input and output subrpograms described 

above to display the contents of a specified memory block. The memory block must be specified in the 

same format as the M symbolic debugger command. 

At the beginning of this command, the cursor is to blink to prompt for a command. There are to be two 

commands: M and !. 
! 

The memory dump is to be started with the M command and control is to be returned to the monitor 

by the ! command. 

When the program is started with the M command, it is to wait for the starting address (a 4-digit hexa

decimal number) at which the memory dump is to start. After the starting address is specified, the 

program is to wait for the ending address after printing a space. After the ending address is specified, the 

program is to start the memory dump, then return to the command wait state when the memory dump is 

completed. 

START 

Subroutine COMPR 

NO 

140 



  

** Z80 ASSEMBLER SB-2202 PAGE 01 ** 
01 0000 
02 0000 
03 0000 
84 eeee 
05 0000 
06 0000 
07 0000 co0000 
as 0003 3E2F 
09 0005 coee00 
10 13008 C00000 
11 0008 FE21 
12 0000 CA0000 
13 0010 FE4D 
14 13012 2805 
15 0014 co0000 
16 0017 18£7 
17 001 9 co0000 
18 001C C00000 
19 001F 28F3 
20 0021 EB 
21 0022 C00000 
22 0025 28ED 
23 0027 C04300 
24 002A 38£8 
25 002C EB 
26 13020 CD0000 
27 0030 CD0000 
28 0033 0608 
29 0035 7E 
30 13036 CD0000 
31 0039 CD4300 
32 1303C 2806 
33 003E 23 
34 003F 10F 4 • 
35 0041 18EA 
36 0043 
37 0043 
38 0043 
39 0043 
413 0043 
41 0043 
42 0043 
43 0043 7C 
44 0044 '12 
45 0045 ea 
46 0046 70 
47 0047 93 
48 0048 C9 
49 0049 

E 

E 
E 

E 

E 

E 
E 

E 

E 
E 

E 

MEMORY DUMP 
M:START 
~: GOTO MONITOR 

MEMRY: 

MEMR0: 

MEMR1: 

MEMR2: 

ENT 
CALL 
LD 
CALL 
CALL 
CP 
JP 
CP 
JR 
CALL 
JR 
CALL 
CALL 
.JR 
EX 
CALL 
JR 
CALL 
JR 
EX 
CALL 
CALL 
LO 
LD 
CALL 
CALL 
JR 
INC 
DJNZ 
JR 

NL 
AI2FH 
PRNT 
? ?KEY 
I I I 

z,MNTR 
I M, 
z,+7 
BELL 
MEMRY 
PRNT 
PSG4K 
z,MEMR0 
DE,HL 
PSG4K 
z,MEMR0 
COMPR 
C, MEMR0 
DEtHL 
NL 
4HEXO 
8,8 
At ( HL > 

PS2HX 
COMPR 
ZtMEMR0 
HL 
MEMR2 
MEMRl 

l 
Displays " I " after moving to the next line 
and waits for a command. 

l 
Returns to monitor if " ! " is entered and 
starts the memory dump if " M " is entered. 

J 
Returns to the command wait state if an in
valid command is entered. 

Input starting and ending addresses of the 
memory block to be dumped. 
Returns to the command wait state if the 
starting address is greater than tne ending 
address. 

J 
Displays address after moving down to the 
next line. 

Displays the memory dump (8 bytes on a 
line) until the ending address is reached. 

COMPARE DEtHLCOESTROYED:A) 
CALL COMPR 

EXIT:DE=HL Z=l 

COMPR: ENT 
LD 
SUB 
RET 
LD 
SUB 
RET 
END 

DE >HL C=l 

A,H 
D 
NZ 
AtL 
E 

141 

Returns with Z flag set if DE = HL, and with 
C flag set if DE > HL. 



  

6.8 WRITING DATA INTO A MEMORY AREA 

Let us construct a program to write 2-digit hexadecimal numbers into a memory block, starting at a 

specified address. The memory block is to be specified in the same format as with theW command. 

At the beginning of this program, the program is to flash the cursor while waiting for command entry. 

Memory write is to be started with theW command and control is to be returned to the monitor with the 

! command. 
.t 

When the program is started with the W command, it is to prompt for the starting address (a 4-digit 

hexadecimal number) of the memory block at which the memory write is to start. After the starting 

address is specified, the program is to display the specified address on a new line and wait for the operator 

to enter 2-digit hexadecimal numbers. 

Data entry is to be terminated with I CRI . 

142 

MEMORY WRITE 

START 



  

** Z80 ASSEMBLER SB-2202 PAGE 01 ** 
01 0000 
B2 13000 
03 0000 
04 eeee 
05 0000 
at. 130ee 
07 0000 co0000 
as e003 3E2F 
09 0005 CD0000 
10 0008 CD0000 
11 0008 FE21 
12 13000 CA0000 
13 0010 FE57 
14 0012 2805 
15 0014 CD0000 
16 13017 18E7 
17 0019 CD0000 
18 001C CD0000 
19 001F 28F3 
20 0021 0608 
21 0023 CD0000 
22 0026 CD0000 
23 0029 CD0000 
24 002C 28Eb 
25 002E 77 
26 1302F 23 
27 0030 10F7 
28 0032 18ED 
29 0034 

E 

E 
E 

E 

E 

E 
E 

E 
E 
E 

MEMORY WRITE 
W:START 
! : GOTO MONITOR 

WRITE: ENT 
CALL 
LD 
CALL 
CALL 
CP 
JP 
CP 
JR 

WRITE0: CALL 
JR 
CALL 
CALL 
JR 

WRITE1: LD 
CALL 
CALL 

WRITE2: CALL 
JR 
LD 
INC 
DJNZ 
JR 
END 

NL 
A12FH 
PRNT 
??KEY 
I I I 

Z1MNTR , w, 
z~+7 

BELL 
WRITE 
PRNT 
PSG4K 
Z1WRITE8 
818 
NL 
4HEXO 
PSG2K 
z I WRITE0 
( HL> I A 
HL 
WRITE2 
WRITE! 

l 
Displays " I " on a new line and waits for 
command entry. 

l 
Returns to the monitor if " ! " is entered 
and starts the memory write. 

Returns to the beginning of program and 

] 
sounds a beeper tone if an invalid key is 
pressed. 

l Input the starting address at which memory 
write is to start. 

Input 8 bytes on a line and continues the 
memory write while displaying write 
addresses. 
Data entry is terminated with ~ . 

This program,references the following monitor and external subroutines: 

PRINT 

NL 

BELL 
??KEY 

4HEXO 

PSG2K 

PSG4K 

[Application] 

063CH } 
0757H 

Monitor subroutines 
OA80H 

OD77H 

( 4hexa data out) 

(print space, get 2hexa data) 

(print space, get 4hexa data) 

See 6.5 

See 6.6 

See 6.6 

Construct a machine-language monitor program which executes theW, M, and ! commands described 

above, as well as additional execution command G. The G command must input the starting address using 

the GET4K subroutine and execJlte the program (by loading the starting address into the program counter 

(PC)). 

I W X X X X memory write 

/ M XXXX YYYY memorydump 

/ G X X X X goto XXXX . ... . Load XXXX into program counter. 

/ ! goto monitor ... .. Jump to address OOOOH. 

143 



  



  



  

1. ASCII CODE TABLE 

UPPER 4 BITS 
012 3 4 56 7 8 9 AB CD E F 

ASCII Codes of characters and control codes 

Note: The column numbers shown above represent the ftrst digit of hexadecimal numbers corresponding 

to characters, and the line numbers represent the second digit. For example, the ASCII code for 

the character A is represented in hexadecimal as 41 H. 

In the table above, codes 0 1 H to 06H are used for cursor control. For example, if OSH is stored in 

register A, the cursor is moved to the home position when CALL PRNT is executed. 

146 



  

2. SYSTEM PROGRAM COMMANDS 

2.1 Text editor commands 

Command type 

Input command 

Output command 

Type command 

CP positioning 
command 

Correction 
command 

Command name 

R 

A 

w 

T 

nT 

B 
nJ 
nL 

L 

nM 
M 
z 
c 

Q 

nK 
K 

nD 
D 

s 

V 

& 
X 
# 

Function 

Clears the edit buffer and loads it with the input me indicated by the 
fi.lename. The CP is positioned at the beginning of the edit buffer after 
execution of this command. 
Appends the input me indicated by the fi.lename to the contents of the 
edit buffer. The CP position is not changed. 

Writes the edit buffer contents to the output me specified by the me
name in ASCII code. 

Displays the entire contents of the edit buffer. The CP position is not 
changed. 
Displays n lines starting at the CP position. 

Positions the CP at the beginning of the edit buffer. 
Positions the CP at the beginning of the line indicated by n. 
Moves the CP to the beginning of the line n lines after the current CP 
position. 
Moves the CP to the beginning of the current line. This is the same as 
when n = 0 in the nL command. 
Changes the CP position by n characters. 
Does not move the CP. This is the same as when n = 0 in the nM command. 
Moves the CP to the end of the text in the edit buffer. 

Searches for the specified character string and replaces it with another 
character string; the search starts at the current CP position and proceeds 
to the end of the edit buffer. The CP is repositioned to the end of the 
character string replaced. 
Repeats the C command each time the specified character string is found 
until the end of the edit buffer is reached. The CP is repositioned to the 
end of the character string last replaced. 
Inserts the specified character string at the position of the CP. The CP is 
repositioned to the end of the character string inserted. Line numbers are 
updated when a line is inserted with this command. 
Deletes the n lines following the CP. The CP position is not changed. 
Deletes all characters preceding the CP position until a I CRI code is 
detected. The I CRI code is not deleted. 
Deletes the n characters following the CP. 
No operation. 

Searches for the specified character string, starting at the CP position and 
proceeding to the end of the buffer. The CP is repositioned to the end of 
the character string when it is found. 

Compares the contents of the edit' buffer with those of the input me 
whose mename is specified. Does not move the CP. 

Displays the number of characters stored in the edit buffer (including 
spaces and CRs). 
Displays the number of the line at which the CP is located. 
Deletes the entire contents of the edit buffer. 
Transfers control to the assembler. 
Changes the list mode for listing to the printer. 
Transfers control to the monitor. 

Most of the above commands are compatible with those used in the NOVA editor program manufac

tured by the Data Gernal Corporation. 

147 



  

2.2 Linker commands 

Command name 

L {relocate Load) 

N (Next file) 

H (Height) 

T {Table dump) 

S {Save) 

V (Verify) 

X {TRANSfer) 

* {clear table) 
# (change printer mode) 

! (go to monitor) 

Function 

Loads a program. 

Appends a program to a preceding program. 

Displays the current assembly bias and load address. 

Displays the contents of the symbol table. 

Saves the object program in memory in a me. 

Compares the contents of ijl.e object me generated by the S command with the 
contents of the object program in memory. 

Moves the specified memory block to the specified memory area. 

Clears the symbol table and resets the assembly bias and link address to 0000. 

Switches the printer mode. 

Transfers control to the monitor. 

2.3 PROM formatter commands 

The PROM fonnatter commands are listed below. In addition to these commands, it is possible to use 

the symbolic debugger commands under the PROM fonnatter program. 

Command name Function 

FP (Format Punch) Punches a specified link area block on paper tape. 

FC (parity Form Change) Changes the parity of the input or output tape. 

FR (Format Read) Reads a formatted program from paper tape into the link area. 

FM (Format Message) Displays a list of the formats available for the PROM formatter. 

148 



  

2.4 Symbolic debugger commands 

Command type Command name Function 

L Loads a relocatable me into the link area. The program in the re-
locatable me is loaded to form an object program through relocation 
at the location designated by the assembly bias and link address 
(relocate Load). 

N Appends a relocatable me to the end of the preceding program in the 

Link/load and 
link area (Next file). 

symbol table H Displays the current values of the assembly bias and link address 
commands (Height). 

T Displays the contents of the symbol table. Each table entry consists of 
a label symbol name, its absolute address, and its defmition status 
(Table dump). 

* Clears the symbol table and current assembly bias and link address 
values to OOOOH (Clear bias and table). 

Bt Displays, sets or alte rs a breakpoint. (Breakpoint) 

& Clears all breakpoints set. (Clear breakpoints) 

Mt Displays the contents of the specified block in the link area in hexa-
decimal representation or alters them. (Memory dump) 

Dt Displays the contents of the specified block in the link area in hexa-
decimal representation with one instruction on a line. 
(memory list Dump) 

Wt Writes hexadecimal data, starting at the specified address in the link 
area. (Write) 

Gt Executes the program at the specified.address. (Goto) 

I Executes the program at the address designated by PC with the 
register buffer data set to the CPU internal registers. 

Debugging (Indicative start) 
commands 

A Displays the contents of registers A, F, B, C, D, E, H and L in hexa-- decimal representation or alters them. (Accumulator) 

c Displays the contents of complementary registers A', F', B', C', D', 
E', H' and L' in hexadecimal representation or alters them. 
(Complementary) 

p Displays the contents of registers PC, SP, IX, IY and I in hexadecimal 
representation or alters them. (Program counter) 

R Displays the contents of all registers in hexadecimal representation. 
(Register) 

X Transfers the specified memory block to the specified address. 
(TRANSfer) 

s Saves the object program in the link area in an output file with the 
specified name. (Save) 

File 1/0 commands 
y Reads the object program from the object file with the specified 

filename into memory. (Yank) 

V Compares the file whose filename is specified with the contents of 
the link area. (Verify) 

# Switches the printer _list mode for listing printout. 
Special commands 

! Transfers control to the monitor. 

Note: Commands marked by a dagger permit symbolic operations. 

149 

... ....._ 



  

3. ERROR MESSAGES 

3.1 Text editor error messages 

Error Message Meaning Relevant commands 

Full buffer Edit buffer is full. R, A 

? ? ? n < 0 in an nT or nJ command. 
,, 

T, J 

Large 
n greater than 65535 was specified. T, J, L, M, 

K,D, B, Z 

Not found 
The string (or string I) specified in Sstring, Cstringl 81!1 string2, or 

S, C, Q 
Qstringl lllll string2 was not found following the CP. 

An illegal command was entered or an incorrect format was used. 
Invalid Ex.) * H I CRI : There is no H command. any case * S I CR I : A string should be specified. 

Check sum 
When the V command was executed, it was found that the contents 
of the edit buffer differed from the contents of the input buffer; or, V, R, A 

error 
an error occured while a me was being read. 

150 



  

3.2 Assembler messages 

Defmition status message Meaning Example 

Indicates that a label symbol is being E LD B,CONSTO 
referenced externally ; that is, the L__The data byte "CONSTO" is undefined. 
label is not defined in the current E CALL SORT 

E (External) source program unit. L__The address "SORT" is undefined. 
EE BIT TOP, (IY+FLAG) 
t L.The data byte "FLAG" is undefined. 

The data byte "TOP" is undefined. 

Difmes a label symbol with a con· p LETNL : EQU 0762H 
stant assigned. P DATAl : EQU 3 

p (Phase) This message is also output when a L__ LETNL and DATAl are defmed by EQU. 
label symbol is encountered during The P message is displayed in the relocatable 
pass 2 which was not encountered binary code column rather than in the assembler 
during pass I . message column. 

Error message Meaning Example 

c (illegal Character Indicates that an illegal character is c JP +1000- 3 error) used in the operand. 

F (Format error) 
Indicates that the instruction format 
is incorrect. 

N (Non label error) 
Indicates that no label symbol is N EQU 0012H 
specified for ENT or EQU. t_No label symbol 

Indicates that an illegal label symbol L JR XYZ 
is used. L__ XYZ is not defined in the current program. 

L (erroneous Label No externally defined global symbol can be 

error) used as the operand of a JR or DJNZ command. - If such a label symbol is specified, the L message 
is displayed. 

Indicates that a label symbol is M ABC : LD DE, BUFFER 
M (Multiple label defined two or more times. l 

error) M ABC: ENT 
L__ABC is defmed twice. 

0 (erroneous Indicates that an illegal operand is 
Operand) specified. 

Q (Qestionable Indicates that the mnemonic code is Q CAL XYZ 
mnemonic) incorrect. CALL XYZ is correct. 

s Indicates that single or double quota- s DEFM GAME OVER 
(String error) tion mark(s) are omitted. DEFM 'GAME OVER' is correct. 

V lnd.icates that the value of the 
V LD A, FF8H V SET 8, A operand is out of the prescribed 

(Value over) range . V JR - 130 

The number of operands specified 
U (Undefmed in a macro call instruction was less u JP Z, @3 

parameter) than the number of parameters 
difined for the macro instruction . 

END? 
Indicates that the END directive is 
missing from the source program. 

151 



  

3.3 Linker messages 

Error message 

? ? ? 

Invalid 

Check sum error 

No power or 
no connection 

A1ann 

Paper empty 

Meaning 

The specified address was outside the link area 
or the load address value was updated beyond 
the link area during a load operation. 

The format of the specified command is invalid. 

(Examples) * LL 12AO !CRI 
The link address is missing. 

* LL12 ICRI 
Fewer digits than required were 
specified. 

A mismatch was found during a comparison 
between the contents of the link area and 
a fl.le , or an 1/0 error occurred during a fl.le 
read. 

The printer is not turned on or is not connected 
to the system. 

An error such as a paper jam occurred in the 
printer. 

Printer is out of paper. 

-Messages regarding the status of symbol definition 
(common to the linker and symbolic debugger)-

Message 

u 
M 

X 

H 

D 

Defmition status 

Undefined (address or data) 

Multi-defmed (address or data) 

Cross-defmed (address and data) 

Half-defined {data) 

EQU-defmed (data) 

Relevant commands 

L,N ,S,X 

L,S, V , X 

L , N,V 

# 

# 

# 

No message is issued for symbols defined. Messages U, M, X, and Hare error messages. 

152 



  

3.4 Symbolic debugger error messages 

Error message Meaning Relevant commands 

? ? ? An attempt was made to access a location outside the link area. B , W , X ,S, V 

An incorrect number of digits was specified or a digit other than a 

Error hexadecimal digit was entered during execution of a register (or M , A , C, P 
memory) change command . 

RST6? A break point was set at an RST6 instruction. B 

Over More than nine breakpoints were set. B 

Invalid The format of the entered command is incorrect. X , S , V 

0 An invalid symbol (undefined label symbol or nonlabel symbol) B , W 

was specified. 
o An attempt was made to clear a break point which was not set. B 

o An attempt was made to set the break counter more than I 4 B 

? (E in hexadecimal) times. 
o The format of the specified address is incorrect. M , D , G 

o The starting address is not smaller than or equal to the ending M , D , W 

address. 
o The destination and source blocks overlap. X 

0 A mismatch was found between the contents of the link area V 
Check sum error and the object me being verified. 

o An error occurred while a me was being read. L , N,Y 

No power or The printer is not turned on or is not connected to the system. # no connection 

Alarm An error such as paper jam occu rred in the printer. # -
Paper empty Printer is out of paper. # 

3.5 PROM formatter error messages 

Error message Meaning Relevant commands 

? ? ? An attempt was made to access a location outside the link area. FP ,FR 

? 
The specified starting address is not smaller than or equal to 

FP 
the ending address. 

Not found The specified file was not found. FR 

Fonnat? 
The format of the paper tape to be read does not match the 

FR 
specified format command. 

Parity? 
The parity scheme of the paper tape to be read does not match 

FR 
the specified parity scheme. 

Check sum 
A check sum error occurred while a paper tape in format C FR( with format ) 
was being read. command C only 

Invalid A command was specified in an invalid format. FP, FR 

(Note) The error messages associated with the symbolic debugger section are identical to those associated with the symbolic 
debugger. 

153 



  

4. TEXT EDITOR FUNCTIONS 

The major functions of a text editor are to insert, delete and modify characters, words and/or lines. 

If the editor does not allow the programmer to use these functions interactively and easily, he will have to 

devote more effort to editing and modifying programs than to executing them. To alleviate this problem, 

SHARP uses a command format which is almost perfectly compatible with that of the NOVA minicom· 

puter series from the Data General Corp.; this has bee~ refined through the support of many uses. 

The most important concern of the programmer in conjunction with the text editor is the concept of 

the character pointer (CP) and its usage. During line-base editing, the CP is situated not on a line but 

between two consecutive lines, as shown in Figure 4-1. Therefore, the location to/from which a line is 

to be inserted/deleted can uniquely identified. If the CP was located somewhere on a line, two locations 

would be possible; that is, before and after the CP. The J and L commands are characteristic of interline 

pointer movement commands. 

During character-base editing, the CP is situated not on a character but between two consecutive charac· 

ters. This permits close editing. The programmer will become accustomed to the text editor quickly if 

he is aware of what commands use the interline CP and what command use the intercharacter CP concept. 

During normal editihg sessions, several commands are combined to carry out an intended task. Such 

commands can be placed on a line separated by separators so that the programmer lists them as they 

come into his head. 

B!!BJSM!!BJ3J ~ 
... 

Two or more commands can be 
specified by separating them with 
the separator!!l:ll. 

2JB!IC701 3 IQ!] I 
C7~3 

sw,h fm ADD """"" " L rk; 
the beginning of the edit buffer ~ 

B ~S~D !!BJL !!I3J 2T ICR!clt 

j 
SM 

CP 

\ 
~ 

L 
D 

[SPJ 
A 

' 
1 
4 
H 

[kiD 
L 
D 

(SP] 
B 

' 
7 

[kiD 
A 
D 
D 

LSPJ 
A 

' 
B 

[hB] 

Fig. 4-1 Character pointer movement 

154 

-Top of the edit buffer 
(beginning of the text) 

IJne 1 

line ·2 Edit buffer 

IJne 3 



  

5. ASSEMBL V PROCEDURES 

Currently, many microprocessors other than the Z-80 (such as the 6800 and the 8048) are in use. 

However, the architecture and operating principles of these are similar in many respects. An obvious 

point is that this makes development of a general purpose assembler for these possible. This section 

describes the concept which serves as the starting point for such assemblers; this is the concept which is 

employed in the MZ-80 assembler. 

The basic operation of any assembler is the interpretation of statements. It is therefore important to 

establish a proper statement coding format. Figure 5-1 shows an example of a coding format, used in the 

MZ-80 assembler, which is familiar to humans and which is easy for the computer to interpret. 

Scanning the statements in this format, the assembler: 

(1) Recognizes labels and stores them into the label table, 

(2) Recognizes fields and assembles object codes, 

(3) Generates an assembly listing, and 

(4) Generates relocatable binary code. 

Step (2) differs from one processor to another. The assembler constitutes a general-purpose assembler if 

it can perform this step flexibly. As the nucleus of the process for step 2, an instruction list (Figure S-2) 

and a 2-dimensional operation table (Table 5-1) are introduced. 

The symbol # in the instruction list represents a register and the symbol $ represents a label or numeric 

value. The assembler identifies each instruction by matching the read assembly statement with this listing. 

As a result of this match , the assembler produces the major portion of the op-code, the byte length of the 

instruction and its atom type. An atom type is <:>ne of the numbers identifying the instruction groups of 

the Z-80 instruction set. As is seen from Table 5-l, there are 48 atom types ; these are sufficient for newly 

defined instructions. 

The operations to be performed for each atom type are designated by a 16-bit flag field. For atom type 

01, for example, flag bits 0, 3 and 4 are set, indicating that the operations identified by these bits are to 

be performed in that order. The control words identified by the set flag bits specify the actual operations 

to be performed. Flag 3 indicates that this instruction must be a 1-byte instruction, that it must shift the 

data to the left 3 bits, and that the size of the field must be 3 bits or less. Similarly, flag 4 indicates that 

this atom type represents the LD r,r' operation. 

Let us examine atom type 18. The set flag bits are 0, 1 and A. The control word for flag 1 is all zeros, 

which means no operation·. Flag A indicates that the instruction requires address modification (address 

procedure) and that the address field must be not longer than 16 bits (size of the field). Thus, atom type 

18 represents instructions such as JP nn' and JP NZ, nn'. 

The above assembler operating procedure is summarized in Figure 5-3. Most of the assembly operations 

involve table references. In fact, the assembler uses a register table, a separator table and a label table 

during the assembly process, in addition to the instruction list and the 2-dimensional operation table. If 

these tables are redefmed to conform to a new instruction set the assembler may also be used as a cross 

assembler. 

