
Personal Computer

111Z·OO([JU
BASIC LANGUAGE

MANUAL

BASIC
EXP
IF THEN
GRAPH
IMAGE
GO SUB
CHARACTER $

•' '

SHARP

SHARP

Personal Computer

MZ-808

BASIC Language Manual

january 1981

080221-150281

Printed in Japan ©SHARP CORPORATION

NOTICE

This manual is applicable to the SB-5510 BASIC interpreter used with the SHARP

MZ-80B Personal Computer. The MZ-80B general-purpose personal computer is supported

by system software which is filed in software packs (cassette tapes or diskettes).

All system software is subject to revision without prior notice, therefore, you are

requested to pay special attention to file version numbers.

This manual has been carefully prepared and checked for completeness, accuracy and

clarity. However, in the event that you should notice any errors or ambiguities, please feel

free to contact your local Sharp representative for clarification.

All system software packs provided for the MZ-80B are original products, and all rights

are reserved. No portion of any system software pack may be copied without approval of

the Sharp Corporation.

ii

Introduction

This Book describes the language specifications and grammar of the standard system software

BASIC interpreter SB-5 510. BASIC (an abbreviation for "Beginner's All-purpose Symbolic Instruction

Code") was developed as an all purpose language to provide beginners with a means of easily program

ming computers to solve a diverse range of problems. Its simplicity and versatility make it well suited

to personal programming applications.

BASIC SB-5 510 is an extended BASIC interpreter which enables the MZ-80B computer to be used

to its fullest capacity. Its sophisticated algorithms and output display processes, together with its high

speed processing capability, make it well suited not only for beginners, but also for a variety of high

level professional applications.

Language specifications for disk-based BASICs, that is, DISK BASIC, double-precision DISK

BASIC, and BASIC compiler, are contained in their respective software manuals.