155 



  

Label Comment .J 

Field 1 Field 2 Field 3 Field 4 Field 5 

I 
Fig. 5-1 Assembler coding format 

01 0000 
02 0000 INSTRUCTION LIST 
03 0000 
04 0000 SYMP: ENT 
os 0000 4C442023 DFFM 'LD#,#' ;LIKE LD B, C 
06 0004 2C23 
07 0006 F1 DFFB F1H F delimits the instruction pattern. 1 indicates the length of 

the instruction in bytes. 
08 0007 40 DFFB 40H Main portion of the mnemonic code 
09 0008 01 DFFB 01H Atom type 
10 0009 4C442023 DFFM ' LD #, (IX$) ' ;LIKE LDA,(IX+15) 
11 OOOD 2C284958 
12 0011 2429 
13 0013 F3 DFFB F3H 3 indicates the length of the instruction in bytes. 
14 0014 DD46 DFFW 46DDH DD4600 is the main portion of the mnemonic code. 15 0016 00 DFFB OOH 
16 0017 03 DFFB 03H Atom type 
17 0018 4C442023 DFFM ' LD #, (IY$) ' ; LIKE LD B, (IY+AFC) 
18 001C 2C284959 
19 0020 2429 
20 0022 F3 DFFB F3H 
21 0023 FD46 DFFW 46FDH 
22 0025 00 DFFB OOH 
23 0026 03 DFFB 03H 
24 0027 4C442028 DFFM ' LD (IX$), #' ; LIKE LD (IX+23), A 
25 002B 49582429 
26 002F 2C23 
27 0031 F3 DFFB F3H 
28 0032 DD70 DFFW 70DDH 
29 0034 00 DFFB OOH 
30 0035 04 DFFB 04H 

Fig. 5-2 Instruction list (part) 

156 



  

Table 5-1 Two-dimensional operation table 

Atom Description 
Flags (analyzed and processed in ascending flag bit number order) 

0 1 2 3 4 5 6 7 8 9 A B c D E F 

00 Reserved 
01 LD # , # 1 1 1 
02 LD # ,$ 1 1 1 
03 LD #, (IX+$) LD #, (IY+$) 1 1 1 1 
04 LD (IX+$), # LD (IY+$), # 1 1 1 1 
05 LD {IX+$),$ LD (IY+$), $ 1 1 1 1 
06 LD A, ($) 1 1 1 
07 LD {$),A 1 1 
08 LD BC,$ etc. 1 1 1 
09 LD IX,$ LD IY, $ 1 1 1 
OA LD HL, ($) 1 1 1 
OB LD BC, ($)etc. 1 1 1 
oc LD ($), HL 1 1 
OD LD ($), BC etc. 1 1 
OE ADD A, # etc. 1 1 1 
OF ADD A,$ etc. 1 1 1 
10 ADD A, (IX+$) etc. 1 1 1 1 
11 INC # etc. 1 1 
12 INC {IX+$) etc. 1 1 1 
13 RLC # etc. 1 1 
14 RLC (IX+$) etc. 1 1 1 
15 BIT $, # etc. 1 1 1 
16 BIT $, (HL) etc. 1 1 
17 BIT $, (IX+$) etc. 1 1 1 1 
18 JP NZ,$ etc. 1 1 1 
19 JR C, $etc. 1 1 1 
lA JR $ DJNZ $ 1 1 
lB SUB # etc. 1 1 
l C SUB $etc. 1 1 
ID SUB (IX+$) etc. 1 1 1 
lE RST $ 1 1 
IF IN A,($) 1 1 1 
20 IN # ,(C) 1 1 
21 OUT ($),A 1 1 
22 OUT (C), # 1 1 1 
23 
24 ~ 

~ ~ ~ ~ 
-...::: ~ ...._ --~ 2E 

2F 
ADDRESS PROCEDURE 1 1 1 1 1 
MUST BE SINGLE 1 1 1 1 1 1 1 1 
MUST BE ADR- 2 1 

1 1 1 

~ 
1 1 1 

LEFT SfllFT POSITION 
~ 1 1 1 
..I 
0 
cc: 
~ DON'T CARE 

~ EQUATION PROCEDURE 1 1 1 
u 1 1 1 1 1 

1 1 1 1 1 
SIZE OF FIELD 

1 1 1 
1 



  

Object code 
converted to 
rclocatable 
binary format 

no 

Fig. 5-3 General assembly flow (excluding assembler directive processing) 

158 



  

6. LINKER FUNCTIONS 

The tinker loads and links two or more program units using external symbol referencing instruction 

from relocatable files and generates absolute binary code in the link area and saves it into an object fJle. 

The relocatable fJles contain control frames and external symbol information. The linker resolves external 

symbol references and relocates the program units as described below. 

(1) External symbol reference resolution 

The tinker refers to the symbol table when resolving external symbol references (see Figure 6-2). The 

symbol table contains a 9-byte symbol table entry for each external symbol. A symbol table entry consists 

of a 6-byte field containing the symbol name, a !-byte field containing the delmition status, and a 2-byte 

field containing an absolute address with which the symbol is defmed or a relocation address. 

When the tinker encounters an external symbol reference while loading the program unit from a reloca

table file , it checks to determine whether the symbol has been cataloged in the symbol table. 

(1) If it has not been cataloged, the tinker enters it into the symbol table as a new undefined symbol, 

loads the relocation address into the symbol table entry and loads code FFFFH into the operand 

address of the instruction in memory. 

(2) If it has been cataJoged and defined, the linker loads the defmed absolute address into the operand 

address in memory. 

(3) If it has been cataloged but not defmed, the tinker moves the old relocation address in the symbol 

table entry to the operand address in memory and loads the new relocation address into the symbol 

table entry. 

Thus, the tinker chains undefined references to each symbol and, when the symbol is defmed, replaces 

all reference addresses with the defined absolute address. In other words, when an external symbol defined 

by the ENT assembler directive appears in the control frame, the linker enters the symbol into the symbol 

table as a defined symbol and replaces all preceding operand addresses chained in memory (terminated by 

FFFFH) with the absolute address defined. The programmer can examine the definition status of the 

symbols using the table dump command. 

An example of external symbol reference resolution follows. Assume that three program units are to be 

linked and that each unit references subroutine SUB 1 in the third program unit (see Figure 6-3). 

When the first CALL SUBI instruction is enccuntered in program unit I, the tinker enters SUBI into 

the symbol table as an undefined symbol, loads the operand address (relocation address SOOIH in this 

case) into which the value of the symbol is to be loaded into the 2-byte value field of the symbol table 

entry and loads the code FFFFH into the operand address in memory (see Figure 6-3(a)). 

When the CALL SUB! instruction is encountered twice in program unit 2, the tinker chains together 

their operand addresses which reference SUB! (see Figure 6-3(b)). When SUBJ is defmed in program unit 

3, the linker designates SUB I as a defmed symbol and loads "all operand addresses referencing SUB I with 

the defining absolute address. The end of the operand address chain is identified by the code FFFFH. 

Figure 6-3( c) shows that SUB I is defined by absolute address 5544H. When the linker subsequently en

counters a CALL SUB 1 instruction, it immediately loads 5544H into the operand address of the instruc

tion since symbol SUB 1 has been defmed. 

159 



  

0000 

12AO 

FFOO 

Monitor 

Link er 

~----------------_, 

Work area 

Loading 
area 

} 
Symbol table 
area 

Fig. 6-1 Memory map for the linker 

2 3 4 5 6 7 8 9 

Symbol name Definition Address 
status (value) 

Fig. 6-2 Symbol table entry format 

Program unit 1 l 

l ~5000 CD I FF I FF 

l 
CALL SUBl I-

l 

END 
I 

-
SUBl jo2j01j50 

This code indicates that _j 
the symbol is undefined. 

(a) 

Program unit 2 l 

1+-Identifies the 
location referenc· 
ing an undefmed 
symbol for the 
first time (serving 
as an end mark). 

SUBl table 
entry 

l 5000 CD I FF I FF "' 

CALL SUB! n. 
l 

5110 

CALL SUB! - 5310 
l 

END 

(b) 

Program unit 3 

l 
5000 

SUBl:ENT I- 5110 
XOR A I-

5310 
l 

l 

CD I 01 I 50 

l 

CD I 11 I 51 

l 

SUB! lo2llll53 

CD T 44 I 55 
y 

CD T 44 T 55 
·~ 

CD I 44 I 55 

\ 

~ 

) 

D 

Operand 
addresses 
referencing 
the symbol 
are chained 
together. 

END f-5544 

M D 
SUB! jooj44j55 

. t Th1s code mdicates that 
the symbol is defined. 

(c) 

Fig. 6-3 Example of external symbol reference chaining 

160 



  

(2) Program relocation 

The linker relocates instructions referencing external symbols while linking the programs. For instruc

tions which reference internal symbols and for which relocation addresses are generated by the assembler, 

however, the linker produces absolute addresses for the symbols by adding bias to the relocation 

addresses. 

Thus, the tinker generates absolute binary code in the link area in an executable fonnat which is de

pendent on the bias specified by the programmer when the program unit is loaded. When creating an 

object file, the tinker saves the absolute binary code from the link area in the file together with its loading 

address and execution address. 

161 



  

7. SYM BOLIC DEBUGGER FUNCTIONS 

The symbolic debugger inputs relocatable files under the same input conditions as the tinker except 

that it presumes that absolutable binary code is loaded into the link area in an immediately executable 

form. The symbolic debugger permits the programmer to debug his program while running it. 

With the symbolic debugger, the programmer can run a program, interrupts its execution at specified 

locations and check the system status at these points. The programmer specifies the breakpoints at which 

program execution is interrupted. When a breakpoint ls encountered, the symbolic debugger saves the 

operation code at the address set as the breakpoint in the break table and replaces it with an RST 6 

instruction (F7H) (see Figure 7-1 ). 

The RST 6 instruction is a 1-byte call instruction to address 30 in hexadecimal. Its operation is as 

follows : 

(SP - 1) +- PCH, (SP - 2) +- PCL 

PC+- 0030H 

Hexadecimal address 30H contains a jump instruction which transfers control to the breakpoint control 

routine in the debugger. 

Each breakpoint is associated with a break counter. A break is actually taken when the breakpoint is 

reached the number of times specified by the break counter. Before the break count is reached, execution 

is continued with the original operation code saved. 

When a break occurs, the debugger saves the contents of the CPU registers in the register buffer and 

displays them in the screen When the program is restarted, the debugger restores the contents of the 

register buffer to the CPU registers and pops the break address. 

The programmer can specify a maximum of nine breakpoints and a maximum break count of 14 in 

decimal. 

Saved OP code 

Breakpoint address 
(label symbol) 

Break count l Variable count 

Break table entry 

~placer-------l----~ 
I ~ F? ~Breakpoint 

is set 

Object program 

Fig. 7-1 Breakpoint setting and breakpoint table format 

162 



  

The symbolic debugger has indicative start and 

memory list dump commands in addition to the 

breakpoint setting command, execution command, 

memory dump command and register command. 

The indicative start (1) command displays contents 

of the CPU registers with which the program is to 

be executed for confirmation before actually 

transferring control to the address designated by 

the program counter (PC) displayed. For example, 

when an I command is entered, the display shown in 

Figure 7-2 appears on the screen. When the pro

grammer presses I CRI after confirming the CPU 

The above display shows that the program is to be started 
at address 7500 (hex) with the CPU register values shown. 

Fig. 7-2 I command example 

register contents, the debugger initiates an indicative start as shown in Figure 7.3. 

Register buffer 

General-purpose AF BC DE HL 
registers AF' BC' DE' HL' 

Special-purpose SP IX fY I 

registers 
PC 

CD 
Z-80CPU 

~ 
Fig. 7-3 I command operation 

The debugger restores the contents of 
the general-purpose registers and special
purpose registers SP, IX, IY and I (CD), 
then the value of the PC (® ) and initi
ates program execution . 

The memory list dump (D) command displays the machine code in the specified memory block with 

one instruction on each line. 

The symbolic debugger permits the programmer to symbolically specify addresses as shown in Figure 

7-4. With symbolic addresses, the programmer can specify any addresses in the program wherever the 

program is located in memory. 

The programmer can specify the following types of addresses symbolically : 

(l) Addresses represented by a symbol 

(2) The address of an instruction I to 65535 10 lines away from the address represented by the symbol 

(3) An address ±I to 65535 10 bytes away from the address represented by the symbol 

Of course, the programmer can also specify memory locations with absolute addresses. 

For example, the program unit whose source program is shown at the left of Figure 7-4 is loaded into 

memory by the debugger starting at hexadecimal address 7500; execution of a D command will display 

a dump of the memory block as shown at the right 

in Figure 7-4. 

START:ENT 
LD 
CALL 
XOR 

LD 
LD 

MAINQ:ENT 

SP,START 
LETNL 
A 
( HL) , A 

B , A 

LD A , OFH 
Fig. 7-4 D Command 

163 



  

8. PROM FORMATTER FUNCTIONS 

The PROM formatter generates formatted absolute binary code and stores it into paper tape under the 

PTP control. It is the system backup software used to transfer object programs to the PROM writer. 

Currently, the following paper tape output formats are supported (see Figure 8-1): 

(1) BNPF format: Britronics, Intel and Takeda 

(2) BlOF format: Takeda 
I 

(3) Hexadecimal format: Britronics, Takeda, Minato Electronics 

(4) Binary format: Britronics 

The variety of tape formats supported by the SHARP PROM formatter extends the application range 

of programmable ROMs. 

• P FM 
Format command tab l e 

H BNPF <Brtgh t ront cs RP G-876 4 ) 
B He><adectma l 
( Btnar',! 
D BNPF <In t e l MDS888) 
E BNPF 'Takeda T3 18/28) 

~ ~~~~dec 1 ma I 
Fig. 8-1 Paper tape output formats 

H Mtnato -f.:>r mat 
• P 

The PROM formatter is made up of format, the PTP and the PRT controls (See Figure 8-2). These 

enable the programmer to perform format conversion. 

The formatter checks parity in one of three modes (even parity, odd parity or no parity) when reading 

paper tape. In the formats using ASCII code (BNPF, BlOF and hexadecimal), the most significant bit is 

assigned even or odd parity. When even parity is used, for example, ASCII code "A" (41 hexadecimal) 

is punched as is, whereas "C" ( 43 hexadecimal) is converted to C3 in hexadecimal before being punched 

by setting its MSB. The parity mode can be set using the FC (parity Form Change) command. 

This PROM formatter assumes that the PTP/PTR interface is compatible with the RP-600 puncher/ 

reader from the Nada Electronics Laboratory. It can control RP-600 directly using the general-purpose 1/0 

card (MZ-80102). It can also control other models, such as the DPT26A paper tape punch from Anritsu, 

if 1/0 conforming to the punch specifications can be implemented on the general-purpose I/0 card. 

Relocatable 
program 

Object 
program 

PROM formatter 

Symbolic -- Fonnatter ...-
de bugger --Debugging Formatting 

control 

U Program execution 

Fig. 8-2 Operation of the PROM fonnatter 
164 

~ 

~ 

""I 



  

9. CONVERTING MZ-80K TAPES TO 808 TAPES 

The format of cassette tapes prepared using the MZ-80K system programs and FDOS must be converted 

for use with the MZ-80B. There are two methods of doing this as described below. However, the only two 

types of tapes which are convertable are those which contain source files (with file mode . ASC) or object 

files (with file mode . OBJ). Relocatable files (files with file mode . RB) -and object files with symbol 

tables cannot be converted. 

9.1 When FDOS is available -The Floppy Disk Based System-

First, execute the following command to link MZ-80K cassette tape 1/0 control routine $CMT 1 with 

FDOS. 

EXEC $FD1; LOADAUX 

Next, read in the MZ-80K cassette tape. With this command, the filename must consist of a combina

tion of characters which are permitted under FDOS. 

XFER $CMT1 , $FDn (n = 1 - 4) 

If the ftlename does not consist of a combination of characters which are permitted under FDOS, the 

me must be renamed as follows. 

XFER $CMT1 , $FDn; filename (n = 1."' 4) 

If the source ftle transferred is one which has been prepared for input to the MZ-80K assembler, check 

for any REL directives. This may be done by reading the applicable file with the text editor and 

conducting a search with the S command. Any REL directives found must be deleted. The reason for this 

is that the specifications of the MZ-80B assembler, linker, and symbolic debugger have been changed so 

that the REL directive is no longer required. 

After deleting all REL directives, the required object ftle can be produced by assembling the file and 

producing the relocatable file. 

Next, install the cassette tape for writing the file and execute the next command. 

XFER $FDn ; fJ.lename , $CMT 

165 



  

The operations make it possible to produce an MZ-80B cassette tape with a filename which is either the 

same as that of the MZ-80K cassette tape or reassigned. 

$CMT1 

MZ-BOK cassette tape 

"ABCDE" 

"FILE$1" 

FDOS 

------........ , ... 
\ I 
I I 
1 I 
I I 
I I 

$CMT I 0 0 I 

MZ-80B cassette tape 

"AB CDE " 

" FILE I " 

.__ ___ --.J Diskette 

9.2 With a tape based system 

Use the K-B converter, which is stored toward the rear end of the editor-assembler (around count 75). 

- Load the K-B converter. 

- The system displays the message "K-source?." 

Set the K cassette tape, specify the filename, and 

press I CRI to locate and read in the applicable ftle. 

If no filename is specified, the first file encounter

ed will be read in. 

- "OK" is displayed if the file is read in without 

errors. 

- The message " Check sum error " is displayed if 

an error occurs during the file read. 

- Next, the system displays the message 11 B-destination?." 

•• Monitor SB-1511 ** 
•• KC-B Converter SB-2681 ** 
K-source?PROGK 
Found PROGK 
Loading PROGK 
OK 
B-destination?PROGB 
Writing PROGB 
OK 
K-source? : 

As this point, set the cassette tape for writing the ftle, specify the filename, and press I CRI . If no file

name is specified, that specified when the message "K-source?" is displayed will be used. 

- When the write is normally completed, the message 11 K-source? 11 will be displayed again. Repeat the 

sequence if another tape is to be converted; otherwise, enter 11 
' " to terminate ; the message shown 

below will then be displayed. 

M)onitor B)oot C)ancel? 

Pressing the M key transfers control to the monitor. 

Pressing the B key transfers control to the IPL. 

Pressing the C key returns to the beginning of the K-B converter. 

166 



  

1 0. LINKING FDOS WITH MACHINE LANGUAGE PROGRAMS 

There are three methods of executing machine language programs which have been prepared with 

the tape based system under FDOS. These are discussed below. 

1 0.1. Execution after transfer to a diskette with the XFER command 

With this method, the program is transferred from cassette tape to a diskette in the manner described 

in section 9.1. 

However, if the cassette tape has been prepared using the MZ-80B, $CMTI is replaced with $CMT. 

In other words, for an MZ-80K cassette tape, execute 

XFER SCMTl , $FDn (; fllename) (n = 1- 4) 

and with MZ-80B cassette tape, execute 

XFER SCMT, SFDn ( ;fllename) (n = 1-4) 

Further, when an object file prepared with the cassette based system programs is transferred to a 

diskette, it is executed as follows. 

RUN $FDn ; fllename 

If the specified object fJ.le has loading addresses which would destroy the FDOS area, the following 

message is dispalyed on the CRT screen. 

destroy FDOS? 

If execution is desired even though the FDOS area will be destroyed, press [Y] . If destruction of the 

FDOS area is to be avoided, press IRJ to return to the FDOS command wait state. 

0 r 

167 

RUN 

Monitor 

FDOS 

Object program 



  

1 0.2. Direct execution using the RUN command 

With this procedure, the program is loaded directly from the cassette tape and executed without trans

ferring it to a diskette. The command is entered as follows. 

RUN $CMT (; mename) 

RUN $CMT1 ( ; filename) 

(for MZ-80B cassette tape) 

(for MZ-80K cassette tape) 

If an object program with the ftlename 11 ABC 11 is to be rea~ in under FDOS, any of the followina 

commands are effective. 

RUN $CMT 

RUN $CMT ;ABC 

RUN $CMT ; ABC . OBJ 

(In this case, file 11 ABC 11 must be the first one on the 

cassette tape.) 

168 



  

10.3. Execution using the LIMIT command 

By limiting FDOS memory management with the LIMIT command and loading the program into the 

excluded area with the LOAD command, the program can be executed. This procedure and the linking 

performed are shown in broad outline below. 

0 0 0 0 Monitor 

" ABC" 

QD 

Loading address : COOO 
Execution address : COOO 

12AO 
FDOS 

CALL COOOH 

F EO 0 Work area 

(!)LIMIT $COOO 

Prepares a free area outside of FDOS management 

@LOAD $CMT ; ABC 

Loads the object program with the filename "ABC " from the cassette tape. 

@RUN $COOO 

Transfers control to address COOO. 

@Control is returned to FDOS by the RET instruction. 

It is also possible to execute the program outside of the FDOS area by loading it from cassette tape in 

advance, then calling it with the following instruction from a program executed under FDOS control. 

CALL COOOH 

When this is done, the RET instruction returns control to the instruction stored following the CALL 

instruction. (See 5 and 6 in the figure above.) 

169 



  

11 . LINKING BASIC PROGRAMS WITH MACHINE LANGUAGE PROGRAMS 

As is the case with FDOS, BASIC programs are linked with machine language programs by reserving 

a machine language program area with the LIMIT instruction of BASIC, then loading the machine 

language program from cassette tape. The machine language program is then called as a subroutine by 

means of the USR( ) instruction of BASIC. An example of this is shown below. 

100 LIMIT $COOO 

200 LOAD " ABC " 

300 USR ($COOO) 

\ 
Limits the area used by the BASIC program to address $BFFF. 

Machine language program · file 11 ABC 11 is read in to the machine 

language link area from the cassette tape. 

Calls address COOO. 

o o 0 0 Monitor 

12AO 
BASIC interpreter 

BASIC program 

" A B C " ( 1 USR($C OOO) 

I I 
COOO J~LIMIT 

BASIC area 

QD 1------..;.) '------------' Machine language link area . . LOAD _ RET 

(Note) The monitor included in the BASIC interpreter is the SB-151 0, but that included in the system 

programs is the SB-1511. When a machine language program is to be linked with the monitor of 

the BASIC interpreter, it is necessary to change the address of the monitor subroutine to be 

referenced. 

170 



  

12. PAPER TAPE PUNCHER AND READER INTERFACE 

Nonnally, paper tape is used for PROM writer data input/output. Therefore, refonnatted programs are 

output onto paper tape. To enable this, interfaces with the puncher and reader are required. 

The method for controlling the paper tape puncher and reader is not standardized. A paper tape 

puncher and reader which can be controlled by FDOS must have the following signal timing system. The 

signal names and timing charts shown below are based on the RP-600 paper tape puncher and reader 

manufactured by Nada Electronics Laboratory. (For details, refer to the manual included with the paper 

tape puncher and reader.) 

12.1 Signal name 

<Puncher> 

DT1 - DT8 

MI* 

ST 

TO 

(RDY)** 

<Reader> 

RD 1 - RD8 

STA 

SPR 

RB 

Data (PTP -CPU) 

Motor ON/OFF control signal (PTP- CPU) 

START/STOP control signal (PTP-CPU) 

Timing signal (PTP ~ CPU) 

Ready state signal (PTP ~CPU) 

(This signal is not output from the RP-600 since it can be used in remote 

operation. Ground it when the RP-600 is used.) 

Data (PTR ~CPU) 

START /STOP control signal (PTR -CPU) 

Sprocket signal (PTR ~CPU) 

Tape end signal (abnormal stop signal) (PTR ~CPU) 

* Do not connect when the motor is not remotely controlled. 

** The DPT26A manufactured by the Anritsu Electric Co. outputs this signal, but the RP-600 

does not. 

12.2 110 ports 

Port FCH is used for data by both the puncher and the reader. Port FDH is used for control signals. 

Care is required when designing interfaces since the control signals for the puncher and the reader both 

share the same port. As is apparent from Table 12-1 , the control signal for the reader is supplied to the 

MSD side of the control signal port, while that for the puncher is supplied to the LSD side. 

<Puncher> < Reader > 
o,. On 

I DT, / on / DT, / BT. / liT./ DT. / DTr / DT. I [DataJ 
l 1o Jn 

I RD, I RO. I RDJ I RI), I RI)> I HO. I R07 I RV. I 
O.o --------- -----::--
[~JJ~r=:J===r==~~====~:JO.' O.o o,, I Mr I sT I /[ControlsignaJsJI[::~~====rl !S'I'A~A~I=I=cj 

lzo 

~~~cr==r==c::~=::=::=J"' '·· '" ~.:RDY JI TO 1 cc:::;~====~:r1 ~SP~Rrr1 ~R:B~I=I=JI 
LSD

Table 12-1 Port allocation
MSD

171

12.3 Timing chart

Puncher

Opera-
tion

Signal

MI

ST

TO

(RDY)

DT

Reader

Opera-
tion

Signal

STA

SPR

RB

RD

~ ..
Q -Q
:E

H

L
More than 2 seconds_; H ,

L
H

L
H

L
H

L

H
L

H
L

H
L

H
L

~_j[_ _jl___f
" I " "0 " " I " " 0 " " I " " I "

Figure 12-1 Puncher timing chart

* The next data to be punched is readied while TO isH and maintained while TO is L.

** ST is set to L 2 or more seconds after the motor has been started, and is set to H after

TO has risen from L to H for the last data.

E-o ex:
<
E-o
tl)

" 1 " " I " " 1 " " 0 " " 1 "

Figure 12-2 Reader timing chart

172

-

J

12.4 Preparing a paper tape puncher/reader 1/0 card

It is convenient to use a universal l/0 card (MZ-80102) for preparing a paper tape puncher and reader

l/0 interface circuit. Markings such as 0 10 or 0 17 in the port allocation table on page 171 match those on

the universal l /0 card. See page 174 for setting the universal I/0 card switches to select port addresses

FC and FD.

The RP-600 internal interface circuit and input and output pin connections are shown below for refer

ence. (For details, refer to the manual included with the RP-600).

Puncher internal circuit I MZ-80102 Reader internal circuit I MZ-80102

rv 1 SN74LS04 SN74368 SN74368 l.ZK -- DATA

svf2.2Ki I
DATA

SN74LS04 MC1413 l. 2K - SPR ST

2.2K i I sv i

MC1413 2.2K I

MC~3 f· ,J I MI STA

MC14049 I
TO ---<C> 0 RB

I

Puncher interface circuit Reader interface circuit

Figure 12-3 Interface circuit (RP-600)

Puncher I/0 connector Reader 1/0 connector

Pin Signal Pin Signal Pin Signal Pin Signal

I DTI - 14 1 RD~- 20
2 DT2 15 2 RD2 21
3 DT3 16 3 RDJ 22
4 DT4 17 4 RD4 Data 23
5 DT5 Data 18 5 RDs 24
6 DT6 19 6 RD6 25
7 DT1 20 7 RD1_ 26
8 20 8 SPR Sprocket signal 27
9 DT8 _ 21 9 RD8 Data 28 STA START/STOP
10 22 MI Motor ON/OFF 10 signal
11 TO Timing signal signal 11 29 RB Operating state
12 GND 23 ST START/STOP signal 12 GND 30 FG Frame ground
13 24 FG Frame ground 13 31

14 32
15 33
16 34
17 34
18 35
19 36

Table 12-2 Connector pin connections

173

20

..
0 .. Orr 11• lrt Oz!lf -- Ozr l:z*

ICI4 IC15 IC16 ICI7

~0~ ~ g ~
Cll

• T

CS ICIO ICII ICI2 ICI3 C9

*~ ~ ~ ~
'* 0

t5 IC6 IC7 ICS IC9 C7 ... ~ ~ ~ ~ • T T

C6
RAI

11 IC3 (.)

0 * ,. ~ >
IC4 IC5 C4

C5 PS ~ ~ I ...
~ IC2 T

* ~ ~ • M T

C2 IC I C3 Cl

• 20 I!! 10 !I +

Figure 12-4 Universal 1/0 card component location (parts)

Universal 1/0 card port address setting

(1) Number of ports

Input : 2 ports

(2) Port address

Example: Setting the PS switches as shown below

Output: 2 ports sets the port address to FCH .

1 1 1 1 1 I 0 0

t t t t t t t All port addresses can be set. (However, the

MZ-80B uses those from BOH on.) s7 s6 Ss s4 s3 s2 SI

The input port for I 10 ~ I 17 is set to an

even address.

When the PS switches are set as shown above,

The input port for 120 ~ 127 is set to an

odd address.

ports FCH

S1 OFF

S6 OFF

The output port for 0 10 ~ 0 17 is set to an Ss OFF

even address. S4 OFF

The output port for 0 20 ~ 0 27 is set to an S3 OFF

odd address. S2 OFF

(3) Port address setting switches (PS) S1 ON

and FDH are used for this card.

s s s s s s s
I 2 3 4 5 6 7

2 ~~~~~~~ 2

Numbers marked on the PS switches corres- Caution: InstaUing two or more interface cards

pond to the address bus lines shown below. which have the same port address settings will

Turning a PS switch OFF sets the correspond- result in destruction of ICs.

ing address bit to logical "I" and turning it

ON to logical "o".

Switch No. 7 6 5 4 3 2 1

Address bit A1 A6 As A4 A3 A2 AI

174

13. 1/0 MAP

I/0 ports with addresses equal to or higher than BO are reserved by the manufacturer for control of

external devices; those used by FDOS are assigned device names such as $LPT.

00
User ports

BO
RS·232C

($SIA, $SIB, $SOA, $SOB)
CO

IEEE-488

IXl

DB Floppy disk
($FDI- $FD4)

EO
8255 , 8253 , PIO

EC Mark Card Reader
($MCR)

EE Color Display
($DUO , $DUI)

FO
Graphic display

F8
EX-ROM

FA

Paper tape puncher and
reader ($PTP , $PTR)

FC

FE Printer
($LPT)

175

14. MONITOR

14.1 Functions of monitor SB-1511

The monitor program is one of the most basic system programs of the MZ-80B personal computer.

Consideration of its functions can be divided in to several phases.

First, all MZ-80B system software (for example, the BASIC interpreter, tape based system program, and

FDOS) employ the monitor functions. As the name indicates, the monitor contains suoroutines which

perform the basic logic operations and control the 1/0 hardware of the MZ-80B; e.g., its keyboard, CRT

display, cassette tape deck, timer circuit, and sound generator. The main system programs of the system

software constantly call these subroutines during processing.

The figure below shows the manner in which the monitor routines are referenced in the linker.

Address

0000
Monitor SB-1511

12AO
__$ RETURN ~

CALL

Link er SB- 2301

User program
CALL

"' RET URN

FFFF

Monitor subroutine calls

The reason for providing a single, independent monitor with general applicability for each of the

MZ-80B processing systems (rather than include separate monitors in each main system program such as

BASIC) is to make the system more orderly. By doing this, various controls which are directly linked to

the hardware are centrally consolidated in the monitor ; since this is located between the hardware and the

software, it is referred to as firmware.

The size of monitor SB-1511 is about 4.5K bytes; as is shown in the figure above, it is stored in main

memory starting at address 0000.

176

The second function of the monitor is to act as a convenient machine language program monitor when

control is transferred to the monitor command level control. In other words, the monitor is not simply a

collection of subroutines which are used in common by system and user programs; system control itself

can be transferred from the system programs to the monitor and the following commands used to create

programs, generate data, and actively control system oprations such as file input/output.

M command

D command

J command

S command

V command

Rewrites the contents of the memory (memory correction).

Displays the contents of a memory block (memory dump).

Transfers control to any desired address and executes programs Uump).

Saves the contents of a memory block onto cassette tape (save).

Compares the contents of a memory block with the contents

cassette tape file (verify).

of a

L command Loads cassette tape files (load).

The functions of all of these commands are the same as with monitor SB-151 0. See the Monitor

Reference Manual for details.

All system programs are provided with cammands for transferring control to the monitor program. For

example, with the BASIC interpreter, control is transferred by means of the MON command; with the

PASCAL interpreter, it is transferred by the Q/command; and with the editor-assembler, it is transferred

by means of the 11 ! 11 command.*

Since the monitor operates in RAM, the monitor commands can be used to change the monitor itself.

For example, the contents of addresses 0000-0038 and 0066, which are called in response to the CPU

restart instruction and interrupts, can be reset to change the functions of the monitor subroutines.

Further, the fact that the cassette tape can be freely written and read out means that an independent

machine language program which includes the monitor program itself can be filed. See the monitor

program assembly listing in section 14.3 when carrying out this type of operation.

• See the manuals for BASIC, PASCAL, the editor-assembler, FDOS, and so forth.

177

14.2 Monitor subroutines

The subroutines of monitor SB-1511 are shown in Table 14-l. The subroutine names shown in this

table are the labels appearing in the monitor program assembly listing in section 14.3. These labels

symbolically express the functions of the various subroutines.

The contents of registers preserved are not changed upon return from a monitor subroutine call, but the

contents of other registers generally are changed. Consideration must be given to this fact when calling

monitor subroutines.
\

To call a monitor subroutine, use machine language instruction CALL or the USR function of BASIC as

shown below.

CALL subroutine address

USR ($ subroutine address)

The subroutine address is specified as a 4-digit hexadecimal number.

For example, to start a new line by calling monitor subroutine LETNL, execute CALL 0764H (CD6407

(hex) in machine language) or USR ($0764).

178

Table 14-1 Subroutines of monitor SB-1511

Subroutine name Function Registers preserved
(hexadecimal address)

Writes the current contents of a certain part of the header buffer
(described later) onto the tape, starting at the current tape position. All registers CALL WRINF Return conditions

(021DH) C flag= 0 No error occurred.
except AF

C flag= 1 I BREAK I was pressed.

Writes the contents of the specified memory area onto the tape as a
CMT data block in accordance with the contents of a certain part of

CALL WRDAT the header buffer. All registers
(024EH) Return conditions except AF

C flag= 0 No error occurred.
C flag= 1 I BREAK I was pressed.

Reads the first CMT header found starting at the current tape position
into a certain part of the header buffer.

CALL RDINF Return conditions All registers
(02SFH) C flag= 0 No error occurred. except AF

C flag= 1, A = FFH A check sum error occurred.
C flag = 1, A =F FFH I BREAK I was pressed.

Reads in the CMT data block according to the current contents of a

CALL RDDAT
certain part of the header buffer.

Return conditions All registers
(027DH) C flag= 0 No error occurred. except AF

C flag= 1, A= FFH A check sum error occurred.
C flag= 1, A =F FFH I BREAK I was pressed.

Compares the first CMT header found starting at the current tape posi-
tion with the contents of the memory area indicated by the header.

CALL VERFY Return conditions All registers
(0286H) C flag= 0 No error occurred. except AF

C flag= 1, A= FFH A match was not obtained.
C flag = 1, A :;e FFH I BREAK I was pressed.

CALL BRKEY Checks whether I BREAK I was pressed. Z flag is set if it was pressed, All registers
(0527H) and Z flag is reset if it was not. except AF

CALL PRTHL Displays the contents of the register pair HL on the display screen as a All registers
(05688) 4-digit hexadecimal number. except AF

CALL PRTHX Displays the contents of the A register on the display screen as a 2· All registers
(OS6DH) digit hexadecimal number. except AF

CALL ASCI
Converts the contents of the lower 4 bits of A register from hexadeci- All registers

(OS83H)
mal to ASCII code and returns after setting the converted data in A except AF
register.

Converts the 8 bits of A register from ASCII code to hexadecimal and
CALL HEX returns after setting the converted data in the lower 4 bits of A register. All registers

(OS8DH) When C flag = " 0 " upon return A ~ hexadecimal except AF
When C flag = " 1 " upon return A is not assured.

Handles a consecutive string of 4 characters in ASCII code as hexa-
decimal string data and returns after setting the data in the register
pair HL. The call and return conditions are as follows.

CALL HLHEX :. DE ~ starting address of the ASCII string (e.g., "3" ''1" "A" " 5'') All registers except
(OSA2H} DE AF and HL

CALLHLHEX
C flag= 0 HL ~hexadecimal number (e.g., HL = 31A5H)
C flag= 1 HL is not assured.

179

Subroutine name
(hexadecimal address)

CALL 2HEX
(05818)

CALL GETKY
(0610H)

CALL PRNTS
(063AH)

CALL PRINT
(063C8)

CALL MSGX
(06AFH)

CALL MSG
(06BSH)

CALL ?DPCT
(07148)

Table 14-1 Subroutines of monitor SB-1511 (Continued)

Function

Handles 2 consecutive ASCll strings as hexadecimal strings and
returns after setting the data in A register. The call and return condi
tions are as follows.

DE+- starting address of the ASCII string (e.g., " 3" "A")
L_DE

CALL 2HEX
C flag= 0 A+- hexadecimal number (e.g., A= 3AI()
C flag = 1 A is not assured.

Takes one character only into the A register from the keyboard. For
example, when this subroutine is called with rnJ held down, ASCII
code 24H, corresponding to the character " B ", is loaded into the A
register and control is returned. If no key is held down, control is
returned with the A register loaded with OOH.
Key input is not displayed.

Displays one space only at the cursor position on the display screen.

Handles data in A register (accumulator) as ASCII code and displays it
on the screen, starting at the cursor position. However, a carriage
return is performed for ODH and the various cursor control operations
are performed for 01H- 06H when these are included.

Almost the same as MSG, except that cursor control codes are for
reverse character display.

Displays a message, starting at the cursor position on the screen.
The starting address of the message must be specified in the register
pair DE in advance. The message is written in ASCII code and must
end in ODH. A carriage return is not executed, but cursor control
operations (control codes: OlH to 06H) are performed.

Controls the display on the display screen. The relationship between
A register at the time of the call and control is as follows.

A register
OOH Same function as I SHIFT I + @]
OlH Same function as rn
02H Same function as [1]

03H Same function as El
04H Same function as B
05H Same function as IHOME J

06H Same function as JCLR J

07H Same function as JDELJ

08H Same function as JINST I
09H Same function as JGRPHJ

OAH Same function as ISFT LOCKJ

OBH No control

OCH Same function as JRVS J

ODH Same function as ICRJ

OEH Cancels the GRAPIDC and SHIFT LOCK key input
mode

OFH Cancels the REVERSE key input mode

180

Registers preserved

All registers except
AF and DE

All registers
except AF

All registers
except AF

All registers
except AF

All registers
except AF

All registers
except AF

All registers
except AF

-

Subroutine name
(hexadecimal address)

CALL NL
(07578)

CALL LE'INL
(07648)

CALL ?PONT
(09048)

CALL C8R80
(09588)

CALL CHR40
(098F8)

CALL XTEMP
(09BEH)

CALL TIMST
{09CAH)

CALL TIMRD
(OA168)

CALL BELL
(OA808)

CALL MELDY
(OAA3H)

Table 14-1 Subroutines of monitor SB-1511 (Continued)

Function

Changes the line and sets the cursor to its beginning if the cursor is
not already located at the beginning of a line.

To change the line and set the cursor to the beginning of the next line.

Sets the current position of the cursor on the display screen in register
pair HL. The return conditions are as follows.

CALL ?PONT
HL +-cursor position on the display screen (V-RAM address)

(Note) The X- Y coordinates of the cursor are contained in DSPXY
(lODIH). The current position of the cursor is loaded as
follows.

LD HL, {DSPXY) ; H +- Y coordinate on the screen.
L +- X coordinate on the screen.

The cursor position is set as follows.
LD (DSPXY), HL

Sets the number of characters per line on the CRT screen to 80.

Sets the number of characters per line on the CRT screen to 40.