iii

Contents

Notice ... ii

Introduction ... iii

Chapter 1 Outline BASIC SB-5510 1

1.1 Activating the BASIC interpreter SB-5 510 . 2

1.2 . Operating modes . 3

1.2.1 Operation at command level 3

1.2.2 Operation at statement level 4

1.3 Architecture of a BASIC program . 5

1.3.1 Line ... 5

1.3.2 Statements .. 5

1.4 Constituent element of a sentence . 6

1.4.1 Reserved word 6

1.4.2 Other constituent elements 7

1.4.3 Constant . 7

1.4.4 Variable 8

1.4.5 Array 9

1.4.6 Expression . 10

1.4. 7 Separator . 11

1.5 Screen editor . 12

1.6 Initialization . 14

Chapter 2 BASIC SB-5510 Commands 15

2.1 Input I output commands 16

2.1.1 LOAD16

2.1.2 SAVE ... 17

2.1.3 VERIFY 17

2.2 Text edition commands . 18

2.2.1 AUTO 18

2.2.2 LIST . 18

2.2.3 LIST I p ... 19

2.2.4 NEW . 19

2.3 Execution control commands . 20

iv

2.3.1 RUN .. 20

2.3.2 CONT ... 20

2.3.3 MON ... 21

2.3.4 BOOT ... 21

2.4 Special function keys list command . 22

2.4.1 KLIST .. 22

Chapter 3 BASIC SB-5510 Statements 23

3.1 Assignment statement .. 24

3.1.1 LET : 24

3.2 Input I output statements 25

3.2.1 PRINT .. 25

3.2.2 INPUT .. 28

3.2.3 GET .. 29

3.2.4 READ~ DATA 29

3.2.5 RESTORE ... 30

3.3 Loop statement ... 31

3.3.1 FOR~ NEXT .. 31

3.4 Branch statements ... 33

3.4.1 GOTO .. 33

3.4.2 GOSUB ~RETURN 33

3.4.3 IF~ THEN .. 34

3.4.4 IF~ GOTO .. 36

3.4.5 IF ~ GOSUB 36

3.4.6 ON ~ GOTO ... 37

3.4.7 ON~ GOSUB 37

3.5 Definition statements . 38

3.5.1 DIM .. 38

3.5.2 DEF FN ... 39

3.5.3 DEF KEY ... 40

3.6 Remark statement and control statements 41

3.6.1 REM .. 41

3.6.2 STOP 42

3.6.3 END 42

3.6.4 CLR 42

3.6.5 CURSOR .. 43

3.6.6 CSRH 43

v

3.6.7 CSRV 43

3.6.8 CONSOLE 44

3.6.9 CHANGE 46

3.6.10 REW 46

3.6.11 FAST 46

3.6.12 SIZE 47

3.6.13 Tl$ 47

3.7 Music control statements 48

3.7.1 MUSIC ; ... 48

3.7.2 TEMPO 50

3.8 Graphic control statements . 51

3.8.1 GRAPH ... 51

3.8.2 SET 52

3.8.3 RESET 53

3.8.4 LINE ... 54

3.8.5 BLINE 54

3.8.6 POSITION 55

3.8.7 PATTERN 56

3.8.8 POINT .. 58

3.8 .9 POSH 58

3.8.10 POSY 58

3.9 Data file input I output statements 59

3.9.1 WOPEN IT 59

3.9.2 PRINT IT 59

3.9.3 CLOSE IT 60

3.9.4 ROPEN IT 60

3.9.5 INPUT IT 60

3.10 Machine language control statements 62

3.1 0.1 LIMIT 62

3.10.2 POKE 62

3.10.3 PEEK 63

3.10.4 USR 63

3.11 Printer control statements 64

3.11 .1 PRINT I P . 64

3.11.2 IMAGE I P 65

3.11.3 COPY I P .. 66

3.11.4 PAGE I P .. 66

3.12 110 input I output statements 67

vi

3.12.1 INP 67

3.12.2 OUT 67

Chapter 4 BASIC SB-5510 Functions 69

4.1 Arithmetic functions . 70

4.1.1 ABS 70

4.1.2 INT 70

4.1.3 SGN 70

4.1.4 SQR 71

4.1.5 SIN 71

4.1.6 cos 72

4.1.7 TAN 72

4.1.8 ATN 72

4.1.9 EXP 73

4.1.10 LOG 73

4.1.11 LN 73

4.1.12 RND 74

4.2 String control functions 75

4.2.1 LEFT$ 75

4.2.2 MID$ 75

4.2 .3 RIGHT $ 76

4.2.4 SPACE$ 76

4.2.5 STRING $ 77

4.2.6 CHR $ ·. 77

4 .2.7 ASC 78

4.2.8 STR $ 78

4.2.9 VAL . 79

4.2.1 0 LEN 79

4.2.11 CHARACTER $ 80

4.3 Tabulation function . 81

4.3.1 TAB 81

APPENDIX 83

A.l ASCII Code Table . 84

A.2 Error Message Table . 86

A.3 Memory Map . 88

A.4 Trigonometric and Hyperbolic Functions . 88

vii

Chapter 1

Outline BASIC SB-5510

This chapter outlines programming procedures and use of the BASIC interpreter SB-5570.

The chapter begins with a description of the procedure for activating BASIC SB-5570, then dis

cusses operating modes, the program architecture and constituents and the display screen in turn.

Detailed explanations of all commands, statements and functions provided with BASIC SB-5570

are contained in chapters 2, 3 and 4.

1

2

1.1 Activating the BASIC interpreter SB-5510

BASIC SB-5 510 is stored (along with MONITOR SB-151 0) on a cassette tape file, and must under

go initial program loading whenever it is to be used. Loading is easily achieved. Simply place the

BASIC cassette file in the cassette tape deck and turn on the power.

The MZ-80B's built-in IPL (Initial Program Loader) automatically starts (photo at left of FIGURE

1.1) loading both the BASIC interpreter SB-5 510 and the MONITOR SB-151 0. Upon completion of

loading, the MZ-80B displays the message illustrated in the photo at right and the BASIC interpreter

begins to operate.

The message "Ready" indicates that system control is at the BASIC command level and that the

system is ready to accept any command.

(Please refer to the chapter on initial system program loading in the Owner's Manual for further infor

mation.)

FIGURE 1.1

3

1.2 Operating modes

The system software, BASIC interpreter operates at either the command level or the statement

level. At the command level, the BASIC interpreter executes BASIC commands and edits program

texts. At the statement level, the BASIC interpreter interprets and executes BASIC statements of the

program.

1.2.1 Operation at Command Level

When system control is at the BASIC command level, the MZ-80B can operate in either the direct

or indirect mode. The direct mode allows you to manipulate the system just as you would operate an

electronic calculator, using direct BASIC execution commands, such as RUN, LIST, and SAVE, or

statements which serve the purpose of direct execution commands.

For example, the system may be used as illustrated at FIGURE 1.2 to obtain an immediate answer

to an arithmetic expression using computation/display commands together with the PRINT statement.

FIGURE 1.2

This mode also enables you to interrupt program execution with the STOP statement or break

operation to check the value of variables used and substitute other values, thus providing a means of

tracing programming errors.

The indirect mode is used when creating and editing BASIC programs. A BASIC program, as dis

cussed in the following paragraphs, is a group of numbered lines of BASIC statements and functions

which describe the algorithm used in processing to obtain a specific result. The cursor which appears

on the display screen in the indirect mode allows you to edit BASIC programs right on the screen. (See

Section 1.5.)

4

1.2.2 Operation at Statement Level

The operating level of the BASIC interpreter is set to the statement level with a RUN command.

The BASIC interpreter interprets each statement in the program text and performs data processing

according to the statement. Communication between the operator and the system is performed as

follows.

For example, when an INPUT statement is executed, the BASIC interpreter waits for the operator

to input required data from the keyboard. When a PRINT statement is executed, the BASIC inter

preter outputs the internal data to the console (or display screen).

After a program is completed, the operating level automatically returns to the command level. To

forcibly return the operating level from the statement level to the command level, press the [BREAK]

key to stop program execution.

Machine language programs can be executed with the MZ-80B. In this case, the BASIC interpreter

does not control the system and the system operates at the CPU level. To stop CPU level execution,

press the RESET switch (on the rear panel of the main unit) to return the system operating level to

the MONITOR command level.

5

1.3 Architecture of a BASIC program

A BASIC program is composed of a number of sequential lines of statements which control various

operations, such as program execution and procedures.

With the exception of the various loop, transfer and branch operations, BASIC programs are

executed in the order in which the lines of statements and commands are arranged in the program.

Further, BASIC programs do not require any initial format specification or declarative statements, and

program execution may be begun on any program line.

1.3.1 Line

Each program line consists of a line number and a sentence, separated from the following line by

a carriage return code.

The entry of one line can be accomplished in the indirect mode by pressing the [CR (or

[ENT]) key.

Line number

A line number is placed at the head of each program line to identify it. This number is also refer

red to as a definition line number- the number defining a line-to distinguish it from a reference line

number, which is used for referencing from other lines.