Sets the musical tempo. The tempo data (1 to 7) is set in and called
from A register.

A+-OIH
A +- 04H
A+-07H

Slowest
Medium speed
Fastest

Care must be taken here to ensure that the tempo data is entered in A
register in binary code, and not in the ASCII code corresponding to
the numbers " I" to "7" {31 H to 37H).

Sets the built-in clock. {The clock is activated by this call.) The call
conditions are.

A+- 0 {AM), A+- 1 {PM)
DE +- the time in seconds (2 bytes)

Reads the value of the built-in clock. The conditions upon return are:
A +- 0 (AM), A +- I (PM)
DE+- the time in -seconds {2 bytes)

Sounds a momentary tone (approximately 880 Hz)

Plays musical data. The starting address of the musical data must be
specified in advance in the register pair DE. As with BASIC, the
musical interval and the duration of notes of the musical data are
expressed in that order in ASCII code. The end mark must be either
ODH or 2AH (for the character "* "). The melody is over if C flag is
0 when a return is made; if C flag is I it indicates that I BREAK I was
pressed . •

181

Registers presened

All registers
except AF

All registers
except AF

All registers except
AF and HL

All registers except
AF, BC, DE and HL

All registers except
AF, BC, DE and HL

All registers

All registers
except AF

All registers except
AF and DE

All registers
except AF

All registers
except AF

Subroutine name
{hexadecimal address)

CALL GETL
(OBESH)

CALL GETCRT
(OC7CH)

CALL ??KEY
(OD77H)

CALL PUSHR
(ODFlH)

CALL PUSHR2
(ODFDH)

Table 14-1 Subroutines of monitor SB-1511 (Continued)

Function

Inputs one line entered from the keyboard. The starting address in
which the data input is to be stored and the number of characters
which can be input must be specified in advance in the register pair
DE and memory location KNUMBS (OBE3H), respectively. Key input
is terminated by pressing I CR I (or I ENT I), at which time end mark
ODH is stored following the data entered. The maximum,number of
characters which can be input (including the end mark) is 160. The
data input is displayed on the screen. Cursor control, insertion and
deletion are accepted. Pressing I BREAK I during key input sets break
code OBH at the beginning of the address specified in the register pair
DE and returns control to the caller. This subroutine is also called by
the monitor program with the register pair DE loaded with memory
location BUFER (1100H) and location KNUMBS loaded with 39
(27H).

Takes the line on which the cursor is located from the display data.
The starting address where the data taken is to be stored and the
number of characters which can be taken must be specified in advance
in the register pair DE and memory location KNUMBS, respectively.
End mark ODH is stored automatically following the data. The maxi
mum number of characters which can be taken (including the end
mark) is 160.

Awaits key input while causing the cursor to flash. When a key entry
is made it is converted to display code and set in A register, then a
return is made.

Pushes registers IX, HL, DE and BC. The RET instruction at the end
of this subroutine then automatically POPs these registers.

SUBR : CALL PUSHR

RET Z

RET

;POP and RET
if Z flag= 1

; POP and RET

Pushes registers IX, HL and BC. The RET instruction at the end of
this subroutine then automatically POPs these registers.

SUBR2 CALL PUSHR2

RET z

RET

; POP and RET
if Z flag= 1

;POP and RET

182

Registers preserved

All registers

All registers
·except AF

All registers
except AF

All registers
except IX

All registers
except IX

(Note) The contents of the header buffer at the specific addresses are as follows. The buffer starts at

address 1180H and consists of 128 bytes.

Table 14-2 Header buffer of monitor SB-1 511

Address Contents

This byte indicates one of the following file modes.
01 Object file (machine language program)
02 BASIC text me

IBUFE 03 BASIC data me
(11808) PASCAL interpreter data file

Source file (ASCII file)
05 Relocatable me (relocatable binary me)
AO PASCAL interpreter text file

IBUI
These 17 bytes indicate the mename. However, since ODH is used as the end mark, in
actuality the filename is limited to 16 bytes.

(1181H)
Example: []]~ [EJ[f]~ [I]I oo j

IBUI8 These two bytes indicate the byte size of the data block which is to follow.
(1192H)

These two bytes indicate the data address of the data block which is to follow. The loading
IBU20 address of the data block which is to follow is indicated by " CALL RDDAT 01

• The starting
(1194H) address of the memory area which is to be output as the data block is indicated by 01 CALL

WRDAT 01
•

IBU22 These two bytes indicate the execution address of the data block which is to follow.
(1196H)

IBU24 These bytes are used for supplemental information, such as comments.
(1198H)

Example
Address Content

1180 01 ; indicates an object me (machine language program)
1181 's' ; the filename is 'SAMPLE'.
1182 'A'
1183 'M'
1184 'P'
1185 'L'
1186 , E '

1187 OD
1188

} Variable
1191
1192 00

; the size of the file is 2000H bytes.
1193 20
1194 00

; the data address of the file is 1300H.
1195 13
1196 60

; the execution address of the me is 1360H.
1197 13

183

14.3 Monitor SB-1511 assembly list

** Z80 ASSEMBLER SB-7201 <SB-1511> PAGE 01 02. 23. ::::::

01 0000
02 0000 MZ-80B Monitor SB-1511
03 0000 Copyright 1981 by SHARP Corp.
04 0000
05 0000
06 0000 ORG 0
07 0000 ;---------------------------- RSH1
08 0000 C33B00 MON IT: JP t:TART

\ -
09 0003
10 0003 DEFS "' ~·
11 0008 ;---------------------------- RSTl
12 0008 C:3A509 JP REGIST
13 0008
14 0008 SCROST: ENT ;SCROL :::TART LINE +1
15 0008 01 DEFB 01H
16 000C SCREND: ENT ;SCROL END LINE
17 e00c 18 DEFB 18H
18 0000 REPTCT: ENT ;AUTO REPEAT SPEED
19 0000 400C DEFW 0C40H
20 000F SLOW: ENT ;8LOW SCROL
21 0'00F 80 DEF8 :30H
22 0010 ;---------------------------- RST2
23 0010 C3A509 JP REGIST
24 0013
25 0013 KDATW: DEFS 2
26 0015 FF ' SWRK: DEF8 FFH
27 0016 TEMPW: DEFS 1
28 0017 GATES I: ENT
29 0017 00 DEFB 0
30 0018 ---------------------------- RST3
31 0018 C3A509 ,Jp REGIST
":•""')
~·L 0018
33 001B DEFS 5
::: 4 0020 ;---------------------------- R~;T4

35 0020 p .PUSHR: EQU 4
36 0020 C3F10D ,Jp PUSHR
37 0023
38 0023 DEFS 5
39 0028 ;---------------------------- RST5
40 0028 p . D r : EQU 5
41 0028 C30E0E JP DI
42 0028
43 002B 00 NOP
44 002C 1)0 NOP
45 0020 SEL00: ENT
46 0020 ea DEFB 0
47 0e2E 00 NOP
4 ·=· ·-· 002F 00 NOP
49 0030 ;---------------------------- RST6
51Z1 003~3 C3A509 JP REGIST
51 0033
52 0033 DEFt: C'

~·
"'" .J 1)038 ;---------------------------- RST 7
54 0038 C3A509 ,Jp REGI ST
55 003B
56 0038 SKP H

184

** ZE:t1 ASSEMBLER SB-72€11 <SB-1511) PACiE 02 ~12 . :? 3 . 82

01 003B 214900 START: LD HL,IOTBL ;MONITOR COLD ::.TART
02 ~303E 7E LD At M
03 003F 23 INC HL
04 00413 4E LD CtM
05 0041 23 INC HL
06 13042 ED79 OUT (c:) I A
07 0044 3C INC A
0 .-. •=I 0045 2822 JR ZtSTART2
09 0047 18F5 .JR START+3
Hi 13049
11 0049 02E3 IOTBL: DEFW E302H ;8255 CONTROL
12 004B 34E7 DEFW E734H ;8253 C0 MODE2
1 ::: 0040 74E7 DEFW E774H ; :::25:::: Cl MODE2
14 004F B4E7 DEFW E7B4H ;8253 [2 MODE 2
15 0051 00E6 DEFW E600H ; 825~: C2=0
16 0053 00E6 DEFW E600H
17 0055 02E5 DEFW E502H ; :3253 C1=2
18 0057 00E5 DEFW E500H
19 121059 02E4 DEFW E4t12 H • .-,.r-.-=-.-·) -=·~--·.:..· C0=2
20 005B 0t1E4 DEFW E400H
21 0050 CFE9 DEFW E9CFH ;PIO A MODE:::
22 005F 00E9 DEFW E900H ALL OUTPUT
23 0061 C!="EB DEFW EBCF H ;PIO B M 0 DE::
24 0063 FFEB DEFW EBFFH ALL I N~· uT

25 0065
26 (10 65
27 0065 00 NOP
28 0066 C3A509 ,Jp REGIST ;NMI
29 0069
30 0069 210118 START2: LD Hlt1801H
31 006C 220800 LD <SCR OST l tHL
32 006F 3 18011 LD SP,IBLIFE
... -. .;_\..;:t 0072 210010 LD HLtMOOE
34 0075 3E12 LD A, 12H
-· r::-.:, . ._. 0077 77 LD MtA
36 0078 03E0 OUT <E0Hl tA IN IT CMT
37 007A 23 INC HL
38 007B 061E LD B, 1 EH
39 0070 CDD305 CALL ? CLER
40 0080 AF XOR A
41 0081 32FD10 LD CK INTFltA
42 0084 C08F09 CA LL CHR40
43 0087 3 E0D LD At0 DH
44 0089 D3E3 OUT (E3H) I A
45 0088 3H14 LD At4
46 0080 32 1600 LD <TEMPWltA
47 0090 3C INC A
48 0091 32 1A0B LD C .ONTYO+l l ,A
49 0094 114F0E LD DE IT ITME :::
50 0097 CDAC06 CALL NLM :3G
51 009A ED56 IM 1
52 009C AF XOR A
53 009[1 57 LD [I,A
54 0139E 5F LD EtA
55 009F CDCA09 CALL TIMST
56 00A2 180A JR GOOUT
57 00A4 D EF ~. 10
58 0€1AE
59 (113AE GOOUT : ENT
60 0!3AE C3 B100 JP ST ; EXTI MONITOR

185

** Z80 ASSEMBLER :::B-7201 <SB-1511 > PAGE 0 :::: 02 .~3.82

131 t1!3B 1
02 0081 ST : ENT ;MONITOR HOT ·::'ART
03 0081 F3 DI
04 0082 :::: E13D LD A .~3 DH ; READ MODE
05 0084 D3 E3 OUT (E3H) t A
06 0086 3180 11 LD SPti8UFE
07 0089 CD5707 CALL NL
or:: 00BC 3E2A LD A,'* '
09 00BE CD3C06 CALL PRNT ;PROMPT
10 00C1 3E27 LD At39
11 00C3 32E30B LD (KNUM8S l, A
12 00C6 CDED00 CALL GETL0
13 00C9 FE2A CP ' * '
14 00CB 20E4 ,JR NZtST
15 00CD 13 INC DE
16 00CE lA LD At (DE>
17 00CF 218100 LD HLtST
18 0002 E5 PUSH HL
19 0003 FE4A CP ' J '
213 EHiW5 CA170 2 JP ZtJUMP
21 0008 FE4D CP 'M'
22 00DA 28 10 .JR ZtMCLECT
23 00DC FE44 CP ' 0 '
24 ll0DE 2830 ,JR ZtDUMP
25 00E0 FE4C CP 'L'
26 00E2 2865 ,JR ZtMLOAD
27 00E4 FE 5 3 CP 'S '
28 00E6 2864 ,JR ZtMSAVE
29 00E8 FE 5 6 CP 'V'
30 00EA 2858 JR ZtMVRFY
31 00EC C9 RET
'>'"> ,_;IJt... 00ED
33 00EO
34 00ED
35 00ED 110011 GETL0: LD DEtBUFER
36 00FI3 CDE508 GETLBR: CALL GETL
37 00F3 lA LD A,(DE)
38 00F4 FE0B CP 0BH
39 00F6 2889 JR ZtST
40 00F::: C9 RET
41 00F9
42 00F9
43 00F9
44 00F9 3E4D MCLECT: LD At 'M'
45 00FB CD4405 CALL I< IN
46 130FE 28 DEC HL
47 00FF 23 MR: INC HL
48 0100 CD3406 CALL NLPHL S
49 0103 7E LD At M
50 0104 CD6D05 CALL PRTH X
51 0107 CD3A0~. CAL L PRNTS
52 010A CDED00 CALL GETLC1
53 1)100 110811 LD DEt8UFER+8
54 0110 lA LD At (DEl
55 0111 FE0D CP ODH CR
56 011 3 28 EA ,JR Zt MR
57 0115 CD8105 CALL 2HEX
5E: 0 11 8 38DF ,JR CtMCLECT
59 01 1 A 77 LD MtA
613 011 B 18E2 ,JR MR

186

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE 04 '3.::. :3.:::::

01 0110
02 011 D
03 0110
04 011 D CD3F05 DUMP: CALL SSET
05 0120 E5 PUSH HL
06 0121 CD4205 CALL ESET
07 0124 EB EX DE1HL
08 01 25 El POP HL
09 0126 CD3406 DUMP0: CALL NLPHLS
10 0129 0610 LD 8116 XCHC,
11 0128 CD3A06 DUMP 1 : CALL PRNTS
12 012E 7E LD AIM
13 012F CD6D05 CALL PRTHX
14 0132 E5 PUSH HL
15 0133 AF XOR A
16 01 34 ED52 S BC HL1DE
17 0136 El POP HL
18 0137 C8 RET z
19 13138 23 INC HL
213 0139 10FB DJNZ DUMP!
21 131 38 CD2705 CALL 8RKEY
22 013E CS RET z
23 013F DBEA IN A I <EAH)
24 0141 FEFD CP FDH ·:.PKEY
25 0143 28FA ,J R z~-4

26 0145 18DF JR DLIMP0
27 0147
28 0147
29 0147
3(1 0147 AF MVRFY: XOR A
31 0148 01 DEFB 1
32 0149
33 0149 3E01 MLOAD: LD A, 1
34 0148 01 DEFB 1
35 014C
36 014C 3E02 MSAVE: LD A, 2
37 014E 325801 LD (0 MWARK+ 1) I A
38 0151
39 0151 11A401 MENAME: LD DE1FNCOM
40 0154 CDAC06 CALL NLMSG
41 0157 CDED00 CALL GETL0
42 015A 3E00 .MWARK: LD A10
43 015C FE02 CP 2
44 015E 204F JR NZ,MLOVE
45 13160 118011 LD DE1IBUFE
46 0163 3E01 LD A, 1
47 0165 12 LD (DE) I A
48 01 66 13 INC DE
49 016 7 2 10A11 LD HL1BUFER+l0
50 016A 011000 LD BC, 16
51 0160 EDB0 LDIR
52 016F 3 E0D LD Ao0DH
53 017 1 12 LD (DE) I A
54 0172 CD3FI35 MNAMl: CALL S'3ET
55 0 175 229411 LD (IBLI28l •HL
56 01 7'2: E5 PUSH HL
57 0179 CD4205 CALL ESET
58 017C Dl POP DE
59 0170 AF XOR A
60 017E ED5 2 SBC HL,DE

187

** ZE:0 A~·~:EMBLER :::B-7201 <":·B- 15 11 > PAGE 05 02 . 23 . :::2

01 0180 38F0 .JF: CtMNAMl
02 (1 182 229211 LD < I BU 1 :::) , HL
133 13185 2 18100 LD HLtST
04 01~:8 22961 1 LD <I BU22ltHL
~35 0 1 E: B 3 E4A LD A I I,] I

06 018[1 325405 LD <K INP+4), A
~17 (l 1 9[1 CD5005 KIN2: CALL f(I NP
~1 ::: 019:::: 2808 JR z I ~:AV EGO
09 0195 CDA205 CALL HLHEX
10 13198 ~:8Ff:.. JR C,K IN2
11 019A 229611 LD (I 8U22) I HL
12 1:11 9D CD! Dt12 SAVEGO: CALL WRINF
13 01A0 D44E02 CALL NCtWRDAT
14 01 A3 C9 RET
15 01A4
16 131A4 46696CC.5 FNCOM: DEFM ' F i 1 e narroe:'
17 01A8 206E616D
1 '!:• 01AC 653A
19 01AE 00 DEFB 0DH
20 01AF
21 01AF
22 131 AF
2 :3 01AF CD5F02 MLOVE: CALL RDINF
2 4 01B2 08 RET c
25 13183 3A0A11 LD A, <BUFER+H))
26 0186 FE00 CP 0DH
27 0188 C4D101 CALL NZ,NAMECK
28 0 188 20F2 ,JR NZtMLOVE
29 ~:q BD 3A5B01 LD AI (.MWARI(+l)
:;:o 01C0 3D DEC A
31 01C1 2026 JR NZtMVERY
"j.-,
~·"- 0 1C3 11F901 LO DEtLOAMES
':•":t
~· · 01C6 CD A40 c. CALL DSPNAM
34 01C9 CD7D02 CALL RDDAT
35 0 1CC [18 RET c
36 0 1CO 2A9611 LD HL• <IBU22>
'37 0100 .HL: ENT
:;:a 0100 E9 ,J p <HL>
39 0101
40 01 01 110002 NAMECK : LD DE,FOUME S
41 0104 CDA406 CALL DSPNAM
42 01D7 110A 11 LD DE,8UFER+10
4':• -· 01DA 2 18111 LD HL, IBU1
44 0 1DD 0610 LD 8 I 16
45 0 1DF CDC805 CALL SAM E
46 0 1E2 CS RET z
47 01E3 CD6A04 CALL SERSP
48 0 1E6 F6FF O.R FFH
49 0 1E8 C9 RET
50 01E9
51 01E9
C'
~' "- 01E9 110202 MVERY: LO DE,VERMES
5~: 01EC CD A406 CA LL DSPNAM
54 01EF CD8602 CALL VERFY
C' C'_, 01F2 DE: RET r·
5 6 01F3 111402 LD DE,OI<MES
57 01F6 C3AC06 J P NLMSG
58 01F9
59 01F9 LOAMES: ENT
60 01F9 4C6 F6 164 OEFM ' Loading I

188

** Z80 ASSEMBLER SB-7201 <SB-1511> PAGE 06 02.23.8::

01 01FD 696E6720
02 0201 eo OEFB 00H
133 02132 56657269 VERMES: OEFM 'Verifying I

04 0206 6679696E
05 020A 6720
06 020C !3D OEFB 00H
07 02130 FOUMES: ENT
08 0200 466F756E OEFM · 'F ound I

09 0211 6420
10 0213 00 DEFB 0DH
11 0214 4F4B OKMES: DEFM '01('
12 13216 eo OEFB 0DH
13 0217
14 0217
15 13217
16 0217 3E4A .JUMP: LD A. I J I

17 0219 CD4405 CALL KIN
18 €121 c E9 ,Jp CHLl
19 13210
20 0210
21 0210
22 0210 WRINF: ENT
23 0210 E7 RST .PUSHR
24 021E EF RST . DI
25 021F 1601 LD [I , 1 eeo 1: w I
26 0221 2181311 LD HL, I BUFE
27 13224 01813013 LO 8C,0080H
28 0227 CDE2133 WR I 1: CALL CKSUM
29 022A C01604 CALL MOTOR
30 1322D 3848 JR C,STPRET
31 022F CB42 BIT 0.0
32 0231 2808 ,JR z,WRI2 WO
33 13233 05 PUSH DE
3 4 0234 11E9 05 LD DE d.JR I MES
35 0237 COA406 CALL OSPNAM
36 1323A 01 POP DE
37 023B CDC204 CALL TSPE
38 023E CD8603 WRI2: CALL GAP
39 13241 C098132 CALL WTAPE
40 0244 3834 JR c,STPRET
41 0246 CB4A BIT 1, 0
42 13248 C4C204 CALL NZ,T SPE
43 13248 2020 JR NZ,STPRET
44 13240 C9 RET
45 024E
46 024E WRDAT: ENT
47 024E E7 RST .PUSHR
48 1324F EF RST .OI
49 13250 1602 LD D.2 0010:WD
513 0252 CD5702 CALL LDINF
51 0255 18D0 JR WRI1
52 0257
53 0257 ED4B92 11 LOINF: LO BC,CIBU18)
54 025B 2A9411 LD HL, (I BU21Z1)
55 025E C9 RET
56 025F
57 025F
58 025F
59 025F RDINF: ENT
613 025F E7 RST .PUSHR

189

** H:0 ASSEMBLER :::B-720 1 <::O:B-1511 > PAGE 07 02.23.82

01 0260 EF RST . D I
0'~ ... (1261 1604 LD [1,4 o100:RI
I'P _ __, 0263 218011 LO HL,IBUFE
04 0266 018000 LD BC,0080H
05 0269 CD1604 RDl : CALL MOTOR
06 ~2126C 045910 CA LL NCtTMARK '
07 026F 04CC02 CALL NCtRTAPE
0-=· ·-· 0272 3E:06 JR CtSTPRET
09 0274 CB5A RD2: BIT 3.0
10 0276 CB RET z
11 0277 C06A04 CALL SERSP
1 ~· ... 027A C353 10 STPRET: JP MSTOP'
13 0270
14 027[1 RDDAT: ENT
15 0270 E7 RST .PUSHR
16 027E EF R:::T . D I
17 027F 1608 LD Dt:3 HH30: RD
18 0281 C05702 CALL LDINF
19 0284 18E3 JR ROl
20 0286
21 0286
22 0286
23 0286 VERFY: ENT
24 0286 E7 RST .PUSHR
25 0287 EF RST . 0 I
26 0288 1608 LD [1,8 RD
27 028A CD5702 CALL LOINF
?0 _._.. 0280 CDE203 CALL CKSUM
29 0290 CD1604 CALL MOTOR
30 0293 [145 9 10 CALL NCtTMARI<'
31 0296 041903 CA LL NCtTVRFY
32 0299 1807 JR RD2-2
33 029B
34 0298
35 029B
36 0298 1E02 WTAPE: LO Et2
37 0290 C5 PUSH BC
38 029E E5 PUSH HL
39 029F 7E WTAP 1 : LD At M
40 02A0 C04E03 CALL WB YTE
41 02A3 C03105 CALL BR I<
42 02A6 3818 JR C tRETHB
43 02A8 23 WTAP2: INC HL
44 02A9 0B DEC BC
45 02AA 78 LO AtB
46 02AB B1 OR c
47 02AC 20Fl .JR NZtWTAPl
48 02AE 210000 .SUMDT: LD HLt0
49 0281 7C LO AtH
50 02B2 CD4E03 CALL WBYTE
51 0285 70 LO AtL
52 02B6 CD4E03 CALL WBYTE
53 02B9 COFE04 CALL LONG
54 02BC 10 DEC E
55 0280 2004 JR NZtWTAP4