The definition line number for each line must be an integer from 1 through 65535. Line numbers

do not need to be assigned consecutively; in fact, it is advisable to assign line numbers in increments

of ten to allow for insertion of additional lines during program editing.

The AUTO command serves to produce definition line numbers at fixed intervals.

If the same definition line number is input more than once, only the last entry will be valid.

Sentence

A sentence is a sequence of one or more statements, preceded by a definition line number and con

cluded with a carriage return code. Each sentence (including the definition line number and the

carriage return code) is composed of up to 80 characters.

When a sentence is to include two or more statements, each must be separated by a semicolon(;).

1.3.2 Statements

BASIC statements are divided into two general classes: executable statements and nonexecutable

statements.

An executable statement describes a program operation, such as computation, substitution, com

parison or branching. A nonexecutable statement establishes information necessary for programming

or controls the program pointer: examples include array declarator statements, data statements, defini

tive statements and comment statements.

An executable statement, when used in the direct mode, is sometimes referred to as a direct mode

execution statement.

6

1:4 Constituent element of a sentence

A BASIC sentence is composed of reserved words-also called key words-which include state

ments, built-in functions and special signs (and also commands), and other elements, such as constants,

variables, arrays and expressions.

1.4.1 Reserved Word

All reserved words have special meanings which are defined by the rules of BASIC, and cannot be

altered. No reserved word specified in BASIC may be defined as variable names by programmer.

Table 1.1 shows all reserved words of the BASIC interpreter SB-5510.

[A] ABS INP PRINT/T
ASC INPUT [R] READ
ATN INPUT/T REM
AUTO INT RESET

[ill BLINE [K] KLIST RESTORE
BOOT [I] LEFT$ RETURN

[g CHANGE LEN REW
CHARACTER$ LET RIGHT$
CHR$ LIMIT RND
CLOSE/T LINE ROPEN/T
CLR LIST RUN
CONSOLE LIST/P ~ SAVE
CONT LN SET
COPY/P LOAD SGN
cos LOG SIN
CSRH [MJ MID$ SIZE
CSRV MON SPACE$
CURSOR MUSIC SQR

[Q] DATA llil NEW STEP
DEF FN NEXT STOP
DEF KEY [Q] ON STR$
DIM OUT STRING$

[]] END [f] PAGE/P ITJ TAB
EXP PATTERN TAN

[E) FAST PEEK TEMPO
FOR POINT THEN

llil GET POKE Tl$
GOSUB POSH TO
GOTO POSITION [IT] USR
GRAPH POSY [YJ VAL

[] IF PRINT VERIFY
IMAGE/P PRINT/P [Nl WOPEN/T

TABLE 1.1 All reserved words of the BASIC interpreter SB-5510

1.4.2 Other constituent elements

Other constituent elements of a sentence are subdivided as follows.

numeric constant, string constant, system constant

numeric variable, string variable, system variable

7

Constant

Variable

Array one-dimensional numeric array, two-dimensional numeric array, one-dimensional

string array, two-dimensional string array

Expression

Separator

arithmetic expression, string connective expression, relational expression, logical

expression

" "

Constants, variables, array elements, arithmetic expressions and string connective expressions are

program data elements, and are divided (depending upon type) into numeric data and string data.

1.4.3 Constant

The term "constant" refers to a data value that remains unchanged during program execution.

Numeric constant

A numeric constant is a decimal number represented by a combination of a sign (+ or -), numerals

(0 through 9), and/or a decimal point (.);or, in scientific notation, by a combination of a sign(+ or

-), mantissa, and exponent (indicated by "E"). Within the MZ-80B, such numbers are expressed with

the floating decimal point system.

BASIC SB-5 510 can represent numeric data of up to eight significant digits and numbers in scien

tific notation in the range from 10-19 through 1019 .

For positive numbers, the"+" sign may be omitted.

With the LIMIT, POKE, PEEK and USR statements, memory addresses may be specified directly

with hexadecimal numbers. Such addresses are indicated by a four-digit hexadecimal number preceded

by a dollar mark($). Example: LIMIT $BOOO

Correct representation: 5215E-8 = 0.00005215

Incorrect representation: 15,300 - commas may not be used.

1234567890 -the input number limit of eight digits is exceeded.

300E+91 -the exponent limit is exceeded.

8

String constant

A string constant is a set of characters enclosed in quotation mark (" ") which is input from the

keyboard. Quotation marks are not required with DATA statements.

The maximum number of characters in a string constant depends on the effective line length, but

the total maximum number of characters of string data which are permitted per BASIC statement is

255.

A string constant may represent characters in the PRINT statement, data for musical notes in the

MUSIC statement or bit data for graphic patterns in the PATTERN or IMAGE/P statements. Thus, the

type of data represented by the constant depends on the statement with which is used.

System constant

A system constant is a value which is built into the BASIC interpreter; for example, the ratio

of a circle's circumference to its diameter (indicated by the character "rr") has a value equal to

3.1415927.

Example ofuse : The circumference of a circle with a radius of 10 can be computed by the ex

pression:

2*rr*l0

1.4.4 Variable

The term "variable" refers to an element whose value may be arbitrarily changed during program

execution without any change in data type. Each variable is identified by a name, and its initial value

is 0 (zero) or null.

Numeric variable

Only numeric data can be assigned to numeric variables.

The name of each variable may be composed of any number of characters, but only the first two

characters serve to identify the variable. The first character must be a capital letter (A thru Z), but the

second may be any letter, numeral or symbol. No reserved word employed in BASIC may be used,

however. The term "reserved word" covers all BASIC commands, statements, functions and operators,

as well as special signs such as @ or#.

The numeric variable remains zero until it is loaded with numeric data.

9

Correct name ABC and ABO are handled as the same variable. (First two characters are the

same.)

Incorrect names: DATA 3- Reserved word DATA may not be used.

C@- Special sign "@" may not be used.

String variable

A string variable may be loaded only with string data, and its name is formed in the same manner

as the name of a numeric variable, except that it is followed by a dollar sign($).

Each string variable may contain a maximum of 255 characters of string data; it includes only null

characters until loaded with string data.

Correct names NAME$1 and NAME$2 are regarded as the same string variable (first two char

acters are the same).

Incorrect names : music$ - The name does not begin with capital letter.

System variable

System variables serve to indicate values that change during BASIC operation, and are classified in

two types: numeric variable (e.g. SIZE to indicate the remained free memory size) and string variable

(e.g. TI$ to indicate the reading of the built-in 24-hour based clock).

1.4.5 Array

An array is an arrangement of variables of the same type, and is called a one-dimensional array (or

list) when given one subscript, and a two-dimensional array (or table) when given two subscripts.

Details on definition of numeric and string arrays will be found in Paragraph 3.5 .1.

10

1.4.6 Expression

Arithmetic expression

An arithmetic expression, a means of expressing an arithmetic operation, is composed of operators

and arithmetic element(s).

The table below shows the arithmetic operators arranged in order of operational priority.

Arithmetic

operator Operation Example

Exponential calculation x -y

Minus sign -X

* , I Multiplication, division X*Y, X/Y

+-, Addition, subtraction X+Y,X - Y

Exponential calculation takes priority over other operations, but any group of operatior.~ enclosed

in parentheses has first priority. There is no limit on the number of levels of parentheses which n_ay be

used.

When an arithmetic expression includes operations of identical priority (multiplication and divi

sion or addition and subtraction), they are performed in sequence from left to right.

For successive exponential calculations, however, exponents on the right take priority over ones

on the left.

Example: BASIC representation of arithmetic expressions

Arithmetic expression BASIC equivalent

c e
C/(A +B) - E/D

a+b d

sin2 x + 1 SIN(X) - 2 + 1

String connective expression

String connective expressions are used to combine two or more sets of string data into a single set.

Example: "ABC"+ "DEF" --makes "ABCDEF"

"DEF" +"ABC" -- makes "DEFABC"

Relational expression

The term "relational expression" refers to the combination of two sets of numeric or string data

by a relational operator.

This expression is used in the IF statement. For details, see Paragraph 3.4.3.

11

Logical expression

A logical expression expresses the Boolean sum or product of true or false values- 1 or 0 (zero) -

given by a relational expression, and is used in the IF statement.

1.4.7 Separator

A comma serves as a separator to subdivide a statement into its individual elements.

Example: DATA 3.5, 4.66, DAT 1

ON A GOTO 100, 200, 300

12

1.5 Screen editor

The screen editor of BASIC works while you are writing or editing programs in the indirect mode,

allowing fast and easy editing of program lines appearing on the screen by moving the cursor.

BASIC programs are stored in the BASIC text area by numbered line; as mentioned previously,

lines are not stored until the [CR] key or the [ENT J key is pressed. Accordingly, the [CR J or

[ENT] key must also be pressed when lines of the program are changed through cursor operation.

Cursor control

When entering a new program, each line number and sentence are entered in sequence and the

cursor advances one space for each character entered.

When programs are being modified, the cursor is brought to the line which is to be revised before

making the modification. It is not necessary to reinput the entire line. The cursor can be moved up,

down, left or right by manipulating the four yellow keys at the top of the keyboard. The [H~'i:e] key

may be used to return the cursor to the upper left-hand corner of the display screen.

Continuous movement of the cursor may be obtained by pressing one of the four yellow keys

together with the [SHIFT] key.

Cursor control yellow keys lcLRl
~ key: Cursor home and clear

(iNST1 k d 1 t" d . . ~ ey: e e IOn an msertwn

FIGURE 1.3

13

Modification of lines may involve not only replacing certain characters with others, but insertion

or deletion of characters as well.

To insert characters, first press and hold the(SHIFT)key, then press the (1~m key once for each

character to be inserted. This will open space ahead of the position where the cursor is located.

To delete characters, press the [1~:z) key once for each character to be delet'ed. This will delete

characters located ahead of the cursor.

Deletion of an entire line may be accomplished by entering only the line number and pressing the

CR] orIENT] key. BASIC programs are not destroyed during program execution, nor by error

detection or BREAK operation occurring during execution. Thus, debugging may be accomplished by

repeatedly executing the program to locate errors, which may then be corrected through the screen

editor. This conversational debugging/editing capability is one of the outstanding features of the

BASIC interpreter SB-5 510.

Setting tabs

The (TAB/ key to the left of the space bar moves the cursor according to tabulation setting data

stored in the area from $1141 to $114F. This function is convenient for inputting data entries in a

formatted table displayed on the CRT screen.

Immediately after the BASIC interpreter SB-5 510 has been activated, tabs are automatically set in

the 1Oth, 20th and 30th character positions. For example, when the cursor is in the 13th character

position and the TAB key is pressed, the cursor is moved to the 20th character position (i.e., the to

first tab to the right).

Set tabs with the following procedures.

Set the first position in $1141. For example, when the first tab position is to be set in the 15th

character position, execute the following statement.