56 02BF AF XOR A
57 02C0 El RETHB: POP HL
58 02Cl Cl POP BC
59 02C2 C9 RET
60 02C3 COE204 WTAP4: CALL SHORT

190

** Z80 ASSEMBLER SB-7201 <":·B-1511 > PAGE 08 02.23.:::2

01 02C6 10FB DJNZ -3
(12 02C8 El POP HL
03 02C9 Cl POP BC
04 02CA 1801 .JR WTAPE+2
05 02CC
06 02CC
07 132CC
08 02CC 1E02 RTAPE: LD Et2
139 02CE C5 PUSH BC
10 02CF E5 PUSH HL
11 02D0 CD0504 RTAP1: CALL EDGE
12 0203 38EB .JR CtRETHB
13 02D5 CD1905 CALL DLYR
14 02D8 OBE! IN At <ElH>
15 02DA E6413 AND 40H
16 02DC 28F2 JR ZtRTAPl
17 02DE 210000 LD HLt0000H
18 02E1 22AF02 LD (,SUMDT+lltHL
19 02E4 El POP HL
20 02E5 Cl POP BC
21 02E6 C5 PUSH BC
22 02E7 E5 PUSH HL
23 02E8 CD5F03 RTAP2: CALL RBYTE
24 02EB 3803 JR CtRETHB
25 02ED 77 LD M, A
26 02EE 23 INC HL
27 02EF 08 DEC BC
28 02F0 78 LD AtB
29 02F1 B1 OR c
30 02F2 20F4 JR NZtRTAP2
31 02F4 2AAF02 LD Hlt<.SUMDT+l)
32 02F7 CD5F03 CALL RBYTE
33 02FA 38C4 JR CtRETHB
34 02FC 4F LD CtA
35 02FD CD5F03 CALL RBYTE
36 0300 38BE .JR CtRETHB
37 0302 BD CP L
38 0303 2006 JR NZtRTAP3
39 0305 79 LD AtC
40 0306 BC CP H
41 0307 3E00 LD At0
42 0309 2885 JR ZtRETHB
43 0308 lD RTAP3: DEC E
44 t1 30C 20C2 ,JR NZtRTAPl
45 030E 110006 TAPER: LD DEtSUMMES
46 0311 CDAC06 CALL NLMSG
47 0314 3EFF LD AtFFH
48 0316 37 SCF
49 0317 18A7 JR RETHB
50 0319
51 0319
52 0319
53 13319 1E02 TVRFY: LD Et2
54 0318 C5 PUSH BC
55 031C E5 PUSH HL
56 031D CD0504 TVF1: CALL EDGE
57 0320 389E JR CtRETHB
~-=· ~o 13322 CD1905 CALL DLYR
59 0325 DBE1 IN A.<ElH>
60 13327 Ee-40 AND 40H

191

** Z80 ASSEMBLER '38-72(H <SB-1511 > PAGE 139 e:: . 2:::: . :32

01 0329 28F2 JR ZtTVF1
{32 0328 C05F03 TVF2 : CALL R8YTE
133 032E 3890 .JR Ct RETHB
04 0330 BE CP M
es 0331 2008 JR NZtTAPER
136 0333 23 INC HL
07 0334 0B DEC BC
08 13335 78 LD At B
139 0336 Bl OR c
113 0337 20F2 .JR NZtTVF2
11 0339 2113131313 . CS MDT: LD HL,I3
12 033C C05F03 CALL RBYTE
13 033F BC CP H
14 133413 20CC JR NZ t TAPER
15 13342 CD5F03 CALL RBYTE
16 0345 BD CP L
17 13346 20 C6 JR NZtTAPER
1

C• 034E: 1D DEC E
19 13349 El POP HL
213 03 4A Cl POP BC
21 13348 C8 RET z
22 034C 18CD J R TVRF Y+2
23 1334E
24 034E
25 1334E
26 034E CS WBYTE: PUSH BC
27 1334F 13608 LD Bt 8
28 0 351 COFE04 CALL LONG
29 0354 07 WBYl: RLCA
30 13355 OCFE04 CALL Ct LONG
3 1 0358 04E2134 CALL NC tS HORT
'32 0358 10F7 DJN Z WBYl
33 13350 Cl POP BC
34 133SE C9 RET
35 035F
36 1335F
37 1335F
:::s 035F E5 RB YTE: PUSH HL
39 13360 2 11313138 LO HLti3800H
40 0363 CDI350 4 RB Yl: CALL EDGE
41 13366 38 1C JR CtRBY3
42 0368 CD1 9135 CALL DL YR
43 13368 DBEl IN A.<E1H l
4 4 0360 E6 40 AND 40H
45 1336F 280A JR Zt R8 Y2
46 037 1 ES PUSH HL
47 13372 2AAFI32 LD HL,(. SUMDT+l)
4C• 0375 2~'

" INC HL
49 13376 22 AFI32 LD < .SUMOT+l > tHL
50 13379 El POP HL
5 1 1337A 37 SCF
52 0 378 C8 15 RB Y2 : RL L
53 037D 25 DEC H
54 037E 2 0E3 JR NZ,RBYl
55 13380 CDI3513 4 CALL EDGE
56 13383 7D LD AtL
57 13384 El RBY3 : POP HL
58 0385 C9 RET
59 13386
60 0386

192

** Z:::0 ASSEMBLER SB-7201 <SB-1511> PAGE 1 (I ~32. 23. 82

01 1)386
e:: 13386 C5 GAP: PUSH BC
03 0387 E5 PUSH HL
04 0388 01F82A LD BC,2AF8H
05 0388 211414 LD HL,1414H
06 038E C84A BIT 1 I [I

07 0390 2004 JR NZ,GAPl WD
08 0392 en Hl27 LD BCI2710H 55FOH <f(l
09 0395 29 ADD HL,HL
10 0396 CDE204 GAP!: CALL SHORT
11 0399 08 DEC BC
12 039A 78 LD A1B
13 0398 81 OR c
14 (139C 20F8 JR NZ,GAP1
15 039E CDFE04 GAP2: CALL LONG
16 03A1 25 DEC H
17 03A2 20FA .JR NZ,GAP2
18 t13A4 CDE204 GAP3: CALL SHORT
19 03A7 2D DEC L
2(1 03AE: 20FA JR NZ1GAP3
21 03AA CDFE04 CALL LONG
22 03AD El RETHBl: POP HL
23 03AE Cl POP BC
24 133AF C9 RET
25 0380
26 0380
27 e::::a0
28 0380 E5 TMARK: PUSH HL
29 0381 2E14 LD L I 14H
313 0383 CB5A BIT 31D
31 0385 2002 JR NZtTMl
32 0387 CB05 RLC L
33 0389 65 TM 1: LD HtL
34 03BA CD0504 TM2: CALL EDGE
35 03BD 3821 JR CtTM4
36 03BF CD1905 CALL DLYR
37 03C2 DBE1 IN A.<ElHl
38 03C4 E640 AND 40H
39 133C6 28Fl ,JR ZtTMl
40 03C8 25 DEC H
41 03C9 20EF JR NZ,TM2
42 03CB 65 LD H1L
43 03CC CD0504 TM3: CALL EDGE
44 03CF 380F .JR C1TM4
45 0301 CD1905 CALL DLYR
46 03D4 DBE1 IN A I (E 1 H)
47 0306 E640 AND 40H
48 03D8 20DF JR NZ1TMl
49 03DA 25 DEC H
50 03DB 20EF JR NZ1TM8
51 03DD CD0504 CALL EDGE
52 03E0 El TM4: POP HL
53 03E1 C9 RET
54 03E2
55 03E2
56 03E2
57 03E2 C5 CKSUM: PUSH BC
58 03E3 E5 PUSH HL
59 03E4 D5 PUSH DE
60 B3E5 110000 LD DE•B000H

193

** Z80 ASSEMBLER 88-7201 <SB-1511> PAGE 11 02.2:::.82

01 03E8 78 CKSl: LD At8
(12 t13E9 Bl OR c
t1::: l.:t:3EA 2013A .JR NZ,CK~32

04 03EC E8 EX DEtHL
05 03ED 22AF02 LD < .SUMDT+l l tHL
£1(:. 03F0 223A03 LD (. C:::;MDT+ 1 l, HL
07 03F:3 Dl POP DE
08 03F4 1887 JR RETHBl
09 03FC. 7E CKS2: LD At M
10 t13F7 C"" . ..J PU::;H ec
11 03FB 0608 LD s.:::
1 -, ... 03FA 07 CKS3: RLCA
13 03FB 3001 .JR NC,+3
14 03FD 1?

~· INC DE
15 03FE 10FA [I.JNZ CKS3
1(:. 0400 Cl POP BC
17 0401 2::: INC HL
lE: 0402 08 DEC BC
19 0403 18E3 JR CKSl
20 0405
21 1]405
22 0405
23 0405 DBEl EDGE: IN AdElHl
24 0407 2F CPL -,.,.
L..J 0408 07 RLCA
26 0409 08 RET c
27 040A 07 RLCA
.-,.:. ... _. [1408 30FE: JR NC,EDGE
29 0400 DBEl EDGE 1 : IN A.<ElHl
::a3 040F 2F CPL
31 0410 07 RLCA
32 0411 D8 RET c
33 0412 07 RLCA
:::4 13413 38F8 JR Ct EDGEl
35 0415 C9 RET
3(:. 041C.
37 041 c.
::::=: 0416
39 0416 CD3605 MOTOR: CAL L KBSET
40 0419 DBE1 IN A I (E 1 H)
41 041B E620 AND 20H
42 1341 D 2818 JR z,MOT2
43 041F 05 PUSH DE
44 0420 11E005 LD DE,SETMES
45 0423 CDAC06 CALL NLMSG
46 ~~1426 Dl POP DE
47 0427 CD4B04 CALL OPEN
48 042A CD3105 MOT!: CALL BRK
49 0420 08 RET c
5~3 042E OBE! IN A I (E 1 H)
51 0430 E620 AND 20 H
52 0432 20F6 JR NZtMOTl
53 0434 CDDC04 CALL DELl M
54 0437 3E03 MOT2: LD At3 13011 :WRITE 1100: READ
55 0439 A2 AND D
5~. 043A 281E JR ZtPLAY
57 043C DBEl MOTW: IN A.CE1H l
""0 ._, ,_. 04:0:E H10 AND 10H
59 0440 2E: 14 .JR ZtMOTWG
(:.0 £1442 05 PUSH DE

194

** Z80 ASSEMBLER SB-72131 .: -::B- 1511 > PAGE 12 02. 2~:. :::2

01 0443 11F205 LD DE t WPRMES
(12 0 44 (:. CDAC06 CALL NLM ~:G

03 1344 9 D1 POP DE
€14 044A 37 SCF
05 0448
06 0448 OPEN: ENT
07 13 448 3 E08 LD Ati38H
138 13 44[1 D3 E3 OUT (E3H) I A
09 0 44F CDDC04 CA LL DELl M
10 0452 3C IN C A
11 0453 D3E 3 OUT (E3H) I A
1 2 13455 C9 RET
1 3 13456
14 0456 3E0C MOT WG: LD At0CH WRITE MODE
15 0458 D3 E3 OUT <E3 H> tA
16 1345A 7A PLA Y: LD AtD
17 13458 E6 05 AND 05H
18 045[1 C49904 CALL NZtMPLA Y
19 0460 CDA804 CALL FR
20 0463 3ADI310 LD A I (MODE)
21 0466 CBD7 S ET 2tA
22 B4c.s 1834 JR BL K4
23 0 4 6 A
24 046A
25 046A
26 1346A SER SP: ENT
27 046A E7 RST .PUS HR
28 0468 CD9504 CALL MS TOP
29 046E CDB204 CALL FFWD
3 13 13471 01004C SS P 1: LD BCt4C013H
3 1 0474 DBE1 IN At <E1H >
32 0476 07 RLCA
33 0477 3 F CCF
34 0478 08 RET c
35 13479 07 RLCA
36 047A CB12 RL D
37 047C 7 A LD AtD
38 0470 E6 3 F AND 3FH
39 047F FE2A CP 2AH
4 0 0481 280A JR z,ss P2
41 0483 FE15 CP 15H
42 0485 28136 JR z,SSP2
43 0487 138 DEC BC
44 0488 78 LD AtB
45 0489 B1 OR c
4 6 048A 20E8 JR NZt SSP 1+ 3
47 048C C9 RET
48 I.H8D 04 SSP2 : IN C B
49 048E 78 LD AtB
50 048F FE4C CP 4CH
51 0491 30DE JR NCt SSP 1
52 0493 18DF JR SSP1+3
53 0495
54 0495
55 0 4 95
56 0495 MS TOF': ENT
57 0495 3E0D LD At0DH READ MODE
58 0497 D3 E3 OUT (E3H) I A
59 0499 3 ADI3113 MPLA Y: LD A.<MODE >
60 0 4 9C CB DF SET 3t A

195

** Z:::0 A~:SEMBLER SB-7201 < ~:B-1511 > PAGE 13 1)2. 2:.::. 82

01 049E CDA404 BLK4: CALL BLK1
02 04A1 3AD01'.:1 BLK3: LD A I (MODE)
03 04A4 BLIC 1 : ENT
04 IZ14A4 D3E0 OUT (E0H) I A
05 04A6 1 f:2E .JR DEL6
06 1)4A8
07 04A8 3E0B FR: LD A,OBH ;FF/REW LATCH
08 04AA COAE04 CALL +4
09 04AD 3D DEC A
10 04AE D3E3 OUT (E3H) I A
11 0480 1824 ,JR DEL C.
12 0482
13 0482
14 0482
15 0482 FFWO: ENT
16 0482 CD3605 CALL KBSET
17 0485 CDA104 CALL BLK:.::
1e 0488 HIGHSC: ENT
19 0488 CDA804 CALL FR
20 04BB CDA104 CALL BLK3
21 04BE CBC7 SET o.A
22 ~f4C0 18DC ,JR BLI(4
23 04C2
24 04C2
25 IZ14C2
26 04C2 TSPE: ENT
27 134C2 E7 RST .PUSHR
28 04C3 3E0E LD A d3EH
2';1 04C5 D3E3 OUT (E3H) I A
30 04C7 01561E LD BC,7766 ;8S
31 04CA
32 04CA
3:.:: 04CA
34 04CA F5 01M: PUSH AF
35 04CB AF XOR A
36 04CC 3D DEC A
37 04CD 20FD JR NZ,-1
38 04CF 0B DEC BC
3 9 0400 7C• LD A1B
40 0401 B1 OR c
4 1 04[12 2f3F7 .JR NZ,OlM+l
42 0404 Fl POP AF
43 0405 C9 RET
44 0406
45 0406 E7 OEL6: RST .F'USHR
46 0407 010100 LD BC I 1
47 04DA 18EE .JR 01M
48 040C
49 04DC DELl M: ENT
50 04DC E7 RST .PUSHR
51 040[1 019607 LD BC,1942 2·=·

~·

52 04E0 18E8 .JR DlM
53 !34E2
54 04E2
55 134E2
56 04E2 F5 SHORT: PUSH AF
57 04E::: 3E0F LO A.0FH
58 04E5 03E3 OUT <E3H) I A
5S"' 134E7 0A LD A, <BC>
60 04E8 3E2A LD A,2AH 2AH <H>: 166 . 75US

196

*lt Z80 AS:::EMBLER SB-72t1l < :::B-1511> PAGE 14 02.23. :?.2

01 04EA 322105 LD CDLY+1l ,A 3FH (L> :240. 25U::.
02 I:HED CD21:'H35 CALL DLY
03 04F0 3E0E LD A,OEH
04 134F2 o:::E3 OUT (E3Hl I A
05 04F4 3E25 LD A•25H 25HCH) : 166US
06 134F6 322105 LD CD LY+l),A 3AH (L) : 221 . 5U ::.
07 04F9 CD2005 CALL DLY
e::: 04FC Fl POP AF
139 04FD C9 RET
10 04FE
11 04FE F5 LONG: PUSH AF
12 04FF 3E0F LD A,0FH
13 0501 D3E::: OUT CE3H) I A
14 0503 3 E5A LD A,5AH 5AH<H>:333US
15 0505 322 105 LD COLY+1>•A 81HCL> :469.5US
16 0508 CD2005 CALL DLY
17 050B 3E0E LD Ad3EH
10 0500 o:::E3 OUT CE3Hl ,A
19 0513F 3E55 LD A,55H 55H (H) : ::: :;:4US
20 0511 :::22105 LO CDLY+ll,A 7CHCL> :452.5US
21 0514 CD2005 CALL OLY
22 0517 F1 POP AF
23 0518 C9 RET
24 0519
25 0519 :zc DLYR: LD A,H
2(:. 051A 70 LD A,L
27 0518 3E DEFB 3EH ;LD A1N
28 051C Z80KT: ENT
29 051C 41 OEFB 41H ;66HC Kl
313 0510 322105 LD CDLY+ll•A
3 1 1:3520
?"'Jo
~· ... 13520 3EFF DLY: L[~ A,FFH
33 13522 3 0 DEC A
34 0523 C22205 ,]p NZ,-1
35 0526 C9 RET
36 !.3527
37 0527
38 !.3527 BRKEY: ENT
39 13527 C03605 CALL KBSET
40 052A DBEA IN A, CEAH>
41 052C E680 AND 80H
42 052E C31F0E JP KINT
43 13531
44 (;1531
45 0531
46 13531 BRK: ENT
47 0531 DBEA IN A I <EAH)
48 0533 2F CPL
49 0534 07 RLCA
50 13535 C9 RET
51 13536
52 0536
"'~ ~· 0536
54 13536 KBSET: ENT
55 0536 DBE8 IN A.CE8H)
56 0538 E6E0 AND EI3H
57 053A F613 OR 13H
r: .-.
,_to:• 053C D3E8 OUT (E8H) I A
59 1353E C9 RET
60 053F

197

** z:::a ASSEMBLER SB-7201 <S8-1511> PAGE 15 02. 2::::. :::2

I) 1 053F
02 1353F
03 053F 3E53 s::;ET: LD A 'C' I

t ·-·

04 0541 21 DEF8 21H
05 0542
06 0542 3E45 ESET: LD A, ' E'
07 0544
08 0544
09 0544 325405 KIN: LD <KINP+4)tA
10 0547 CD5005 KI Nl: CALL KINP
11 054A CDA2135 CALL HLHEX
12 054[1 38F8 .JR C.t<IN1
13 1354F C9 RET
1 4 0550
15 0550
16 0550
17 0550 CD5707 KINP: CALL NL
18 0553 3EFF LD At FFH
19 0555 CD3C06 CALL PRNT
20 0558 110905 LD DEtCOMES
21 0558 COB506 CALL MSG
22 055E COED00 CALL GETL€1
23 0561 110711 LD DEtBUFER+7
24 0564 lA LD At <DE>
25 0565 F!!:0D CP 0DH
26 0567 C9 RET
27 0568
28 €15l:.8
29 0568
::a3 0568 PRTHL: ENT
31 0568 7C LD AtH
-,~,

..:u .. 0569 CD6D05 CALL PRTHX
:33 056C 7D LD AtL
::: 4 056])-
35 0560 PRTHX: ENT
:::6 £156[1 F5 PUSH AF
37 056E E6F0 AND F0H
';If;.• _, 05713 0F RRCA
39 0571 OF RRCA
40 13572 0F RRCA
41 0573 0F RRCA
42 0574 CD8305 CALL ASC
43 0577 C03C06 CALL PRNT
44 057A F1 POP AF
45 0578 E60F AND 0F
46 0570 CD8305 CALL A::O;C
47 0580 c ::nc06 ,Jp PRNT
48 0583
49 0583
50 (1583
51 0583 ASCI: ENT
52 0583 ASC: ENT
53 0583 E60F AND I)FH
54 0585 C630 ADD A,30H
55 1)587 FE3A CP 3AH
56 0589 Dt: RET c
57 058A C607 ADD At07H
5::: t158C C9 RET
59 058[1
6(1 (158[1

198

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE 16 02.2::: . 82

131 0580
02 058D HEX: ENT
133 0580 FE47 CP 47H
04 058F 3F CCF
05 05913 D8 RET c
06 0591 FE41 CF' 41H
07 0593 300A .JR NC,HEXl
08 0595 FE3A CP 3AH
09 13597 3F CCF
10 0598 D8 RET c
11 13599 FE30 CP 313H
12 059B 08 RET c
13 059C D630 SUB 30H
14 059E C9 RET
15 059F D637 HEX 1: SUB 37H
16 05Al C9 RET
17 05A2
18 05A2
19 05A2
20 05A2 HLHEX: ENT
21 05A2 D5 PUSH DE
22 05A3 CDB105 CALL 2HEX
23 05A6 3807 .JR C•HL1
24 05A8 67 LD H,A
25 05A9 CD8105 CALL 2HEX
26 05AC: 3801 JR C,HL1
27 05AE 6F LD L,A
28 05AF Dl HLt: POP DE
29 0580 C9 RET
:::o 0581
31 05B1
32 ti5B 1
33 0581 2HEX: ENT
34 0581 CS PUSH BC
35 0582 lA LD A• (DE>
36 05B3 13 INC DE
37 0584 CD8D05 CALL HEX
38 05B7 380D JR C.2HEX1
39 0589 07 RLCA
40 05BA 07 RLCA
41 05BB 07 RLCA
42 05BC 07 RLCA
43 05BD 4F LD c.A
44 05BE lA LD A, <DEl
45 05BF 13 INC DE
46 B5CI3 CD8D05 CALL HEX
47 05C3 38tH JR C•2HEX1
48 05C5 81 OR c
49 05C6 Cl 2HEX 1: POP BC
50 05C7 C9 RET
51 05C8
52 05(:8
53 B5C8
54 05C8 E7 SAME: RST PUSHR
55 05C9 lA LD .A.<DE>
56 t15CA BE CP M
57 t15CB C0 RET NZ
58 135CC FE0D CP 0DH
59 05CE C8 RET z
60 05CF 2"' ~· INC HL

199

** Z80 ASSEMBLER SB-72~31 <":.B-1511) PAGE 17 02.2:;:,:32

01 0500 1'=' •.J INC DE
02 0501 H:F6 .JR :::AME+ 1
03 0503
£14 0503
135 0503
06 05[13 ?CLER: ENT
07 0503 AF XOR A
(18 ~35[14

09 0504 ?DINT: ENT
10 0504 77 LD MtA
11 13505 2 '"' ~· INC HL
12 0506 10FC DJNZ -2
13 05[18 C9 RET
14 0509
15 0509
lf.:, 0509
17 0509 2[1616472 COMES: DEFM ' -adr· .$'
1 C• (150[1 2E24
19 050F 00 DEFB £1DH
20 05E0 SETMES : ENT
21 !35E0 53657420 DEFM 'Set tape'
22 05E4 74617!365
23 05E8 0[1 DEFB 00H
24 05E9 57726974 WRIMES: OEFM 'Writing I

25 05ED 696E6720
26 05F1 00 OEFB 00H
27 05F2 57726974 WPRMES: OEFM ' Write protect'
2:=: 05F(:. 652071372
29 05FA 6F746563
3~3 05FE 74
31 05FF 130 OEFB 0DH
32 06013 43686563 SUMMES: DEFM 'C heck sum error'
:=:::: 0604 68207375
34 13608 602136572
35 0613C 726F72
36 !3613F 00 OEFB 00H
37 061!3
38 0610
39 0610
413 13610 GETKY: ENT
41 136113 E7 RST .PUSHR
42 0611 CD370c CALL PUSHKI
43 13614 CD710E CALL KEY
44 13617 FE1E CP 1EH
45 13619 ce RET NZ
46 061A AF XOR A
47 0618 C9 RET
48 061C
49 061C
50 061C
51 061C 2A0110 CKRNGL: LD HLt<OSPXY>
52 061F 7C LD AtH
53 136213
54 13620 E7 CKRNG : RST .PUSHR
55 13621 211380!3 LD HLtSCROST
56 13624 46 LD BtM
57 13625 05 DEC B
58 0626 88 CP B
59 13627 08 RET c
60 13628 23 INC HL

200

** Z8(1 ASSEMBLER SB-7201 <SB-1511> PAGE 1 ·=· '-' 132 . 23 . :::2

01 0629 BE CP M
02 062A CS RET z
e~· ,:, 062B 3F CCF
04 062C C9 RET
05 0620
06 0620
07 0620 2AD110 ?DSP79: LD HL,<DSPXY >
08 0630 3E DEFB 3EH ;LD A,N
09 0631 CH3979: ENT
10 0631 4F DEFB 79
11 0632 BD CP L
1-, ..:. 0633 C9 RET
13 13634
14 0634
15 0634
16 0634 CD5707 NLPHLS: CALL NL
17 0l:.37 CD6805 PRTHLS: CALL PRTHL
18 063A
19 1363A PRNTS : ENT
20 1363A 3E20 LD A. I

I

21 063C
22 (16:::c PRNT: ENT
23 063C FE10 CP 10H
24 063E DA1407 JF' c,?DPCT
25 0641
26 0641 ?DSP: ENT
27 0641 E7 RST . PUSHR
28 0642 FE1B CP 1BH
29 0644 2838 JR z,DSPTAB
30 13646 FE1A CP lAH
31 0648 2007 JR NZ,DSPO
32 064A 3E30 LD A, 1 0 1

33 064C CD4206 CALL ?DSP+1
34 064F 3E30 LD A I 1 13 1

35 0651 215E8D DSP8: LD HL I BLINK2+ 1
36 0654 CB66 BIT 4,M
37 0656 C2CA07 JP NZ, ? INST
38 0659 CD0409 CALL ?PONT
39 065C CD2D09 CALL DSPW
413 065F CD2006 CALL ?DSP79
41 0662 20138 JR NZ,DSP2
42 (1664 7C LD A,H
43 0665 CD2006 CALL CKRNG
44 0668 08 RET c
45 0669 CDF608 CALL DSMAG
46 066C C2CD07 DSP2: JP NZ,CURSR
47 066F 28 DEC HL
48 0670 7E LD AIM
49 0671 FE DEFB FEH ;CP N
50 13672 13 ':•

~· #LINE: DEFB 3
51 0673 3003 JR NC,DSP3
52 0675 2-· .;< INC HL
53 13676 3C I NC A
54 13677 77 LD M,A
55 13678 CDCD07 DSP3 : CALL CURSR
56 067B C31108 JP (tELLN
57 1367E EDSBD110 DSPTAB : LD DE, <DSPXYl
58 0682 1C TAB1: INC E
59 0683 3AA207 LD A I (CH41380)
60 (1686 BB CP E

201

** ZE:(1 ASSEMBLER :::8-72':11 <:::8-1511> PAGE 19 02.23.:?.2

01 ,3687 r·o:· _.._. RET z
(12 0688 78 LD AtE
03 06E:9 CDD20D CALL STAB
04 ~368C 20F4 ,JF: NZtTA81
(15 068E EB EX DEtHL
(16 1368F CD67£1E: CALL INSCIFF
07 13692 c:::E107 ,Jp :3AVEXY
0:::: 0695
09 0695
10 ~3695
11 0695 PRNTT: ENT
12 0695 CD3A06 CALL PRNH:
1J 0698 3AD110 LD At!DSPXYl
14 069B B7 OR A
15 1369C C8 RET z
16 0690 D60A SUB 10
17 069F 38F4 .JR CtPRNTT
18 t16A 1 20FA JR NZ,-4
19 06A3 C9 RET
20 06A4
21 06A4 COAC06 OSPNAM: CALL NLMSG
22 06A7 118111 LD DEtlBU1
23 06AA 1803 .JR MSGX
24 06AC
25 06AC
26 06AC NLMSG: ENT