POKE $1141, 15

The second tab position is to be set in $1142. For example, when the second tab position is to be

set in the 23rd character position, execute.

POKE $1142, 23

To finish setting tabs, store the end data, 255, in the location just after that where the last tab

position is stored. For example , execute the following statement.

POKE $1143, 255

Tab setting can be performed using theM command supported by the MONITOR SB~1510.

14

1.6 Initialization

When the BASIC interpreter SB-5 510 is activated by the IPL, system variables and default values

are initialized as follows :

• Keyboard

1) Operation mode : normal

2) Lower case letters are entered with the [SHIFT) key pressed.

3) All special function keys are undefined.

• Display

1) Character display mode : normal

2) Character size : 40 characters/line

3) Character display scrolling area : maximum (line 0 through line 24)

4) Graphic display input mode : graphic area 1 (graphic area 1 cleared)

Graphic display output mode :

Position pointer :

• Array

1) No arrays are declared.

• Clock

both graphic areas off

POSH= 0, POSY= 0

1) The built-in clock is started with Tl$ set to "000000".

• Music function

1) Tempo: 4 (medium tempo : moderato)

2) Duration : 5 (quarter note : j)

Chapter 2

BASIC SB-5510 Commands

This chapter describes all BASIC SB-5570 commands. All commands can be used only in the direct

mode.

Command format.

Commands must be coded according to the following rules.

• Small/etters and reverse characters cannot be used for any commands.

• Operands which must be specified by the programmer are indicated in italics.

• Items in brackets "() "may be omitted or repeated any number of times.

• Separators (commas, semicolons, etc.) must be correctly placed in the specified positions.

15

16

2.1 Input/output commands

2.1.1 LOAD

Format

Function

Description

LOAD (file name)

This command automatically loads the computer with a BASIC text or machine

language program stored in a cassette tape file.

If file name of the file to be loaded is specified, the MZ-80B system locates the

file; if file name is not entered, the machine will be loaded with the first BASIC

text file or machine-language program which the system encounters.

When the computer is loaded, it clears the current BASIC text area before accept

ing the BASIC text; when a machine language program is loaded, the BASIC text

area is not cleared since the LIMIT statement is used to establish a machine lan

guage program area behind the BASIC text area.

FIGURE 2.1

2.1.2 SAVE

Format

Function

Description

2.1.3 VERIFY

Format

Function

Description

17

SAVE (file name)

This command automatically saves the program stored in the BASIC text area on

cassette tape.

file name is used to assign a name to the BASIC text file saved, so a suitable name

must be given to each file. Each file name is composed of a string of up to 16

characters. If no file name is specified, the BASIC program file will have no name

and later identification will be difficult.

VERIFY (file name)

This command automatically compares the program contained in the BASIC text

area with its equivalent text (file name: "file name") in the cassette tape file.

If the program and tape file coincide, "OK" will appear on the MZ-80B display

screen; otherwise, "ERROR" is displayed as follows.

FIGURE 2.2

When (file name) of a target file is specified, the MZ-80B system searches for the

file and compares it with the program to be verified if it is located; if (file name)

is not specified, the system compares the program with the first BASIC text file

which it encounters.

18

2.2 Text edition commands

2.2.1 AUTO

Format

Function

Description

Example

2.2.2 LIST

Format

Function

Description

Example

AUTO <ts, n >

This command automatically generates definition line numbers when a program is

being entered in the indirect mode.

Supplying the system with this command produces definition line numbers in

specified increments each time the I CR) orIENT) key is pressed, so the pro

grammer needs only to input sentences of program text.

(Is) indicates the beginning line number, and (n) indicates the increment; the

default value of both is 10.

The AUTO command is terminated when the I BREAK] key is pressed.

AUTO 200, 20 This generates definition line numbers 200, 220, 240

AUTO This generates definition line numbers 10, 20, 30

LIST Us - le >

This command causes all or some of the program lines contained in the BASIC

text area to be listed (displayed) on the computer screen.

To list the entire program, enter only the LIST command.

To list part of it, specify the starting line number (Is>, the ending line number

(le >or both.

To stop program listing, press the space bar.

LIST

LIST 100

This lists the entire program.

This lists line 100 only.

LIST 200- This lists line 200 and succeeding lines.

LIST -500 This lists lines 1 through 500.

LIST 200-500 This list lines 200 through 500.

2.2.3 LIST/P

Format

Function

Description

Errors

2.2.4 NEW

Format

Function

Description

19

LIST /P Us - le)

This command causes all or some of the program lines contained in the BASIC

text area to be listed on the printer.

The MZ-80P5 80-digit line printer must be connected in order to use this com

mand.

The list range for this command is specified in the same manner as with the LIST

command.

Error 65 Either the printer is OFF state or disconnected

Error 66 Mechanical trouble with the printer

Error 67 Paper has run out of the printer

NEW

This command clears the program contained in the BASIC text area and resets all

variables.

This command puts the system in the state it was in after initial program loading,

making the system ready to accept a new program.

20

2.3 Execution control commands

2.3.1 RUN

Format

Function

Description

2.3.2 CONT

Format

Function

Description

Note

RUN Us>

This command executes the program stored in BASIC text area.

Program execution may be started at any desired line by specifying the line num

ber (Is) in the command. In such cases, the values of variables assigned and the

contents of array elements are maintained just as when a GOTO statement is

executed to jump to another line during program execution.

If no line number is specified, program execution starts at the line with the small

est line number. In this case, all variables are reset and the array declaration is

cancelled before execution begins.

CONT

This command serves to resume execution of program which has been interrupted

by pressing the [BREAK) key, or by a STOP statement.

This command is usually used during program debugging to continue execution

interrupted (by a STOP statement or the [BREAK) key), to check an intermediate

result or to change variable data in the direct mode.

To restart program execution at a line other than that at which execution was

interrupted, use RUN (line number>, or GOTO (line number>.

When any program editing is carried out in the indirect mode during a pause in

program execution, this command is not valid.

2.3.3 MON

Format

Function

Description

2.3.4 BOOT

Format

Function

Description

21

MON

This command causes the system to leave the BASIC command level and await

input of a command at the MONITOR SB-151 0 level.

As is indicated by the memory map (page 88), the system operates at either the

BASIC or MONITOR system level. This command causes execution to jump from

the BASIC to the MONITOR level.

The Monitor commands are M, D, J, S, V and L. For details regarding use of each

Monitor command and return operation from the Monitor level to the BASIC

interpreter level, refer to the MONITOR SB-151 0 Reference Manual.

BOOT

This command activates the MZ-80B System IPL (Initial Program Loader).

IPL loads the system program from cassette tape or diskette into the memory.

The BASIC interpreter, the monitor program and/or the user program which are

currently stored in the memory area in which the system program is to be loaded

are erased.

Executing a BOOT command results in the same operation as results from turning

the power switch of the MZ-80B ON or pressing the IPL reset button.

22

2.4 Special function keys list command

2.4.1 KLIST

Format

Function

KLIST

This command displays a complete list of string definitions for special function

keys, thereby enabling you to determine howindividual special function keys are

defined.

FIGURE 2.3

Chapter 3

BASIC SB-5510 Statements

This chapter describes all BASIC SB-55 7 0 statements and system variables.

Statement format.

Statements must be coded according to the following rules.

• Small letters and reverse characters cannot be used for any statements.

• Operands which must be specified by the programmer are indicated in italics.

• Items in brackets "() "may be omitted or repeated any number of times.

• Separators (commas, semicolons, etc.) must be correctly placed in the specified positions.

23

24

3.1 Assignment statement

3.1.1 LET

Format

Function

Description

Note

Correct

Incorrect

(LET)v=e

v A name of numeric variable, numeric array, string variable or string

array

e Arithmetic expression, string connective expression, variable or con-

stant

Assignment of data expressed by e to a variable or an array element

The data represented by e and the corresponding variable or array must be identi

cal in data type.

LET may be omitted.

Assignment and equal have different meanings, so that A = A+ I is a correct as

signment statement.

1 0 R (1 0) = R (1 0) + 1

20 LET S 1 = SIN (TH * 1r + C) * A

30 N3$ = "Give me file name"

I = 1 An assignment in direct mode

100 D$ = A + B The left side is a string variable, while the right side is

numeric data. These are different data types.

11 0 LOG (K) = LK

25

3.2 Input/output statements

Broadly speaking, input/output statements are used for general control of the keyboard, display

screen, audio output, input/output terminals, printer and external data files. Here only the fundamen

tal input/output statements (PRINT, INPUT, GET, READ-DATA-RESTORE) are discussed.

The other input/output statements are grouped under the headings of data file input/output,

music output, graphic output, printer output and input/output port access.

3.2.1 PRINT

Format

Function

Description

PRINT (e 1 d 1 e 2 d 2• en dn >

ei Output data

di Separator or tabulation function

This statement displays consecutive lines of the data (values of constants, varia

bles, array elements and expressions) designated as output list, in order of listing.

The cursor works as the data output pointer. The data sets are displayed in sequ

ence with the first line appearing immediately to the right of the position in

which the cursor is located before execution of the PRINT statement.

The data output format depends on the separator, TAB function and SPC func

tion, as well as cursor control and reverse control codes included in the string

data.

If the data sets are omitted, the cursor advances down one line on the screen with

out any data being displayed.

Numeric data output is displayed either in the standard format or in scientific no

tation. Numbers larger in magnitude than 0.00000001 and smaller than 99,999,999

are displayed in the following form.

Blank
X---X.X---X

Each place is filled with a digit (from 0 to 9), and the total number of digits (not

including the units place when the number is less than one) is eight or fewer.

When the number includes a decimal point, it may be located between any two

digit positions. Positive numbers are preceded by a blank, and negative ones by

the minus sign " -".

26

The exponential display format is used for numbers which cannot be displayed in

the standard format. The exponential display format is as indicated below.

(
Blank) (+) _ . X ----- X E _ YY

. When the number is positive, it is preceded by blank; when negative, it is preceded

by a minus sign ("-").

The mantissa (.X---- X) is composed of up to eight numerals (from 0 through

9), with zeroes suppressed in the first and last positions. The exponent is a two

digit number YY (Y: 0 through 9) which is preceded by the exponential sign "E"

and the plus "+"or minus sign "-".

FIGURE 3.1

String data output occurs in succession, starting from the point at which the

cursor is located.

If the string data is, for example, the PRINT statement control code responsible

for cursor control, the control operation will be performed. Since ASCII codes

$00 through $OF (0 through 15) may also be specified as data sets with the

PRINT statement, a summary of their functions is set forth below.

PRINT CHR$ ($00)

PRINT CHR$ ($0 1)

PRINT CHR$ ($02)

PRINT CHR$ ($03)

PRINT CHR$ ($04)

PRINT CHR$ ($05)

No control.