27 06AC C05707 CALL NL
28 06AF
29 06AF MSGX: ENT
30 06AF E7 RST .PUSHR
31 0680 214106 LD HLt?DSP
:=:2 (1683 1804 JR +6
33 0685 MSG: ENT
34 0685 E7 R:::T .PUSHR
35 0686 213C06 LD HLtPRNT
36 0689 lA MSGX1: LD At <DEl
37 06BA FE0D CP ODH
38 t16BC CS RET z
:39 06BD CDD001 CALL .HL
40 06C0 13 INC DE
41 136C1 18F6 ,JR MSGX1
42 06C3
43 06C3
44 06C3 SCROL DATA IN
45 06C3 < SCROST> =START LINE+ 1
46 06C3 !SCRENDl=END LINE
47 06C3 INITIAL:! I 24
4':::0 06C3 SCRSET: ENT
49 06C3 E7 RST .PUSHR
50 06C4 EF RST . DI
51 06C5 21D3Hl LD HLtMANG
52 06C8 061C LD Bt 2:::
C" • ., 06CA C00305 CALL ?CLER . ..) •
54.06CO 2H1B00 LO HLtSCROST
55 0600 E5 PUSH HL
56 0601 66 LD HtM
57 0602 25 DEC H
5E: 06[13 2E00 LD L 113
59 0605 CD0709 CALL ?PNT1
60 0608 229C07 LD (. SCRAD+ 1) I HL

202

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE 213 02 . .23.:::2 .
01 0608 E3 EX CSPl, HL
02 06DC 23 INC HL
03 13600 66 LD H•M
04 j;i:16DE 2E00 LD L .13
05 06EO C00709 CALL '?PNTl
06 06E3 01 POP DE
07 06E4 B7 OR A
08 06E5 E0 52 SBC HL,DE
09 06E7 229F07 LO (.SCRSZ +l) ,HL
10 06EA C3F007 ,Jp CLRS
11 06ED
12 06ED KEYKEY: ENT
13 06ED DBES IN A, CE8H)
14 06EF CBA7 RES 4,A
15 06Fl D3ES OUT C E8Hl, A
16 06F3 DBEA IN A, CEAH>
17 06F5 DBEA IN A, CEAH>
18 06F7 3C INC A
19 06F8 F5 PUSH AF
213 06F9 0605 LD 8.5
2 1 06FB AF XOR A
22 06FC 3D DEC A
23 06FD 20FO JR NZ,-1
24 06FF 10FA DJNZ -4
25 0701 F1 POP AF
26 0702 C2710E JP NZ,KEY
27 0705
28 137135 NOKKEY: ENT
29 07135 AF XOR A
30 0706 21F110 LD HL,KYBDA
31 0709 77 LO M•A
32 0713A 3D DEC A
33 1370B 06138 LD B, 11
34 07130 2" ~· INC HL
35 070E 77 LD M•A
36 070F 10FC DJNZ -2
37 13711 3E1E LD A, 1EH
38 071::: C9 RET
39 0714
40 0714
41 13714
42 0714 ? DPCT: ENT
43 13714 E7 RST .PUSHR
44 0715 212707 LD HL,TDPCT
45 0718 07 RLCA
46 13719 4F LD c.A
47 071A 06013 LD B 113
4·=· ·-· 071C FE0E CP 14
49 071E DC6708 CALL C, INSOFF
513 0721 139 ADD HL,BC
51 0722 SE LD E,M
52 0723 23 INC HL
53 0724 56 LD o.M
54 0725 EB EX DEtHL
55 13726 E9 ,Jp CHL>
56 0727
57 13727 1108 TDPCT: DEFW OELLN
C:("'o

""'' ·=· 13729 DA07 DEFW CUR SO
59 0728 F007 OEFW CURSU
6(1 0720 CDI37 DEFW CURSR

203

** Z80 ASSEMBLER s:B-72£11 <:::B-15 11 > PAGE 21 ~32. 2~:. :32

01 1372F E507 DEFW CURS:L
02 C17:;: 1 (18~38 DEFW HOME
03 ~3733 F [1137 DEFIJ CLR:::
04 073~5 2A08 DEFW DEL
05 ~3737 6408 DEF~J INST
06 0739 CCtiF DEFW GRAPH
07 073B c:;:0F DEFW SMALL
08 0730 5607 DEFW .RET ;BREAK
09 1373F BA0F DEFW RVS
10 13741 6407 DEFW LETNL
11 0743 B10F DEFW LAMODE
1 .-, ..::. 0745 At:(1F DEFW CANRVS
1 "=' ·-· 0747
14 0747
15 13747
16 13747 EF ?SHIFT: RST . D I
17 0748 DBE8 IN A I (E8H)
1 ·=· ·-· 1374A E6H1 AND E0H
19 1374C F61B OR lBH
213 t174E D3E8 OUT < E8H) t A
21 0750 DBEA IN AdEAH>
22 0752 DBEA IN At <EAH>
2:3 13754 E604 AND 4
24 0756 C9 .RET: RET
25 13757
26 0757 NL: ENT
27 0757 E7 RST .PUSHR
2::: 13758 CD0409 CALL ?PONT
29 13758 E5 PUSH HL
3~Z1 (175C CDC108 CALL ? ?TOL
31 075F 01 POP DE
~. --)
.:_. ._ 137613 B7 OR A
33 13761 ED52 SBC HLtDE
34 0763 C8 RET z
35 0764
36. 0764 LETNL: ENT
37 0764 E7 RST .PUSHR
38 0765 CDD208 CALL ? ? EOL
39 0768 CD6708 LETNL2: CALL INSOFF
40 076B 3A0C00 LD At <SCREND>
41 1376E 210210 LD HLtDSPXYl
4~' ... (1771 BE CP M
4 '" ~· 0772 DO RET NC
44 0773 35 DEC M
'45 0774 BE CP M
46 13775 2807 JR ZtSCROL+l
47 0777 7E LD At M
48 i!J778 FE18 CP 24
49 077A C8 RET z
50 0778 34 INC M
51 077C C9 RET
52 0770
53 077[1 E7 SCROL: RST .PUSHR
54 077E CD4707 CALL ?SHIFT
55 0781 3A0F00 LD A, <SLOW >
56 0784 4F LD c,A
57 0785 0600 LD 8.0
58 0787 CCCA04 CALL z,D!M
59 078A 2AD110 LD HLt<DSPXY)
60 078[1 3A0B00 LD At<SCROST>

204

** z:::0 AS::.EMBLER ·:.B-72131 ' ':.B-15 11 / PAGE 22 e2. 23 . ~: 2

01 0790 3[1 DEC. A
02 €1791 57 LD DIA
03 0792 1HH3 LD E dJ
04 0794 ED53D110 LD < o::.Pxv > 1 DE
05 0798 CD1 408 CALL DELLN+3
06 IJ79B 11 (10[10 .SCRAD: LD DE1SCRN ; :;CROL TART ADR~.

07 079E 018007 . SCRSZ: LD BC I 19 20 ; ::.CROL IZE
£18 07A1 21 DEFB 21H ;LD HL1 N
09 07A2 CH4080: ENT
1 (1 07A2 5(1130 DEFW 80
11 07A4 19 ADD HL1DE
12 137A5 CD3A09 CALL DWLDIR
13 07A8 EB EX DE1HL
1 4 07A9 3AA207 LD AI <CH4080 l
15 07AC 47 LD B1A
16 07AD CD4809 CALL DSCL
17 13780 210CI30 LD HL1SCREND
18 13783 7E LD AIM
19 07B4 2B DEC HL
213 ~:nas 96 SUB M
21 07B6 C603 ADD A1 8
22 07B8 4F LD C1A
23 0789 13600 LD B 113
24 07BB 11 D310 LD DE1MANG
25 07BE 6E LD LIM
26 07BF 26130 LD H 113
27 07C1 19 ADD HL1DE
2::: 137C2 54 LD DIH
29 07C3 50 LD E1L
:::0 07C4 1B DEC DE
31 07C5 EDB0 LDIR
32 07C7 3600 LD M10
33 07C9 C9 RET
34 07CA
35 07CA C06D08 ?INST : CALL ??INST
36 07CD
37 07CD CD2D06 CURSR: CALL ? DSP79
:::8 0700 2803 ,JR Z1CLIRSR2
39 0702 2C INC L
40 0703 180C JR SAVE XV
41 13705 2E00 CURSR2 : LD L 113
4 -, ... 0707 220110 LD COSPXYl1HL
43 07DA
44 07DA CD1C<% CURSD: CALL CKRNGL
-45 0700 D8 RET c
46 t17DE 289E JR z~scROL+l

47 07E0 24 INC H
48 07E1 22D110 SAVEXY: LD COSPXYl1HL
49 07E4 C9 RET
5(1 07E5
51 07E5 CD2D06 CURSL: CALL ?DSP79
52 !Z17E8 2[1 DEC L
53 07E9 F2E107 ,Jp P1 SAVEXY
54 07EC 6F LO L1A
55 07ED 2201113 LD <OSPXYl 1HL
56 07F0
57 07F0 CD 1C06 CURSU: CALL CKRNGL
58 07F3 [18 RET c
59 07F4 3A0800 LO A I (SCROST)
60 07F7 3D OEC A

205

** Z80 ASSEMBLER SB-7201 <::: B-1511 > PAGE ...,~.

..:..=> 02. 2~:. 82

01 07F8 BC CP H
0 ~' .<. 13_7 F9 ce: RET z
03 07FA 25 DEC H
£14 07FB 18E4 ,JR SAVE XV
(15 07FD
06 07FD
07 07FD
08 07FD CD0808 CLRS: CALL HOME
09 0800 CD1B08 CALL DELSIJB
10 0803 CD1C06 CALL CKRNGL
11 €1806 30F8 ,JR NCt-6
12 080E:
13 0808 3A0B00 HOME: LD At !SCROST>
14 0808 3D DEC A
15 080C 67 LD HtA
16 080D 2E130 LD L d3
17 080F 1800 JR SAVE XV
lE: 0811
19 0811 DELLN: ENT
20 0811 2AD110 LD HL,(DSPXY>
21 0814 E5 PUSH HL
22 0815 CD1808 DELLN2: CALL DELSUB
23 0818 El POPXY: POP HL
24 0819 18C6 ,JR SAVE XV
25 0819 3E20 DELSUB: LD At I I

26 0810 32E30C LD <.FLSDT+l>•A
27 0820 0EFF LD C tFFH
"' '=' ··-· 0822 CDEA08 CALL LENG+2
29 0825 45 LD 8tL
30 0826 EB EX DE,HL
31 1]827 C34809 ,Jp DSCL
32 082A
33 082A CD1C06 DEL: CAL L CKRNGL
:::4 082[1 380A JR CtDEL0
35 082F 3A0B00 LD A'< SCROST >
36 0832 3D DEC A
37 0833 BC CP H
..,~ ... ,._. 082: 4 2003 JR NZ,DEU3
39 0836 AF XOR A
40 0837 B5 OR L
41 0838 C8 RET z
42 0839 7[1 DEL0: LD AtL
43 083A B7 OR A
44 0838 200F JR NZ, DELl
45 0830 5C LD EtH
4 6 083E CDF808 CALL MAGA
47 0841 2009 JR NZ, DELl
48 0843 CD0409 CALL ? PONT
49 0846 28 DEC HL
51~1 (1847 CD2B09 CALL DSCL1
51 084A 1899 JR CURSL
52 084C 2AD11C1 DEL 1: LD HL,(DSF'XY>
53 084F E5 PUSH HL
54 0850 CDE808 CALL LENG
55 0853 D5 PU:3H DE
5(:. 0854 E3 EX (SP > 'HL
57 0855 Cl POP BC
58 0856 1B DEC DE
59 0857 CD3A09 CALL DWLDIR
613 1385A 2B DEC HL

206

** Z80 ASSEMBLER SB-72131 <SB-1511> PAGE 24 02. 2:=:. 82

01 085B CD2B09 CALL DSCLl
02 085E El POP HL
03 085F 220110 LD <DSPXY>tHL
04 0862 1881 JR CURSL
05 0864
06 0864 3E10 INST: LO At 10H
07 0866 21 DEFB 21H
0'=' '-' 0867
09 0867 3E40 INSOFF: LD At40H
10 0869 325E00 LO <BLINK2+1) tA
11 086C C9 RET
12 0860
13 13860 EF ??INST : RST .DI
14 086E 47 LO BtA
15 086F 2AD110 LO HLt (DSPXY>
16 0872 E5 PUSH HL
17 0873 COE808 CALL LENG
18 0876 40 LO CtL
19 0877 EB EX DEtHL
20 0878 78 LD AtB
21 0879 41 LD BtC
22 1387A OEE8 LO CtE8H
23 087C ED50 IN D .<C >
24 087E CBFA SET 7t0
25 0880 E051 OUT <C> tD
26 13882 SE INST1: LD Et M
27 0883 77 LD NtA
28 0884 7B LD AtE
29 0885 23 INC HL
:::13 0886 10FA DJNZ lNST1
31 0888 CBBA RES 7tD
32 088A ED51 OUT <C>, D
33 088C FE20 CP
34 088E 2888 JR ZtPOPXY
35 0890 4F LO CtA
36 0891 3AD210 LO AtCOSPXYl)
37 0894 3D OEC A
38 0895 5F LO EtA
39 0896 CD2006 CA LL CKRNG
40 0899 DA1808 JP CtPOPXY
41 089C C2AC08 ,Jp NZtiNST2
42 089F CD7D07 CALL SCROL
43 08A2 10 DEC E
44 08A3 El POP HL
45 08A4 25 DEC H
46 08A5 E5 PUSH HL
47 08A6 24 I NC H
48 08A7 2E00 LD Lt0
49 08A9 220110 LO <DSPXY> tHL
50 08AC 3A7206 INST2: LD AtCiLINE>
51 08AF 47 LD BtA
52 08B0 CDFB08 CALL MAGA
53 088:;: B8 CP B
54 0t:B4 021808 JP NCtPOPXY
55 08B7 -j ":•

"-~' INC HL
56 (1888 3C lNC A
57 08B9 77 LD !':ItA
C':i ...

""'':. 08BA 79 LD A.c
59 08BB C04206 CALL ?OSP+l
f:,IZf 08BE C31508 ,Jp DELLN2

207

** z:::0 AS:=:EMBLER SB-72(H < :=:B-1511> PAGE 2 ...
~· 02.2:::. :32

01 08Cl
02 08Cl
03 08Cl ??TOL: ENT
04 08Cl 2AD110 LD HL, i DSPXY l
05 08C4 E5 PUSH HL
06 08(:5 5(: LD EtH
1;)7 08C6 CDFB08 CALL MAGA
0:0: 08C9 El POP HL
09 08CA E044 NEG
10 138CC 84 ADD AtH
11 08CD 67 LD HtA
12 t18CE AF XOR A
13 08CF 6F LD LtA
14 08[10 18t1F .JR ??EOL2
15 0802
16 08[12 ??EOL: ENT
17 0802 0E00 LD c ,13
18 08[14 CDF608 CALL DSMAG
19 0807 53 LD DtE
20 08[18 EB EX DEtHL
21 08[19 6F LD L•A
22 08DA AF XOR A
')'".) 08DB CB41 BIT 0tC
24 08DD 2801 JR z,+3
.... C"
L. • .J 08DF 12 LD (DEl, A
26 08E13 85 OR L
27 08El 220110 ??EOL2: LD (DSPXYltHL
2·-·

·=· 08E4 20EE ,JR NZ,??EOL+2
29 08E6 181C .JR ?PONT
30 08E8
31 08E8 0E013 LENG: LD c,e
.... ,..,
.;..~ 08EA CD0409 CA LL ?PONT
33 08ED E5 PUSH HL
34 08EE CDD408 CA LL ??EOL+2
35 08Fl Dl POP DE
36 l::.l8F2 B7 OR A
37 08F3 ED52 SBC HLtDE
3:3 08F5 C9 RET
39 08F6
40 08F6 2AD110 DSMAG: LD HL, <DSPXYl
41 138F9 5C LD EtH
42 08FA lC INC E
43 08FB MAGA: ENT
44 08FB 1600 LD [1,0
45 08FD 21D310 LD HltMANG
46 0900 19 ADD HLtDE
47 09131 7E LD At M
48 0902 B7 OR A
49 0903 C9 RET
50 0904
51 0904 ?PONT : ENT
52 (1904 2AD110 LD HL,(DSPXYl
C"
...J..:• 0907 C5 ?PNT 1 : PUSH BC
54 0908 [15 PUSH DE
55 0909 44 LD BtH
56 090A 4D LD c.L
57 0908 04 INC B
C" ,..,
._lo=• 090C ED5BA207 LD DE, < CH41380 l
59 0910 21D8CF .PONl: LD HL,SCRN-40 XCHG
60 0913 19 ADD HL,DE

208

** Z80 AS::.EME<LER ::.B-7201 <SE<-1511> F'AC•E 2(:. 02.23.82

01 0914 10FD DJNZ -1
02 0916 £19 ADD HLtBC
133 13917 01 POP DE
04 0918 Cl POP BC
135 0919 C9 RET
06 091A
07 091A OSPRED: ENT
08 IZ191 A EF RST . D I
09 13918 C5 PUSH BC
1!.3 091C 0EE8 LD CtE8H
11 091E ED40 IN B t<C >
12 0920 CBF8 SET 7tB
13 0922 ED41 OUT <C> ,9
14 0924 7E LD At M
15 0925 CBB8 DSPWRR: RES 7tB
16 !.3927 ED41 OUT <C >, B
17 0929 Cl POP BC
18 092A C9 RET
19 !.3928 ~
20 0928 3E20 OSCL 1 : LD A, I I

21 !.3920
22 0920 OSPW: ENT
23 0920 EF RST . D I
24 092E C5 PUSH BC
25 092F 0EE8 LO CtE8H
26 0931 E040 IN a. <C>
27 13933 C8F8 SET 7tB
28 0935 E041 OUT (Cl' B
29 0937 77 LD MtA
30 0938 18EB JR DSPWRR
31 093A
32 093A OBEB OWLOIR: IN At (E8H)
33 093C CBFF SET 7tA
34 093E EF DWLDI 1

: RST • DI
35 093F 03E8 OUT < EBH > t A
36 0941 EDB0 LDIR
37 0943 E63F OWLORN: AND 3FH
38 0945 03E8 OUT <ESHltA
39 !.3947 C9 RET
40 0948
41 0948 EF OS CL: RST . DI
42 0949 DBES IN At <E8Hl
43 13948 CBFF SET 7tA
44 0940 D3EB OUT <EBH> t A
45 094F 36213 LD Mt I I

46 0951 23 INC HL
47 13952 HlF8 DJNZ -3
48 0954 OBE8 IN AdEE:Hl
49 0956 18E8 ,JR DWLDRN
50 0958
51 0958
52 0958
53 0958 CHR80: ENT
54 0958 EF RST . D I
55 0959 3E01 LO A I 1
56 0958 327206 LD <#LINE> t A
57 095E 3EH! LD At 10H
58 0960 322A01 LD < DUMP0+4 l t A
59 0963 3EEF LD AtEFH
t·0 0965 327A09 LD <CHX2+1ltA

209

** Zt:0 ASSEMBLER ::;;B-7201 <SB-151 1> PAGE 27 02.23.:::2

01 096€: 3 E4F LD A•79
02 096A 21B0C F LD HL, SCRN-80
03 096D 323106 CHX0: LD <C H:3979),A
04 0970 3C INC A
05 0971 32A207 LD < CH4080 l, A
06 0974 221 109 LD < .PON1+1) tHL
07 0977 DBE8 IN A.< E8H l
08 0979 CB EF CHX2: S ET ~5, A
09 097B D3E8 OUT < E8H l, A
113 097[1 2 10000 LD HL,S CRN
11 0 98!3 010800 LD BC,8
12 0983 CD4809 CALL D::O;CL
p 0 986 0[1 DEC c
14 0987 20FA ,JR NZ,-4
15 0 989 CDC306 CALL SC RSET
16 098C C30808 JP HOME
17 098F
18 098F CHR40: ENT
19 098F 3 E0 3 LD A• 3
2€1 0991 327 2 0 6 LD (#LINE >• A
2 1 0994 3 E08 LD A,08H
22 0996 322A01 LD (DUMP0+4 > , A
23 0999 3EAF LD A1AFH
24 099B 327A0 9 LD (CHX2+1),A
25 099E 3 E27 LD A,39
26 09A0 21D8CF LD HL,SCRN-40
27 09A3 18C8 ,JR CHX0
~. r-.

£.0 09A5
29 09A5
::::0 09A5
3 1 09A5 E3 REGIST: EX < SP > 1HL
32 09A6 2 B DEC HL
33 09A7 E3 EX (SP > ,HL
34 09A8 E5 PUSH HL
35 09A9 D5 PUSH DE
36 09AA C5 PUSH BC
'2:7 09AB F5 PUSH AF
3:3 09AC 0605 LD Bt5
39 09AE El POP HL
40 09AF CD3706 CALL PRTHLS
41 09B2 10FA DJNZ -4
4 2 09B4 210000 LD Hlt0
43 0987 39 ADD HL,SP
44 09B8 CD68(15 CALL PRTHL
45 09BB C3B100 JP ST
46 09BE
47 IJ9 BE
4 8 0 9 BE ;TEMPO
4 9 09BE A= VALUE
50 09BE XTEMP: ENT
51 09BE F5 PUSH AF
52 (19BF E60F AND (1FH
5 3 09C l ED44 NEG
54 09C3 C608 ADD A,:::
55 09C5 321600 LD <TEMPW l ,A
5 6 09C8 Fl POP AF
57 09C9 C9 RET
58 139CA
59 09CA ;TIME SET
(:. 13 09CA BC=C2

210

** Z80 ASSEMBLER SB-72131 <S8-1511> PAGE 28 0~ . 23 . 82

(11 09CA OE=SECONO
02 09CA C2=0-FFFF 12H
03 09CA Cl=A8C0H=12HSEC
04 09CA C0=7A12H=31.25KHZ
05 09CA TIMST: ENT
06 09CA EF RST . 0 I
07 09CB C5 PUSH BC
a· :;. 09CC 32560A LD < . AMPM+ 1 > , A
09 09CF E053460A LD (.INI Cl+l),OE
10 0903 3EC1 LD AtClH ;Cl=A8C1 SET
11 0905 03ES OUT <ESH> tA
12 139[17 3EA8 LD AtA8H
13 0909 03E5 OUT (ESH), A
14 09[18 3E02 LD At02H ; C0=0!:H32 SET
15 09[10 03E4 OUT < E4H), A
16 09DF AF XOR A
17 09E0 03E4 OUT <E4H),A
18 139E2
19 09E2 03F0 OUT <FI3H>, A ;ce Cl RESET
20 09E4
21 09E4 3E4 4 TMS1: L[l At44H ; c 1 LATCH
22 09E6 03E7 OUT <E7H> tA
23 09E8 DBE5 IN At <E5 H) ; c 1 READ
24 09EA 4F LD C•A
25 09EB D8E5 IN A, <E5H)
26 09EO FEA8 CP A8H
27 09EF 20F3 JR NZtTMS1
28 09F1 3EC0 LD AtC0H
29 09F3 89 CP c
30 09F4 20EE JR NZtTMSl
~: 1 09F6 3EC0 LO AtC0H ;C1=A8C0 SET
32 09F8 03ES OUT <E5H) tA
33 09FA 3EA8 LD At ASH
34 09FC 03ES OUT (ESH), A
35 09FE 3E12 LD A, 12H ;C0=7A12 SET
36 0A00 D3E4 OUT <E4H) ,A
~:7 0A02 3E7A LD At7AH
38 0A04 D3E4 OUT <E4H>•A
39 0A06 3E84 LD At84H ;C2 LATCH
40 0A08 03E7 OUT < E7H >,A
4 1 0A0A D8E6 IN At <E6H> ;C2 REA [I
42 0A0C 4F LD c.A
4-· ~ 0A0D DBE6 IN A, <E6H>
44 OA0F 47 LD BtA
45 0A10 ED432E0A LD <.C2DAT+1),8C
46 0A14 Cl POP BC
47 0A15 C9 RET
48 13A 16.
4';/ 0A16 ;TIME READ
se 0A16 BC=C2 12H
51 0A16 DE=SECOND
52 0A16 TIMRD: ENT
53 0A16 EF RST .DI
54 0A17 C5 PUSH BC
55 OA18 E5 PUSH HL
56 0A19 3E84 LD At84H ;C2 LAT CH
57 0A1B D3E7 OUT (E7H) I A
58 0A1D 3E44 LD At44H ; c 1 LATCH
59 0A1F D3E7 OUT < E7H >,A
60 0A21 DBE6 IN A, <E6H) ;C2 READ

211

" Z80 ASSEMBLER :::B-721.':11 <:::B-1511 > PAGE 29 02.23.82

~31 ~3A23 4F LD CtA
02 0A24 DBE6 IN A I (E6H)
03 0A26 47 LD BtA
(14 0A27 DBE5 IN A.<E5Hl ; c 1 READ
05 0A2'? 5F LD EtA
06 0A2A DBE5 IN AI (E5Hl
07 0A2C 57 LD [I,A
08 0A2D 210000 .C2DAT: LD HL10
09 0A30 AF X OR A
10 0A31 ED42 SBC HL1BC
11 0A33 7D LD Atl
1 -. ..,;. [1A34 0F RRCA
13 OA~:5 DC730A CALL CtTMUP
1 4 0A3B 05 PUSH DE
15 0A39 7A LD AtD
16 0A3A B3 OR E
17 0A3B 2003 .JR NZtTMX
18 0A3D 11 C0AE: LD DE, A8CI3H
19 0A40 21C0A8 TMX: LD HLtA8C0H HL=AE:C0-C1
213 0A43 ED52 SBC HLtDE
21 0A45 110000 .INIC1: LD DE .!3 HL=HL+INISET
22 0A48 19 ADD HLtDE
23 0A49 3822 JR CtTMX1
24 0A4B E:. PU:::H HL -.r:
,L ~· 0A4C 11C0A8 LD DE,A8C0H
26 0A4F ED52 SBC HLtDE
27 0A51 3813 JR CtTMR1
28 0A53 F1 POP AF AD.J
29 0A54 EB TMX2: EX DEtHL
30 0A55 ~:Eoe .AMPM: LD At0
31 0A57 EE01 XOR 01H
32 0A59 El POP HL
33 0A5A 010100 LD BC,0001H
34 0A5D ED42 SBC HL1BC
35 0A5F 2002 .JR NZt+4
36 0A61 EE01 XOR 01H
37 0A63 El POP HL
38 0A64 Cl POP BC
39 OA65 C9 RET
4~3 0A66 D1 TMRl: POP DE
41 0A67 El POP HL
42 13A68 3A560A LD AI<.AMPM+1 l
43 0A6B 18F6 JR -8
44 0A6D 114057 TMX1: LD DE15740H
45 0A70 19 ADD HLtDE
46 0A71 18E1 JR TMX2
47 0A73 ED432EOA TMUP: LD (.C2DAT+1 l ,se
48 0A77 3A560A LD A I (. M1PM+ 1)
49 OA7A EE01 XOR 01H
50 0A7C 32560A LD (.AMPM+l l tA
51 0A7F C9 RET
52 0A80
53 ~A80 BELL
54 0A80
55 0A80 BELL: ENT
56 i:M80 E7 RST .PUSHR
57 0A81 013000 LD BCt0030H
58 0A84 216000 LD HLt0060H
59 0A87
6[1 0A87 SOUND OUT

212

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE 30 02.23.82

01 0A87 BC=ONCHOO
02 0AE:7 HL=ONTEI
03 0A87 E7 SOUT: RST .PUSHR
04 0A88 EF RST . D I
05 0A89 3E05 SOLIT1: LD At05H
0(:. t1A8B CD990A CALL SOUT2
07 0A8E 3E04 LD At04H
08 0A90 CD990A CALL SOUT2
09 0A93 08 DEC BC
10 0A94 79 LD AtC
1 1 0A95 B0 OR B
12 0A96 20F1 JR NZtSOUT1
13 0A98 C9 RET
14 0A99
15 0A99 D3E3 SOUT2: OUT <E3H) ,A
16 0A9B 54 LD D,H
17 0A9C 50 LD E,L
18 0A9D 1B DEC DE
19 0A9E 7A LD AtD
20 0A9F B3 OR E
21 0AA0 20FB JR NZ,-3
22 0AA2 C9 RET
23 0AA3
24 IZ1AA::: MELODY
25 0AA3 DE=DATA LOW ADDRESS
26 OAA3 MELDY: ENT
27 0AA3 E7 RST .PUSHR
28 0AA4 3E02 LD At2
29 0AA6 320408 LD (.OCTV+l> tA
3(1 OAA9 lA MLDl: LD A, <DE)
31 0AAA FE0D CP 0DH
32 0AAC ce RET z
33 0AAD FE2A CP 1*1 END MARK
:::4 0AAF ce RET z
35 0A80 FE2D CP 1_1 UNDER OCTAVE
36 0A82 2825 JR z,MLD2
37 0A84 FE2B CP I+ I UPPER OCTAVE
"0 ..;;.._. 0AB6 2829 JR z,MLD3
39 0AB8 214308 LD HLtMTBL
40 0ABB FE23 CP I# I

41 0A8D 3E00 LD A.eo
42 0ABF 2005 JR NZ,+?
.43 0AC1 215808 LD HL, M#TBL
44 0AC4 3C INC A
45 0AC5 13 INC DE
46 "0AC6 329908 LD <.CH#+l)tA
47 0AC9 CDE50A CALL ONPU
48 0ACC 38[18 JR CtMLDl
49 0ACE CD8C08 CALL RYTHM
50 0AD1 3E02 LD A,2
51 0AD3 320408 LD (• OCTV+ 1 >,A
52 0AD6 D8 RET c
53 0AD7 1800 .JR MLDl
54 0AD9 3E03 MLD2: LD At3
55 0AD8 320408 LD < .OC TV+ 1) , A
56 0ADE 13 INC DE
57 0ADF 18C8 JR MLDl
58 0AE1 3E01 MLD3: LD A, 1
59 0AE3 18F6 ,JR MLD2+2
6~3 0AE5

213

** Z80 ASSEMBLER SB-7201 <SB-1511> PAGE 31 '32. :23. 82

01 0AES ; ONPU TO RATIO CONV
(12 0AE5 <RATIO>=ONTEI
03 0AES C=ONCHOO*TEMPO
04 0AE5 C5 ONPU: PUSH BC
0S 0AE6 0608 LD Bt8
06 BAE8 lA ONP 1: LD A,(DE>
07 0AE9 BE CP M
(1 8 0AEA 2809 JR ZtONP2
09 0AEC 23 INC HL
10 BAED 23 INC HL
11 0AEE ~":)

"-~' I N'C HL
12 0AEF 10F8 DJNZ ONPl+l
13 0AF1 37 SCF
14 0AF2 13 INC DE
lS 0AF3 Cl POP BC
16 0AF4 C9 RET
17 0AFS 78 ONP2: LD AtB
18 0AF6 32A20B LD <RYTHMl+lltA
19 0AF9 23 INC HL
20 0AFA 05 PUSH DE
21 0AFB SE LD Et M
22 0AFC 23 INC HL
23 0AFD 56 LD DtM
24 0AFE EB EX DEtHL
2S 0AFF 7C LD AtH
26 0800 B5 OR L
27 0801 28139 JR ZtONP3
28 0B03 3E00 .ocTv: LD A 113
29 0805 30 DEC A
30 0B06 2835 JR ZtHOCT
31 0808 3D DEC A
32 0809 2801 JR z,ONP3
33 13J30B 29 ADD HL,HL
34 080C 22C908 ONP3: LD (.RATIO+!) I HL
35 0B0F Dl POP DE
36 0810 13 INC DE
37 0811 lA LD At <DE>
~:a 0812 47 LD B,A
39 0813 E6F0 AND F0H
40 0815 FE30 CP 30H
41 0817 28134 JR z,+6
42 0819 3E00 .ONTYO: LD A,0
43 081B 1807 JR +9
44 0B1D 13 INC DE
45 0~1E 78 LD AtB
46 081F E60F AND 13FH
47 0821 321A0B LD (. ONTYO+ 1) I A
48 0824 4F LD CtA
49 0825 0600 LD B 113
50 0827 217308 LD HLtOPTBL
51 082A 09 ADD Hlt8C
52 0828 D5 PUSH DE
53 082C SE LD Et M
54 IJB2D 50 LD DtB
55 0B2E 3A1600 LD A I (TEMPW)
56 €18:0: 1 47 LD BtA
57 0832 62 LD HtD
58 0B33 6A LD LtD
59 0834 19 ADD HLtDE
60 0B35 10FD DJNZ -1

214

** Z80 ASSEMBLER SB-72131 <SB-1511> PAGE ":J-·
~·...:. 02.2:::.82

01 0837 Dl POP DE
02 0838 Cl POP BC
133 08~:9 44 LD B,H
(14 0B3A 40 LD c.L
05 0838 AF XOR A
06 0B3C C9 RET
1.37 1.383[1 CB3C HOCT: SRL H
08 083F CB10 RR L
09 0841 18C9 JR ONP3
10 1384~:

11 0843 43 MT8L: DEF8 'Cl
1 ~,

.:.. 0844 2501 DEFW 13125H
13 0846 44 DEFB 'D'
14 0847 051.31 DEFW 0105H
15 0849 45 DEF8 I E I
16 0B4A E?£10 DEFW 00E9H
17 084C 46 DEF8 'F'
18 084[1 [1(:(10 DEFW 00DCH
19 084F 47 DEFB 'G,
20 1.3851.3 C3013 DEFW ~30C3H

21 0852 41 DEF8 'A I

22 1.3853 AE00 DEFW 00AEH
23 0855 42 DEFB 'B I

24 0856 9BB0 DEFW 009BH
25 0858 52 DEFB 'R,
26 0859 001.30 DEFW 0000H
27 13858 43 M#T8L: DEF8 I C I

28 085C 151.31 DEFW 0115H
29 085E 44 DEF8 ID I

::::0 085F F600 DEFW 00F6H
31 0861 45 DEF8 'E I

32 13862 DC00 DEFW 00DCH
33 0864 46 DEF8 'F'
34 0865 CFI30 DEFW 00CFH
35 0867 47 DEF8 'G I

36 1.3868 8E:00 DEFW 00B8H
37 0B6A 41 DEF8 'A I

38 0868 A400 DEFW 00A4H
39 0B6D 42 DEF8 'B I

40 0B6E 92013 DEFW 0092H
41 0871.3 52 DEF8 'R'
42 0871 0000 DEFW 0000H
43 1.3873 01 OPT8L: DEFB 01H
44 0874 1.32 DEFB 02H
45 0875 1.33 DEFB 03H
46 1.3876 1.34 DEFB 04H
47 0877 06 DEF8 06H
4

-=· 0878 1.38 DEF8 ~~18H

49 0879 0C DEFB ~~1CH

50 087A 11.3 DEFB lOH
51 0878 18 DEF8 18H
c:~. ..,.t.;;.. 0B7C 20 DEFB 21~1H

53 0870
54 [187[1 [18 TABLEt: DEFB 8
55 0B7E 0F DEF8 15
56 13B7F 0[1 DEFB 1 ~.

·-'
57 0880 0C DEF8 12 .,,..,
~•o 0881 138 DEFB 1 1
59 0882 0A DEFB 1(1
60 0883 09 DEFB 9

215

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE :::::: 02.23.82

01 0B84 08 DEFB :3
02 ~3885 113 DEF8 1(:.
03 £1886 0E DEFB 14
04 0887 ~3 [I DEFB 13
135 0888 08 DEFB 11
06 0889 0B DEFB 11
07 088A 0A DEFB 10
08 088B 08 DEF8 :::
09 0B8C
10 088C RHYTHM
11 088C
12 0B8C RYTHM: ENT
13 1388C CD3605 CALL KBSET
14 088F CD3105 CALL BRK
15 13892 RYTHMB: ENT
16 [1892 [18 RET c
17 0893 E7 RST .PUSHR
rB 0894 C5 PUSH BC
19 0895 217C0B LD HL,TABLE1-1
20 !.::1898 3H10 .CH#: LD A,0
21 089A 87 OR A
22 0898 2804 JR z,RYTHM1
23 0890 010700 LD BC,?
24 0BA0 09. ADD HL,8C
25 0BA1 3E00 RYTHM1: LD A,0
26 0BA3 4F LD c,A
27 ~llBA4 FE01 CP 1 ;"Ru ?
28 0BA6 2005 JR NZ,RYTHM3
29 0BA8 3E02 LD A,2
30 0BAA 32040B LD (.OCTV+1 l ,A
31 0BAD 09 RYTHM3: ADD HL,BC
32 0BAE 46 LD B,M
33 08AF 3A040B LD A, (. OCTV+ 1 l
:::4 0882 3[1 DEC A
35 0883 2807 .JR z,RYTHM2
36 0885 3D DEC A
37 13886 28136 .JR z,*N
38 (188E: CB38 SRL B
39 0BBA 1802 JR *N
40 088C C820 RYTHM2: SLA B
41 088E D1 *N: POP DE
42 08BF 210000 LD HL,0000H
43 08C2 19 ADD HL,DE
44 0BC3 10FD DJNZ -1
45 08CS 44 LD 8,H
46 08C6 4[1 LD c.L
47 08C7 EF RST • DI
48 0BC8 2113000 .RATIO: LD HL, t1
49 08CB 7C LD A,H
50 08CC 85 OR L
51 08CD C2890A JP NZ,SOUT1
52 08D0 E5 PUSH HL
53 0801 3E04 LD A,4
54 08D3 328A0A LD <SOUT1+1l,A
55 0BD6 212501 LD HL d3125H
5l~ 0809 CD870A CALL SO UT
57 0BDC 3E05 LD A.5
58 08DE 328A0A LD <SOUT1+1l,A
59 08E1 El POP HL
60 0BE2 C9 RET

216

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE 34 02.23.82

01 0BE3
02 0BE3
03 0BE3 GETL KEY
04 0BE3
05 0BE3
(16 BBE3 KNUMBS: ENT
07 0BE3 50 OEFB 80
08 0BE4 lE LASTO: OEFB lEH
09 0BE5
10 0BE5 GETL: ENT
11 0BE5 E7 RST .PUSHR
12 0BEl:. F5 PUSH AF
13 13BE7 3AA207 LD A,!CH4080)
14 0BEA 4F LD c.A
15 0BEB 3AE308 LO A, (KNUMBS)
16 0BEE 3D DEC A
17 IZIBEF 06FF LD B1FFH
lE: 0BF1 04 INC B
1·9 0BF2 91 SUB c
20 BBF3 313FC JR NC,-2
21 13BF5 78 LO A,B
22 0BF6 327206 LD !#LINE>,A
23 0BF9 09 EXX
24 0BFA CD000C CALL GETL00
25 IZIBFD 09 EXX
26 0BFE Fl POP AF
27 0BFF C9 RET
28 BC00 E7 GETLI30 : RST .PUSHR
29 0CI31 D9 EXX
:::0 0C02 05 PUSH DE
31 0C03 09 EXX
32 0C04 CD370E CALL PUSHKI
33 13C07 C01AI3D CALL ?SAVE
:::4 BCI3A CD270D GET L01: CALL KEYREP
35 eceo FEIZIB CP 0BH
36 0C0F 28F9 JR z,GETL01
37 ec 11 FEIZID CP 0DH
38 0C13 28F5 JR z,GETL01
39 0C15 32E40B LD !LASTD>•A
40 0C18 FE lE CP lEH
41 13C1A C2E90C JP NZ,AUTRT3
42 0C1D C0580D GETL02 : CALL BLINK
43 13C20 CDED06 CALL KEY KEY
44 0C23 FE lE GE TL03: CP 1EH
45 13C25 28F6 JR z,GETL02
46 0C27 32E40B L[l !LASHI) •A
47 0C2A 09 EXX
48 0C2B 0E00 LD c ,(3
49 0C2D 09 EXX
50 0C2E 4F GETL04: LD c,A
51 0C2F 3A1500 LD A I (SWRK)
52 0C32 87 OR A
53 0C33 CC800A CALL z,BELL
54 0C36 CDDE0C CALL FLASW
55 0C39 79 LD A.c
56 (1C3A FE01 CP CllH
57 0C3C 3808 .JR c.OISPM
"'",..., ... t.:t 0C3E FE07 CP 07H
59 0C40 3007 .JR NC,DISPM
60 0C42 21A70F LD HL,MODE'

217

** Z80 ASSEMBLER SB-7201 <<:.B-1511> PAGE .O:OC"
-· ·J 02.23.82

01 0C45 can BIT (:.,M
02 0C47 2005 .JR NZ,GT2
03 0C49 4F DI:3PM: LD c.A
04 0C4A FE1A CP 1AH
05 0C4C 3814 JR CtFUNC
06 0C4E CD4106 GT2 : CALL ? DSF'
07 0C51 CD1A0D KFIN0: CALL ?SAVE
£18 OC54 [19 EXX
09 0C55 79 LD AtC
10 0C56 [19 EXX
11 0C57 B7 OR A
12 0C58 CAE90C JP z,AUTRT3
13 0C5B CDFD0C CALL AUTRT4
14 0C5E 30C3 JR NCtGETL03
15 0C60 18CC JR GETU34
16 0C62
17 0C62 CB67 FUNC: BIT 4tA
18 0C64 204E JR NZ,FUNC2
19 0C66 FE0D CP 0DH
20 0C68 2814 JR ZtGTCR
21 0C~.A FE0B CP 0BH
22 0C6C 2805 JR ZtGTBRK
23 0C6E CD1407 GTS: CALL ?DPCT
24 0C71 18DE JR KFIN0
25 0C73 El GTBRK : POP HL
26 0C74 3608 LD Mt0BH ;BREAK
27 0C76 23 INC HL
28 0C77 360[1 LD Mt0DH ;CR
29 0C79 C36407 GETLR: JP LETNL
30 0C7C
31 0C7C GETCRT: ENT
32 0C7C E7 RST .PUSHR
33 0C7D' 05 PUSH DE
:::4 0C7E CDC108 GTCR: CALL ??TOL
35 0C81 CDE808 CALL LENG
36 0C84 3AE30B LD At <KNUMBSl
:37 0C87 3D DEC A
38 0C88 BD CP L
39 0C89 3001 JR NCt+3
40 0C8B 6F LD LtA
41 0C8C 05 PUSH DE
42 0C8D E3 EX <SPl, HL
43 0C8E Cl POP BC
44 0C8F 01 POP DE
45 0C90 C5 PUSH BC
46 0C91 CB7A BIT 7,0
47 0C93 280B ,JR z,GTCR2
48 0C95 CBBC RES 7tH
49 0C97 DBE8 IN At <E8Hl
50 0C99 F6C0 OR C0H
51 0C9B CD3E09 CALL DWLDI '
52 0C9E 1803 JR +5
53 0CA0 CD3A09 GTCR2 : CALL DWLDIR
54 0CA3 Cl POP BC
55 0CA4 41 LD BtC
56 0CA5 EB EX DE,HL
57 0CA6 04 INC B
58 0CA7 3600 GLOP2: LD M d3DH
59 0CA9 2B DEC HL
60 0CAA 7E LD At M

218

** z:::0 AS::;EMBLER SB-72~31 <SB-1511 > PAGE 3C. 02.23.82

01 0CAB FE20 CP
02 0CAD 2002 ,JR NZ,+4
03 0CAF 10F6 [I,JNZ GLOP2
04 0CB1 C3loE:(17 JP LETNL2
05 0CB4 E60F FUNC2: AND 0FH ; ~Z1f3- £19 Fl-Fl£1
06 0CB6 ::::c INC A
07 0CB7 21F110 LD HL,KYBDA
er.:· ,_, 0CBA CB5b BIT 2tM
(19 0CBC 2802 ,JR z, +4
1 i) 13CBE C60A ADD A, 1 B ;Fll-F213
11 13CC0 47 LD BtA
12 0CC1 210012 LD HLtFARE
13 13CC4 54 LD DtH
14 0CC5 50 LD EtL
15 0CC6 7E LD At M
16 0CC7 23 INC HL
17 0CC8 FE0D CP 0DH
1 C•

·~· 0CCA 20FA JR NZt-4
19 0CCC 10F7 DJNZ -7
20 0CCE lA MRUN: LD A,(DEl
21 0CCF FE7F CP 7FH ;?CR
22 13CD1 28AB .JR z,GTCR
23 0CD3 FE0D CP 0DH
24 0CD5 CA51BC JP ZtKFIN13
25 0CD8 CD3C06 CALL PRNT
26 0CDB 13 INC DE
27 0CDC 18FI3 .JR MRUN
28 0CDE
29 0CDE F5 FLASW: PUSH AF
30 BCOF CD0409 CALL ?PONT
31 0CE2 3E00 .FLSDT: LD At0
32 0CE4 CD2D09 CALL DSPW
33 0CE7 F1 POP AF
34 13CE8 C9 RET
35 0CE9
36 0CE9 3A0E00 AUTRT3: LD At <REPTCT+1 l
37 0CEC 5F LD EtA
3 E: 0CED CDF00C CALL AUTRT4
39. 0CF0 D2230C JP NCtGETL03
40 0CF3 lD DEC E
41 0CF4 20F7 ,JR NZ, AUTRT3+4
42 ~3CF6 [1 9 EXX
43 0CF7 0E01 LD c t 1
44 OCF9 [19 EXX
45 0CFA C32E0C JP GETU34
46 0CFD
47 0CFD 05 AUTRT4: PUSH DE
4,-,

C:• 0CFE 3A0D00 LD A, <-REPTCT l
49 0001 SF LD EtA
5~3 0002 CD0C0D CALL ALITRT6
51 0005 3003 JR NCt+5
c--,
._IL.,. 0007 lD DEC E
C' . ., . .)..., 0[108 20F8 JR NZ t AUTRT4+5
54 0D0A [11 POP DE
55 0008 C9 RET
56 0DBC
57 0D0C CD270D AUTRT6: CALL KEYREP
C' ,-,
._tc• OD0F F5 PUSH AF
59 0010 3AE40B LD A,< LASTD l
60 0013 4F LD c.A

219

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE 37 02.2::::.82

€11 0014 F1 POP AF
02 €1D15 B9 CP c
03 0016 37 SCF
04 0017 C8 RET z
05 0018 B7 OR A
06 13019 C9 RET
07 0D1A
0::: 1301 A CD0409 ?SAVE: CALL ?PONT
09 0D10 C01A09 CALL DSPRED
10 0[120 [19 EXX
1 1 0021 57 LD DtA
12 ~~1[122 32E::::0C LD (. FLSDT+1) I A
13 0025 1836 ,JR BLINK2
1 4 0027
15 0[127 2A1300 KEYREP: LD HL I (f(DA TW)
16 l302A CD1006 CALL GETKY
17 13020 c0 RET NZ
1 0:• ,_. C1D2E 221::::00 LD <KDATWltHL
19 0031 70 LO A,L
20 0D32 B7 OR A
21 0033 C44B0D CALL NZt i<EYRP2
22 0D36 A5 AND L
23 0037 3E1E LD At! EH
24 0D39 C8 RET z
25 0D3A 3AF 110 LD A, <KYBDAl
26 0D3D 6F LD LtA
27 0D3E 260B LD Ht0BH
28 0040 CD4B0D CALL KEYRP2
29 0D43 BD CP L
30 0D44 3E1E LD A I 1 EH
31 0046 C0 RET NZ
32 €1[14 7 3AE40B LD At (LASTDl
:33 004A C9 RET
34 0D4B
35 0048 OBES KEYRP2: IN A I <E8Hl
36 (1D4D E6F0 AND F0H
37 0D4F B4 OR H
':•0 ·-· 0050 03E8 OUT (E8Hl•A
39 0052 OBEA IN A, <EAHl
40 0054 OBEA IN A, <EAHl
41 0056 2F CPL
42 0057 C9 RET
43 0058
44 0058 [19 BLINK: EXX
45 0059 05 DEC B
46 0D5A [19 £XX
47 005B C0 RET NZ
4:3 0D5C [19 EXX
49 0[150 0640 BLINK2: LD Bt40H
5(1 0D5F ::::E 1 F LD A I 1FH
51 0061 BA CP [I
"' '") -• ..:. 0[162 20(18 .JR NZ I BLINK4
53 0064 3AE30C LD At< .FLSDT+1 l
54 0067 FE1F CP 1FH
55 0069 2004 .JR NZ I BLINI<4
56 0068 0610 LD B I 10H
57 0060 3E20 LD A I I

I

58 13D6F 57 BLINK4 : LD o.A
59 0[170 09 EXX
60 0071 CD0409 CALL ? PONT

220

** Z8€1 ASSEMBLER SB-7201 <::; B-1511 > PAGE 38 02. 2~:. e:2

li:1l (3[174 C320£19 ,Jp DSPW
(12 [1[177
(13 0077
04 [1[177
05 0077 ??KEY: ENT
06 0077 E7 RST .PUSHR
~:n 0078 [19 EXX
£18 ~3[179 CD7E0D CALL +5
09 1307C D9 EXX
10 0070 (:9 RET
11 007E E7 RST .PUSHR
1 ~, ... 007F CD~:70E CALL PUSHKI
13 0082 C0710E CALL KEY
14 0085 CD1A0D CALL ?S AVE
15 0088 CD5800 CALL BLINK
16 t10t:B CDED06 CALL KEYKEY
17 008E FE1E CP 1EH
18 (109€1 28F6 JR z,-s
19 0092 C30E0C JP FLASW
20 0095
21 €1095
~J ')
._~ ~3D95

23 0[195 TENTBL: ENT
24 0095 5809 OEFW CHR80 • C1

>0

25 0097 5607 DEFW .RET ;9
26 0[199 5607 DEFW .RET ; 0(1
27 009B 5607 DEFW .RET , .
,..,r,
"'-0 0[19[1 5607 DEFW .RET ; +
29 0D9F 5607 DEFW . RET ;-
30 0DA1 1108 OEFW OELLN ;0
31 00A3 B100 DEFW SETT AB ; 1
'=''"• ~·~ 0DA5 C000 OEFW CLRTAB · ? , -
~:~: 00A7 CA00 OEFW CLATAB . "' ,.:;,

34 00A9 8H19 DEFW CHR40 ; 4
35 0DAB 0000 OEFW CHANGE ;5
3t. 0DAO 5607 OEFW .RET ; 6
37 00AF 5607 OEFW .RET ; 7
.-.~
..=-·~ 0081
39 0081 3A01 Hl SETT AB: LO At<OSPXY>
40 0084 4F LO CtA
41 0085 C0020D CALL STAB
42 0088 C8 RET z
43 0089 AF XOR A
44 00BA C0020D CALL STAB
45 0080 C0 RET NZ
46 00BE 71 LO MtC
47 00BF C9 RET
48 t10C0 3A0110 CL RTAB: LO A.<OSPXY>
49 00C3 C00200 CALL STAB
5(1 00C6 C0 RET NZ
51 00C7 3600 LO M t!:l
52 13DC9 C9 RET
53 0DCA 0610 CLATAB: LO 8, 16
54 13DCC 21C010 LO HLtTABDAT
55 00CF C30305 JP ?CLER
56 ~30[12 (161(3 STAB: LD Bt16
57 0004 21C010 LD HL,TABDAT
58 00[17 BE CP M
59 0008 CS RET z
(:.(1 0009 23 INC HL

221

** Z80 ASSEMBLER SB-72€11 <SB-1511> PAGE :;:9 02 . 2~: . 82

01 0DDA 10FB [I.JNZ -3
!32 0DDC C9 RET
03 13DDD
04 !3D DD CHANGE: ENT
05 0DDD EF RST . DI
136 0DDE 21610F LD HLt.CHGl
07 0DE1 11730F LD DE I. CHG2
08 0DE4 0607 LD Bt7
09 0DE6
10 0DEe. ?::;WAP: ENT
11 0DE6 4E LD c, CHL>
12 0DE7 lA LD A.CDEl
13 0DE8 77 LD (HL> I A
14 0DE9 79 LD AtC
15 0DEA 12 LD (DEl I A
16 0DEB 23 INC HL
17 0DEC 13 INC DE
18 0DED 10F7 DJNZ ?SWAP
19 0DEF AF XOR A
20 0DF0 C9 RET
21 0DF1
22 BDF1
23 0DF1 PUSHR : PU SH IXtHL,BCtDE
24 0DF 1 PUSHR 2 : PUSH IXtHLtBC
25 0DF1 DESTROY IX
26 BDFl
27 0DF1 PUSHR: ENT
28 0DF1 DDE3 EX (SP) I I X
29 0DF3 E5 PUSH HL
3 ~3 0DF4 C5 PUSH BC
3 1 0DF5 D5 PUSH DE
32 0DF6 E5 PUSH HL
33 0DF7 21030E LD HLtPOPR
34 13DFA E3 EX CSPJ tHL
35 0DFB DDE9 JP C I X J
36 0DFD PUSHR2 : ENT
37 0DFD DDE3 EX (SP) I I X
38 0DFF E5 PUSH HL
39 0E00 C5 PUSH BC
40 0E01 E5 PUSH HL
41 0E02 2 1090E LD HLtPOPR2
42 0E05 E3 EX (SPJ I HL
43 0E06 DDE9 JP C I X J
44 0EI38 Dl POPR: POP DE
45 0E09 Cl POPR2: POP BC
46 BE0A El POP HL
47 0E08 DD El POP IX
48 BE0D C9 RET
49 0E0E
50 0E0E DI: PUSH IFF
5 1 0E0E
52 0E0E D I : ENT
53 0E0E F5 PUSH AF
54 0E0F ED57 LD A I I
55 0E 11 F3 DI
56 0 E1 2 E2350E JP PO,DI4
57 0E15 Fl POP AF
58 0 E1 6 E3 EX CSP J I HL
59 0E17 22 1C0E LD CDI2+1 J t HL
60 0 E1A El POP HL

222

** z:::B ASSEMBLER SB-7201 <SB-1511 > PAGE 40 J32. 2~:. 82

01 0E1B CD0000 DI2: CALL 0
02 13El E FB EI
03 0E1F KINT: ENT
04 0E1F F5 f·IJSH AF
05 0E20 3AFD10 LD At(I<INTF>
06 0E23 B7 OR A
07 0E24 280F JR ZtDI4
0::: 0E26 DBE8 IN At <E8H)
09 0E28 E6E0 AND E0H
10 0E2A F612 OR 12H
11 0E2C D3E8 OUT (E8H> I A
12 13E2E 3E97 LD At97H
13 0E30 D3EB OUT (EBH> I A
14 0E32 AF XOR A
15 0E33 D3EB OUT <EBH > tA
16 0E35 Fl [1!4: POP AF
17 0E36 C9 RET
1 ·=· ·-· 0E37
19 0E37 PUSH KINT FLAG
20 0E37
21 0E37 PUSHKI: ENT
22 0E37 21FDlt1 LD HLd(INTF
~
'" 0E3A 7E LD At M
24 0E3B B7 OR A
25 0E3C C8 RET z
26, 0E3D 3600 L[l M d3
27 0E3F 3E03 LD At3
28 0E41 D3EB OUT (EBH) I A
29 0E43 El POP HL
30 0E44 CDD001 CALL .HL
31 0E47 KINTQN: ENT
":•...,
~'L 0E47 F5 PUSH AF
" . ..,
..;,.~ 0E48 3EFF LD AtFFH
:::4 C1E4A :::2FD10 LD <KINTFltA
35 0E4D 1801 .JR KINT+l
36 (1E4F ::; I(F' H

223

** Z8t1 ASSEMBLER SB-7201 <SB-1511 > PAGE 41 02 . .2::::. :?.2

01 0E4F 2A2A204D T ITMES: DEFM '** Monitor· SB-1511 **' 02 0E53 6F6H974
03 0E57 6F722053
04 ")E5B 42203135
05 0E5F 3 131202A
06 13E6:::: 2A
07 0E64 OD DEFB 0DH
08 0E65
139 0E65
10 0E65 DBE8 SCAN: IN A I (E8H)
1 1 0E67 Ec.F0 AND F0H
12 0E69 B2 OR D
13 13E6A D3E8 OUT (E:::H) I A
14 0E6C DBEA IN At!EAH>
15 0E6E DBEA IN At <EAH)
16 0E70 C9 RET
17 t1E71
18 0E71 EF KEY: RST . D I
19 BE72 2101300 LD HL 113
20 0E75 221300 LD <KDATW> tHL
21 0E78 21FC10 LD HLt KSTD+10
22 0E7B 161B LD [1,1BH
23 0E7D CD650E CALL ~:CAN
24 0E80 2F CPL
~. r:
.t.~· 0E81 47 LD B,A ;B=BIT DATA
26 0E82 15 SWEP: DEC D
27 0E83 CD650E CALL SCAN
28 0E86 5F LD EtA
29 0E87 2F CPL
30 0E88 A6 AND M
3 1 0E89 .. KEY: ENT
32 0E89 73 LD MtE
':t '?_. 0E8A 2B DEC HL
34 0E8B 5F LD EtA
~. r:
..:· ·-' 0E8C 87 OR A
36 0E8D 2804 JR Zt+6
37 0E8F ED531300 LD <KDAHJltDE
38 0E93 7A LD AtD ;STROB END ?
39 0E94 E60F AND 0FH
40 0E96 20EA JR NZ, SWEP
41 0E98 ED5B 1:::!00 LD DE,< KDAHJ>
42 0E9C 78 LD AtE
43 13E9D B7 OR A
44 0E9E 2045 JR NZtDATA ;KSWEP END
45 0EA0 78 LD AtB
46 0EA1 BE CP M
47 0EA2 282E JR ZtKFINA
48 0EA4 77 LD MtA
49 0EA5 210010 LD HLtMODE ;KGSX xxxx
50 0EA8 FE01 CP 01H
51 0EAA 28 18 ,JR ZtGRPHO ; G
52 0EAC FE02 CP 02H
r ~.
..J...:o 0EAE 28 1E .JR ZtSMALLO ;SL
54 I)EB0 FE03 CP 03H ;[liSP CR
re-
._1._1 0EB2 2821 .JR z,CRDIS ;G+SL
56 0EB4 FE05 CP 05H
57 0EB6 2820 .JR ZtGSHFO ;G+S
58 0EB8 FE06 CP 06H
5"' 0EBA 281F .JR Z, s: MSHFO ; ::: L+ S
613 0E8C FE08 CP 08H

224

** z;::t~ ASSEMBLER SB-7201 <SB-1511> PAGE 42 02.23.82

01 BEBE 281E JR ZtRVSO ; R
132 0EC0 FE0C CP 0CH
03 0EC2 200E .JR NZ,KFINA
134 0EC4 ::::E13C RSHFO : LD At0CH
05 BEC6 C9 RET
06 0EC7 CB76 GRPHO: BIT 6tM
07 0EC9 2807 JR ZtKFINA
138 0ECB 3E0E LMOD: LD At0EH
09 0ECD C9 RET
10 BECE CB6E SMALLO: BIT 5tM
11 0EDB 20F9 JR NZtLMOD
12 0ED2 3E1E KFINA: LD At !EH ;NOKEY DATA
13 0ED4 C9 RET
14 0ED5 3E7F CRDIS: LD At7FH
15 0ED7 C9 RET
16 BEDS 3E09 GSHFO: LD At B9H
17 0EDA C9 RET
18 BEDB 3E0A SMSHFO: LD At0AH
19 0EDD C9 RET
20 8EDE CB7E RVSO : BIT 7tM
21 0EE0 28F0 JR ZtKFINA
22 0EE2 3E0F LD Ati3FH
23 0EE4 C9 RET
24 13EE5
25 BEES CDF40E DATA: CALL DATA2
26 13EE8 CB 58 BIT 3t8 ;R
27 0EEA C8 RET z
28 13EEB FE7F CP 7FH
29 BEED 00 RET NC
30 0EEE FE20 CP 20H
31 0EF0 08 RET c
32 0EF1 F680 OR 813H
33 0EF3 C9 RET
3 4 0EF4 7B OATA2: LD AtE
35 0EF5 1E08 LO Eti30H
36 0EF7 87 OR A
37 0EF8 lF ROT: RRA
~.n

~0 0EF9 3803 JR CtROTE
39 0EFB lC INC E
40 0EFC 18FA JR ROT
41 0EFE 87 ROTE: OR A
42 13EFF 2BD1 JR NZtKFINA
43 0F01 3EBF KOIN: LO Ati3FH
44 13FI33 A2 AND D :D=STROB DATA
45 0F04 07 RLCA
46 0F05 137 RLCA
47 0F06 07 RLCA
48 0F07 83 OR E
49 13Ffl8 SF LD EtA
50 0F09 161313 LD Dd3
51 0FI3B 210018 LD HLtMODE
52 13FBE C87E BIT 7 d1 :R
53 0F10 28132 JR Zt+4
54 0F12 CBD8 SET 3tB
55 0F14 CB76 BIT 6tM ;G
56 0F16 2802 JR z,+4
57 0F18 CBC0 SET BtB
58 13F1A 21A70F LD HLtMODE '
59 0F1D 3600 LO Mt0
60 0F1F CB40 BIT 0tB ;G

225

** z:::e ASSEMBLER SB-72131 <SB-1511 > PAG E 4 "' • ' 02.2:::.82

IZ11 0F21 2802 JF: Zt+4
02 13F23 CBF 6 SET 6tM
1]3 0F25 FE0A CP 0AH
04 0F27 3831 JR CtLMONLY
05 13F29 FE19 CP 18H
06 OF2B :3850 JR C tTEN KEY
07 0F2D 2870 JR ZtKYTAB
0 ::: 13F2F FE20 CP 20H
09 0F:::1 3827 JR Ct LMONL Y
113 0F33 7B LD AtE
1 1 1!1F34 FE 52 CP 52H
1 2 0F36. 285[1 JR ZtKYCTRL
13 0F38 FE 53 CP 53H
14 0F3A 2859 ,JR ZtKYCTRL
15 0F3C 210010 LD HLtMODE
16 (1F3F CB6E BIT 5tM ;SR
17 0F41 2802 JR Zt+4
1 C• OF43 CBC3 S ET 1 , B
19 0F45 CB48 BIT 1, B
20 0F47 2802 JR Zt+4
21 13F49 CBD0 S ET 2tB
.-,~.-,

'-.:.. 0F4B FE40 CP 40H . .,..,
L·-' 0F4D 3007 JR NCtTWO
2 4 0F4F CB40 BIT 0tB ;G
25 0F51 2 11 3 10 LD HL t KTBL G- :::2
26 0F54 20 13 JR NZtKADD
27 0F56 CB 58 TWO: BIT 2tB ; S
28 0F58 2012 JR NZtKSML
29 0F5A 2 1D70F LMONLY: LD HL d<TBL
30 0F5D FE 2 1 CP 21 H
3 1 0F5F 3808 JR CtKADD
":•
• ' .4 0F61 C620 .CHGl: ADD A,20H
33 €1F63 FE5B CP 5BH
3 4 0F65 D8 RET c
3 5 0F66 D63A S UB 3 AH
36 0F6E: 5F LD E , A
37 0F69 19 KADD: ADD HLtDE
38 0F6A 7 E LD At M
39 0F6B C9 RET
40 0F6C 21F50F KSML : LD HLtKTBLS-32
41 0F6F FE21 CP 21H
42 0F71 38F6 jR CtKADD
4 3 0F73 C640 .CHG2: ADD At 40H
44 0F75 FE7B CP 7BH
45 0F77 D8 RET c
46 0F78 D65A SUB 5AH
47 0F7A 5F LD E,A
4 ::: 0F7B 18EC JR KADD
49 0F7D
5 13 0F7D CB 50 TENKEY: BIT 2tB
5 1 0F7F 2809 JR ZtLMONLY
..--,_ 0F81 D60A S UB 0AH
53 0F83 87 ADD A•A
54 0 F8 4 2 19500 LD HLtTENTBL
55 0F87 5F LD EtA
56 0F88 1600 LD [1,0
57 0F8A 19 ADD HLtDE
58 0F8B 5E LD Et M
59 0F8C 23 INC HL
6 13 0F8D 56 LD [I,M

226

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE 44 IZ, 2 . 23.82

01 0F8E EB EX OE,HL
02 0F8F CD D001 CALL .HL
03 0F92 C3D20E KFINB: JP KFINA
04 0F95
05 0F95 0652 KYCTR L: SUB 52H
06 0F97 87 ADD At A
07 0F98 C605 ADD At5
08 0F9A CB 50 BIT 2tB
09 0F9C C8 RET z
10 0F9D 3C INC A
11 0F9E C9 RET
12 0F9F CB 50 KY TAB: BIT 2tB
13 0FA1 3E1B LD A I 1BH
14 0FA3 C8 RET z
15 0FA4 3E1F LD A, 1FH
16 BFA6 C9 RET
17 0FA7
18 0FA7 00 MODE ' : DEFB e
19 0FA8
20 0FA8
2 1 0FA8
22 0FA8
23 0FA8 210010 CANRVS: LD HLtMODE
2 4 0FAB CBBE RES 7tM
25 0FAD 7E OUTRT: LD At M
26 0FAE 03E0 OUT <E0Hl ,A
27 0FB0 C9 RET
2·-· C• 0FB1 210010 LAMODE: LD HLtMODE
29 0FB4 CBB6 RES 6tM
30 0FB6 CBAE RES 5tM
3 1 0FB8 18F3 JR OUTRT
32 0FBA 210010 RVS : LD HLtMODE
33 0FBD CBFE SET 7t M
34 0FBF CBB6 RES 6tM
35 ' 0FC1 18EA JR OUTRT
36 0FC3 21D010 SMALL: LD HLtMODE
37 0FC6 CBEE SET 5tM
38 BFC8 CBB6 RES ~.'M
39 0FCA 18E1 JR OUTRT
40 0FCC 21D010 GRAPH: LD HLtMODE
41 0FCF CBAE RES 5tM
42 0FD1 CBF6 SET 6tM
43 0FD3 CBBE RES 7tM
44 0FD5 1806 JR OUTRT
45 0FD7
46 0FD7
47 0FD7 ; KEY TABL
4E: 13FD7
49 0FD7
50 0FD7 1011 KTBL: DEFW 1110H ; F 1 F2
5 1 0FD9 1213 DEFW 1312H ;F3 F4
c:: ~. ... ~~ 0FDB 1415 DEFW 1514H ;F5 F6
53 0FDD 1617 DEFW 171 6H ;F7 F8
54 0FDF
55 0FDF 1819 DEFW 19 18H ;F9 F10
56 0FE1 3839 DEFM "89"
57 0FE3 1A2E DEFW 2E1AH ;00
58 0FE5 2B2D DEFM 11+-"

59 0FE7
60 0FE7 30313233 DEFM "01234567 "

227

** Z80 ASSEMBLER SB-72t11 <SB-1511 > PAGE 45 02.23.82

01 0FEB 34353(:.37
02 0FEF
03 0FEF 1820 DEFW 201BH ;TAB :::p
04 0FF1 0[102 DEFW 020DH ;CR UP
05 0FF::: 0104 DEFW 0401H ;DOWN LEFT
06 0FF5 0308 DEFW 0Bf!i:::H ;RIGHT BREAK
07 0FF7
08 0FF7 2F DEFM u;u
09 0FF8
Hl 0FF8 5E5C3F2E DEFM """ \?., 11

1 1 (1FFC 2C
12 0FFD
13 0FFD 30313233 DEFM "01234567"
14 1001 34353637
15 1005
16 1005 3839 DEFM 118911
17 1007 3A38 DEFW 3B3AH ; : ;
18 11309 2040 DEFM u_@u

19 1008 5B1E DEFW 1E5BH ; [NUL
20 100[1
21 HH3D 5D1E DEFW 1E5DH ;NUL]

22 100F 0507 DEFW 0705H ;HOME DEL
23 1011 1E1E DEFW 1E1EH
24 1013 1E1E DEFW 1E1EH
25 1015 84 KTBLS: DEFB 84H
26 1016
27 1016 7E DEFB 7EH
28 1017 7C82 DEFW 827CH
29 1019 3E3C DEFW 3C3EH
30 1018
31 HllB 5F21 DEFW 215FH
32 1010 2223 DEFW 2322H
33 101F 2425 DEFW 2524H
34 1021 2627 DEFW 2726H
35 1023
36 1023 2829 DEFW 2928H
37 1025 2A2B DEFW 282AH
38 1027 3060 DEFW 603DH
39 1029 7B1E DEFW 1E78H
40 1028
41 1028 7D1E DEFW 1E7DH
42 1020 1E1E DEFW 1E1EH
43 102F 1E1E DEFW 1E1EH
44 1031 1E1E DEFW 1E1EH
45 1033 8398 KTBLG: DEFW 9883H
46 1035 8886 DEFW 8688H
47 1037 9A9E DEFW 9E9AH
48 1039 9899 DEFW 999BH
49 1038
50 1038 8089 DEFW 8980H
51 1030 908[1 DEFW 8D90H
52 103F 8F92 DEFW 928FH
53 1041 948C DEFW 8C94H
54 1043
55 1043 8897 DEFW 9788H
56 1045 9F96 DEFW 969FH
57 1047 9C8A DEFW 8A9CH
58 1049 8795 DEFW 9587H
59 1048
60 Hl48 8590 DEFW 9D85H

228

** Z8E1 AS~;EMBLER ~~ B- 7: 131 · ·:. B- 1511 > PAGE 4 (:. €12.23. :3 2

et 1040 SESE DEFW 5E8EH
02 104F 5C81 DEFW 8 15CH
03 1051 FF91 DEFW 91FFH
04 1053
05 1053 F5 MS TOP I : PUSH AF
06 1054 CD9504 CALL M STOP
07 1057 F1 POP AF
08 1058 C9 RET
09 1059 CDDCI34 TMARK' : CALL DELl M
10 10SC C3B003 JP TMARK
11 10SF SKP H

229

** ZE:0 ASSEMBLER SB-720 1 <SB-1511> PAGE 47 02.2:::: . 82

0 1 105F DATA PART
e·-· .:. 105F
133 10C0 ORG 10C0H
134 1 ~3C~3
05 10CI3 TABDAT: ENT ;TAB DATA AR EA (16 BYTE)
136 1€1C0 05 DEFB 5
(17 10C1 OA DEFB 113
~~18 113C2 0F OEFB 15
09 10C3 14 DEFB 20
10 10C4 19 DEFB 25
1 1 1 (1(:5 lE DEFB 30
12 U:lC6 2 :3 DEFB :35
13 11Z1C7 ~.,.,

"'C• DEFB 413
14 H1C8 2 [1 DEFB 45
15 113C9 :;:2 DEFB 513
16 10CA 37 DEFB 55
1 7 10CB 3C DEFB 60
18 10CC 41 DEFB 65
19 1 0CD 46 DEFB 713
213 10CE 48 DEFB 75
21 10CF 130 DEFB 0
22 1 ~1[1(1
:·3 1 0[113 MODE: ENT
2 4 lt1D(1 12 DEFB 12H
"':• t:" ... ~· 113[11 DSPXY: ENT ;CURSOR X POSITION
26 1€1[11 00 DEFB 13
27 11302 DSPXY 1: ENT ;CURSOR y POSITION ;-,
...:..::· 1002 00 DEFB 13
29 1 (1[1::;: MANG: ENT ;CONT LINE? <2E: BYTE>
;: ~z1 10[13 01300 DEFW 13
":• 1
~· . 10[15 131300 DEFW 0
~ ·-· ,;.~ 1€1[17 01300 DEFW 0
~; 3 1 (1 [t';l 13(1(11) DEFW 0
::::4 11Z1 0 B 0000 DEFW 0
~. C'

..:· --· 1 IZ1 [I [I 0€1130 DEFW 0
36 10DF. 0000 DEFW 0
37 10E1 00€H3 DEFW 0
:~:8 113E3 0000 DEFW 0
:::9 10E5 0€1130 DEFW 0
4(1 10E7 0000 DEFW 0
41 1 ~3E 9 13(1130 DEFW 0
42 10EB 0000 DEFW 0
43 10ED 0000 DEFW 13
44 10EF FKAE: ENT ;FKEY AR.EA END ADR S
45 10EF 1412 DEFW FKEND
46 10F1 I<YBDA : ENT
47 113F 1 0€1 DEFB 0
4"' '-' 10F2 KSTD : ENT
49 10F 2 ~30 DEFB ~3

50 10F3 0000 DEFW 0
5 1 10F5 0(W0 DEFW 0
52 10F7 0000 DEFW 0
53 113F9 13000 DEFW 0
54 HlFB 0~H30 DEFW 0
""C' _,._, 10FD
5/.:. 10FD KINTF: ENT ;KEY INT FLAG
57 10FD 00 DEFB 0 .,.,..,
-' ·=· 113FE SKP H

230

** Z80 ASSEMBLER SB-7201 <SB-1511> PAGE 4"'' ·-· 02.23.82

01 1100 ORG 1100H
02 1100 BUFER: ENT
03 11013 DEFS 128 ;BUFER 408, STACK 88B
04 1180 IBUFE: ENT
05 1180 DEFS
06 1181 I BU 1: ENT
07 118 1 NAME: ENT
08 1181 OEFS 17
09 1192 IBU18: ENT
10 1192 SIZE: ENT
11 1192 DEFS 2
12 1194 IBU20: ENT
13 1194 DTADR : ENT
14 1194 DEFS 2
15 1196 IBU22: ENT
16 1196 EXAOR: ENT
17 1196 DEFS 2
18 1198 IBU24: ENT
19 1198
20 1198 p FARE: EQU 1200H
21 1200 ORG FARE
22 1200 00 OEFB 00H
23 1201 0D DEFB 0DH
24 1202 00 OEFB 0DH
25 1203 00 DEFB 00H
26 1204 eo DEFB 0DH
27 1205 00 DEFB 00H
28 1206 00 OEFB 0DH
29 1207 (3[1 DEFB 0DH
30 1208 00 OEFB 130H
31 1209 eo DEFB 0DH
32 120A 00 OEFB 0DH
33 1208 eo DEFB eOH
34 120C eo OEFB 0:JH
35 1200 eo DEFB 0DH
36 120E eo DEFB 0DH
37 120F eo DEFB 0DH
38 1210 00 DEFB 0DH
39 1211 eo DEFB 0DH
40 1212 00 OEFB 0DH
41 1213 eo DEFB 0DH
42 1214 FKEND: DEFS 140
43 12A0
44 12A0 p FAREN: EQU A0H ;FKEY BYTE SIZE
45 12A0 p FKEYN: EQU 20 ; tt OF FKEY
46 12A0
47 12A0 FKMAX: EQU FARE+FAREN
48 12A@ p SCRN: EQU D000H ;VRAM ADRS
49 12A0 END

231

** Z80 ASSEMBLER SB-72131 <SB-1511 > PAGE 49 132 .23.82

#LINE 0672 *N 0BBE .. KEY 0E89 .AMPM 13A55 .C20AT 0A2D
. CH# 0898 .CHGl OF61 .CHG2 13F73 . C~:MDT (1~: ::::9 . D I (H)05
.FLSDT 0CE2 .HL 01D0 .INICl 0A45 .MWARK 015A .OCTV 0B03
. ONTYO 0819 .PONl 0910 .PUSHR 0004 .RATIO 0BC8 .RET 0756
.SCRAD 0798 .SCRSZ 079E .SUMDT 02AE 2HEX 05B1 2HEX1 05C6
??EOL 08D2 ??EOL2 08E1 ?? INST 0860 ??KEY 0077 ·nToL 0t:C 1
?CLER 05D3 ?DINT 05D4 ?DPCT 0714 ? DSP 0641 -;;·DSP79 0620
? INST 07CA ?PNTl 0907 ?PONT 0904 ?SAVE 0D1A ?SHIFT 0747
?SWAP 0DE6 ASC 0583 ASCI 0583 AUTRT3 0CE9 AUTRT4 0CFD
AUTRH. 0D0C BELL 0A80 BLINK 13[158 BLINK2 0[15[1 BLI NK4 0D6F
8LK1 04A4 8LK3 04Al BLK4 049E 8RK 0531 8~KEY 0527
8UFER 1100 CANRVS 0FA8 CH3979 0631 CH 408t1 07A2 C ANGE 0[1[1[1
CHR40 098F CHR80 0958 CHX0 0960 CHX2 0979 CKRNG 0620
CKRNGL 061C CKSl 03E8 CKS2 03F6 CKS3 03FA CKSUM 03E2
CLATA8 0DCA CLRS 07FD CLRTAB 0DC0 COMES 05D9 CRDIS 0ED5
CURSD 07DA CURSL 07E5 CURSR 07CD CURSR2 07[15 CURSU 07F0
DlM 04CA DATA 0EE5 DATA2 0EF4 DEL 082A OELIZ! 0839
DELl 084C DELl M 04DC DEL6 04[16 DELLN 0811 DELLN2 0815
OELSUB 0818 OI 0E0E 012 0E1B DI4 0E35 DISPM 0C49
DLY 0520 DLYR 0519 DSCL 0948 DSCL1 092B DSMAG 08F6
DSP0 0651 DSP2 066C DSP3. 0678 DSPNAM 06A4 OSPRED 091A
DSPTAB 067E DSPW 0920 DSPWRR 0925 DSPXY 10[11 DSPXYl 113[12
DTADR 1194 DUMP 011D DUMP0 0126 DUMP! 012B DWLOI ' 093E
DWLDIR 093A DWLDRN 0943 EDGE 0405 EDGE! 0400 ESET 0542
EXADR 1196 FARE 1200 FAREN 00A0 FFWD 0482 n~AE 10EF
FKEND 1214 FKEYN 0014 FKMAX 12A0 FLASW 0CDE FNCOM €11 A4
FOUMES 020D FR 04A8 FUNC 0C62 FUNC2 0C84 G·AP 03:36
GAPl 0396 GAP2 039E GAP3 03A4 GATES I 0017 GETCRT 0C7C
GETKY 0610 GETL 08E5 GETL0 013ED GETUl0 0cea GETL01 0C0A
GETL02 0C1D GETLI33 0C2:::: GETL04 13C2E GETLBR 00F0 GETLR 0C79
GLOP2 0CA7 GO OUT 013AE GRAPH 0FCC GRPHO 13EC7 GSHFO 0E08
GT2 0C4E GT5 0C6E GTBRK 0C73 GTCR 0C7E GTCR2 0CAt1
HEX 058D HEX! 059F HIGHSC 0488 Hll 05AF HLHEX 05A2
HOCT 083[1 HOME 0808 IBUl 1181 I8U18 1192 IBU20 1194
IBU22 1196 IBU24 1198 IBUFE 1180 INSOFF 0867 INST 0864
INSTl 0882 INST2 08AC IOT8L 0049 JUMP 0217 KADD 0F69
KBSET 0536 KOATW 0013 KOIN 0F01 KEY 0E71 KEY KEY 06EO
KEY REP 0027 KEYRP2 004B KFIN0 0C51 KFINA 0ED2 KFINB 0F92
KIN 0544 KINl 0547 KIN2 0190 KINP 0550 KINT 0E1F
KINTF 10FD KINTON 0E47 KNUM8S 08E3 KSML 0F6C KS TD 10F2
KTBL 0FD7 KT8LG 1033 KTBLS 1015 KYBDA 10Fl KYCTRL 0F95
KYTAB 0F9F LAMODE 0FB1 LA STD 0BE4 LDINF 0257 LENG 08E8
LETNL 0764 LETNL2 0768 LMOD BECB LMONLY 0F5A LOAMES 01F9
LONG 04FE MHBL 0858 MAGA 08FB MANG 1003 MCLECT 00F9
MELDY 0AA3 MEN AME 0151 MLDl BAA9 MLD2 0A09 ML03 0AE1
M LOAD 0149 MLOVE 01AF MNAM1 0172 MODE 10013 MODE ' 0FA7
MONIT 0000 MOT1 042A MOT2 0437 MOTOR 0416 MOTW 04~:c
MOTWG 0456 MP LAY 0499 MR 00FF MRUN 0CCE MSAVE 014C
MSG 0685 MSGX 06AF MSGXl 06B9 MS TOP 0495 MSTOP' 1053
MTBL 0843 MVERY 01E9 MVRFY 0147 NAME 11 81 NAMECK 01D1
NL 0757 NLMSG 06AC NLPHLS 0634 NOKKEY 0705 OKMES 0214
ONPl 0AE8 ONP2 0AF5 ONP3 OB0C ONPU 0AE5 OPEN 0448
OPTBL 0873 OUTRT 0FAD PLAY 045A POPR 0E08 POPR2 0E09
F'OPXY 0818 PRNT 063C PRNTS 063A PRNTT 0695 PRHiL 0568
PRTHLS 0637 PRTHX 0560 PUSHKI 0E37 PUSHR 00Fl PUSHR2 0DFD
RBYl 0363 RBY2 (1378 RBY3 0~::::4 R8YTE 035F RDl 0269
RD2 0274 RDOAT 0270 ROINF 025F REGIST 09A5 REPTCT 0000
RETH8 132C0 RETHBl (13AD ROT 0EF8 ROTE 0EFE RSHFO 13EC4
RTAPl 02D0 RTAP2 02E8 RTAP3 03138 RTAPE 02CC RVS 0FBA
RVSO 0EDE RYTHM 0B8C RYTHM1 OBAl RYTHM2 08BC RYTHM3 0BAD

232

** Z80 ASSEMBLER SB-7201 <SB-1511 > PAGE 50 02.23.82

RYTHMB 0892 SAME 05C8 SAVE GO 0190 SAVE XV 07E1 SCAN 0E65
SCRENO 000C SCRN 0000 SCROL 0770 SCROST 0008 SCRSET 06C3
SEL00 0020 SERSP 046A SETMES 05E0 SETT AB 0081 SHORT 04E2
SIZE 1192 SLOW 000F SMALL BFC3 SMALLO 0ECE SMSHFO BEDB
SOUT 0A87 SOUT1 0A89 SOUT2 0A99 SSET 053F SSP1 0471
SSP2 0480 ST 0081 STAB 0D02 START 0038 START2 0069
STPRET 027A SUMMES 0600 SWEP 0E82 SWRK 0015 TAB1 0682
TABDAT 1BC0 TABLE1 0870 TAPER 030E TDPCT 0727 TEMPW 0016
TENKEY 0F70 TENTBL 0095 TIMRO 0A16 TIMST 09CA TITMES 0E4F
TM1 0389 TM2 03BA TM3 03CC TM4 03E0 TMARK 0380
TMARK' 1059 TMR1 0A66 TMS1 09E4 TMUP 0A73 TMX 0A40
TMX 1 0A60 TMX2 0A54 TSPE 04C2 TVF1 031[1 TVF2 0328
TVRFY 0319 TWO 0F56 VERFY 0286 VERMES 0202 WBY1 0354
WBYTE 034E WPRMES 05F2 WROAT 024E WR I 1 0227 WRI2 023E
WRIMES 05E9 WRINF 0210 WTAP1 029F WTAP2 02A8 WTAP4 02C3
WTAPE 0298 XTEMF' 09BE Z801<T 051C

233

 SHARP CORPORATION
Tl NSE0054PAZZ
Printed in Japan

(/)
-<
(/)
-4 m
3:: .,
::x:J
0
G)
::x:J
)>
3::
3::
)>
z c
)>
r-

(/J
I
)>
N
"0

	Folie 1
	Folie 2
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92
	Folie 93
	Folie 94
	Folie 95
	Folie 96
	Folie 97
	Folie 98
	Folie 99
	Folie 100
	Folie 101
	Folie 102
	Folie 103
	Folie 104
	Folie 105
	Folie 106
	Folie 107
	Folie 108
	Folie 109
	Folie 110
	Folie 111
	Folie 112
	Folie 113
	Folie 114
	Folie 115
	Folie 116
	Folie 117
	Folie 118
	Folie 119
	Folie 120
	Folie 121
	Folie 122
	Folie 123
	Folie 124
	Folie 125
	Folie 126
	Folie 127
	Folie 128
	Folie 129
	Folie 130
	Folie 131
	Folie 132
	Folie 133
	Folie 134
	Folie 135
	Folie 136
	Folie 137
	Folie 138
	Folie 139
	Folie 140
	Folie 141
	Folie 142
	Folie 143
	Folie 144
	Folie 145
	Folie 146
	Folie 147
	Folie 148
	Folie 149
	Folie 150
	Folie 151
	Folie 152
	Folie 153
	Folie 154
	Folie 155
	Folie 156
	Folie 157
	Folie 158
	Folie 159
	Folie 160
	Folie 161
	Folie 162
	Folie 163
	Folie 164
	Folie 165
	Folie 166
	Folie 167
	Folie 168
	Folie 169
	Folie 170
	Folie 171
	Folie 172
	Folie 173
	Folie 174
	Folie 175
	Folie 176
	Folie 177
	Folie 178
	Folie 179
	Folie 180
	Folie 181
	Folie 182
	Folie 183
	Folie 184
	Folie 185
	Folie 186
	Folie 187
	Folie 188
	Folie 189
	Folie 190
	Folie 191
	Folie 192
	Folie 193
	Folie 194
	Folie 195
	Folie 196
	Folie 197
	Folie 198
	Folie 199
	Folie 200
	Folie 201
	Folie 202
	Folie 203
	Folie 204
	Folie 205
	Folie 206
	Folie 207
	Folie 208
	Folie 209
	Folie 210
	Folie 211
	Folie 212
	Folie 213
	Folie 214
	Folie 215
	Folie 216
	Folie 217
	Folie 218
	Folie 219
	Folie 220
	Folie 221
	Folie 222
	Folie 223
	Folie 224
	Folie 225
	Folie 226
	Folie 227
	Folie 228
	Folie 229
	Folie 230
	Folie 231
	Folie 232
	Folie 233
	Folie 234
	Folie 235
	Folie 236
	Folie 237
	Folie 238
	Folie 239
	Folie 240
	Folie 241
	Folie 242
	Folie 243
	Folie 244
	Folie 245
	Folie 246
	Folie 247