Moves the cursor downward one line.

Moves the cursor upward one line.

Moves the cursor to the right one position.

Moves the cursor to the left one position.

Brings the cursor to the upper left hand cor

ner of the display screen.

27

PRINT CHR$ ($06) Clears the display and brings the cursor to

the upper left hand corner of the display

screen.

PRINT CHR$ ($07) Deletes the character to the left of the cur

sor and moves the cursor to the left one

position.

PRINT CHR$ ($08)

PRINT CHR$ ($09)

Opens one blank space to the right of the

cursor.

Sets the key input mode of the keyboard to

GRAPHIC.

PRINT CHR$ ($0A) Sets the key input mode of the keyboard to

SHIFT LOCK.

PRINT CHR$ ($0B) No control

PRINT CHR$ ($0C) Sets the key input mode of the keyboard to

REVERSE.

PRINT CHR$ ($0D) No control

PRINT CHR$ ($0E) Cancels the GRAPHIC and SHIFT LOCK

key input modes.

PRINT CHR$ ($OF) Cancels the REVERSE key input mode.

PRINT CHR$ ($10 ~ $1E) Prints one space.

Two or more output lists are punctuated by two types of separators which differ

in function.

; (Semicolon) Use of this separator results in display of

output lists on successive lines.

, (Comma) This separator causes output lists to be dis

played in a tabulated format; i.e., the first

character of the followed output list will ap

pear in the position corresponding to the

position of the forward output list plus 10

spaces. If the forward output list consists of

more than 1 0 characters, successive tabula

tion is performed in 10 spaces increments as

required to prevent overlapping.

The TAB function (see paragraph 4.3.1) and SPACE$ function (see paragraph

4.2.4) are used to control tabulation in the PRINT statement, allowing any

desired tabulation.

28

3.2.2 INPUT

Format

Function

Description

INPUT (String message ;) v (, v2, ---, Vn)

vi A name of numeric variable, numeric array, string variable or string

array

This statement momentarily interrupts program execution to allow entry of data

(numeric constant, string constant) from the keyboard , and assigns the data input

in sequence to the variables or array elements (referred to as the input list) speci

fied in the statement.

Execution of this statement causes a question mark (?) to be displayed and the

cursor to flicker to indicate that the system is awaiting data entry. If the state

ment includes a string message , the system displays that message instead of the

question mark . A semicolon is used to separate the string message and the input

list.

When the input list includes two or more variables or array elements, the input

data is punctuated with commas (,) . Data entry is concluded by pressing the

I CR]CorjENT])key.

When the number of data constants entered is smaller than the input list , the MZ-

80B system displays " ?" on the following line and awaits entry of subsequent

data; when the number of data constants is greater than the input list, the excess

constants are ignored. The data constants and the input list must be of the same

data type. Spaces entered ahead of and behind string data are ignored. Normally ,

a string constant can be entered without being enclosed in quotation marks when

it is preceded or followed by a space or when it includes a comma.

FIGURE 3.2

3.2.3 GET

Format

Function

Description

GETv

v

29

A name of numeric variable, numeric array, string variable or string

array

During program execution, this statement will ascertain what key is being pressed

and will assign the data to a corresponding variable or array element.

This statement, when executed, assigns the individual data entered when a key is

pressed to a specified variable or array element; when no key is pressed, "0"

(zero) is assigned to a specified numeric variable or numeric array element and " "

(null string) is assigned to a string variable or string array element.

The GET statement allows the entry of one character of key input data each time

it is executed. When the input is numeric data, it is one of integers 0 through 9;

when the input is string data, it consists of one character. When two or more keys

are pressed, only the key with the highest priority is valid. Numeric variables or

array elements will not accept any input from other than a numeric key.

3.2.4 READ~ DATA

Format

Function

Description

READ v1 (, v2 , ---, Vm)

DATA d1 (, d2, ---, dn)

vi A name of numeric variable, numeric array, string variable or string

array

di A numeric constant or a string constant

A READ statement reads a data table described in a DATA statement and assigns

it to variables or array elements.

The READ and DATA statements are used in pairs. Each DATA statement con

tains a data table composed of one or more statements, and the related READ

statement reads the statements one after another and assigns them one by one to

the individual variables or array elements of the input table. Accordingly, data

present in the data table and the variable or array elements present in the corre

sponding input table must be of the same data type. If they do not agree, Error 4

(data mismatch) occurs. If the data table of a DATA statement is exceeded during

execution of the related READ statement, Error 24 (Out of DATA) occurs.

30

3.2.5 RESTORE

Format

Function

Description

If another READ statement is executed after the preceding one has read half of

a data table, the remaining data is read without interruption.

The RESTORE statement can be used to fix the position of the data table that is

to be read by the READ statement to be executed next.

RESTORE <line number)

This statement positions the data read pointer at the beginning of the first data

table to be read by a READ statement, or to a data table with a specified line

number.

Given no operand, this statement restores the data read pointer to the beginning

of the first data table; that is, to the beginning of the DATA statement with the

smallest line number. If (line number) is specified in the operand, the pointer is

restored to the corresponding DATA statement, or to the beginning of the follow

ing DATA statement.

31

3.3 Loop Statement

3.3.1 FOR~ NEXT

Format FOR cv = iv TO fv (STEP sv)

NEXT (cv)

cv control variable : numeric variable or array element

iv initial value : numeric constant, variable, array element or expression

fv final value

sv step value

Function These statements cause a specified routine to be repeated .

Description: The control variable for the repeat block (loop) consisting of the FOR~ NEXT

statements is first filled with an initial value. The NEXT statement is executed at

the end of the routine. The increment specified by step value is then added to the

value of control variable .

If the sum is below the final value, program execution returns to the executable

statement directly behind the FOR statement to repeat the routine.

The step value is usually a positive increment, but negative ones may be used as

well. When the step value set is a negative increment, the final value must be set

below the initial value. The loop is executed until the value of the control variable

is smaller than the final value. If the step value is not given, the increment is fixed

at 1.

Multiple loop

FOR ~ NEXT loops may be overlapped in multiple layers. In such cases, however,

these loops must be nested. Inner loops must be entirely contained within outer

loops, and all loops must use different control variables.

The nest may contain a maximum of 15 loops. If multiple layers end at the same

location, then they can be collected in one NEXT statement. At such times, the

operand of the NEXT statement must contain a string of control variable labels

that are separated with commas, starting with the label of the innermost loop.

32

Example

Incorrect

If the NEXT statement corresponds to the last FOR statement, its control variable

label can be omitted.

Program

10 FOR X= 1 TO 9

20 FOR Y = 1 TO 9

30 PRINT X*Y ;

40 NEXT Y

J innerloop outer loop

50 PRINT

60 NEXT X

70 END

Number of nested layers is 2. FIGURE 3.3 shows a result of execution of this

multiple loop.

Program

100

110

120

130

140

150

L~~TFOR X=1 TO 9
2B FOR .,.=1 TO 9
3B PRINT Xll!.,.;
4B NEXT .,.
SB PRINT
6B NEXT X
7B END

Read\J
RUN
123456789
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 1B 15 2B 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

Read\J •

FIGURE 3.3

FV= 30

FOR N = 0 TO FV STEP 3

PRINT A$(N)

FOR I= 1 TO 5

PRINT A (N, I),

NEXT N, I

loop are not nested

If the system encounters a NEXT statement without a corresponding FOR state

ment, Error 13 occurs.

If more than 15 loops are nested, Error 11 occurs.

33

3.4 Branch st~tements

3.4.1 GOTO

Format

Function

GOTO lr

lr ... reference line number

This statement causes program operation to jump unconditionally to the statement

on line number lr.

Description: If the statement on line number lr is executable, it and subsequent statements will

be executed ; if it is non-executable, program execution jumps to the first sub

sequent executable statement.

3.4.2 GOSUB ~ RETURN

Format

Function

GOSUB lr

RETURN

lr ... reference line number

This statement unconditionally transfers program operation to the subroutine be

ginning on line number lr ; after execution of the subroutine, program operation is

returned to the line immediately following the GOSUB statement by a RETURN

statement at the end of the subroutine.

Description: A subroutine is a sequence of statements that is used to process a specific type of

problem at one or more points in the program. Use of subroutines to handle repeti-

tive occurrences of such problems allows the available BASIC text area to be used

more efficiently by shortening the program text, contributing to systematic pro

gram construction.

Up to 15 levels of subroutines may be invoked either by the main program or by

higher level subroutines.

The GOSUB statement achieves program branching, and the corresponding RE

TURN statement at the end of the subroutine causes program return. Each RE

TURN statement must, of course, correspond to one GOSUB statement.

34

3.4.3 IF~ THEN

Format

Function

IF e THEN lr

IF e THEN statement

e relational or logical expression

lr reference line number

This statement evaluates the state described by a relational or logical expression,

and causes conditional branching depending upon the result.

Description: If a relational expression is true, or if the specified conditions of a logical expres-

sion are fulfilled, the program process following THEN in the sentence is executed.

When a reference tzne number follows THEN, program operation jumps to the indi

cated line. THEN can also be followed by other statements, which allows construc

tions such as IF THEN IF ~ .

If a relational expression is false, or if the specified conditions of a logical expres

sion are not satisfied, program execution advances to the following line and the

program process following the IF~ THEN statement is ignored. The logical dia

gram below illustrates the function of the IF~ THEN statement.

No

IF statement

Yes

Jump to the line specified
by lr

IF ~ THEN is followed by a specified
statement, it is executed and program
execution then proceeds to the execut
able statement.

False

FIGURE 3.4 Function of the IF~ THEN statement

To the next specified
line

Example

Practice

35

Cautionary notes on comparison of numeric data

Every numeric value handled by BASIC SB-5 510 is internally represented in the

binary floating decimal point system. Binary notation does not always provide for

exact representation of numbers other than integers; it should therefore be noted

that when a relational or a logical expression which includes the result of a mathe

matical operation is subjected to a comparison test , the expected program opera

tion may or may not be performed depending on whether there is any disagree

ment between the result of the mathematical operation and the expected result.

Discrepancies may also exist between the value expressed in internal notation and

that output in external notation. For example, even when the result of an opera

tion is mathematically expected to be an integer, the value expressed in internal

notation may not be an integer if any data other than integers is processed.

Internal representation of the numeric value of (ten times the value obtained by

dividing 1 by 1 0) and that of the integer 1 differ from each other.

Program

10 A= 1 I 10*10

20 IF A = 1 THEN PRINT "TRUE" : GOTO 40

30 PRINT "FALSE"

40 PRINT "A =" ; A

50 END

Operation

RUN entered from the keyboard

FALSE 1
J
......... display on screen

A=

This result shows that the internal value of A differs from the mathematically

expected value since "TRUE" was not printed, and it also shows the error is

not in the first 8 decimal places since the number display is 1 (the expected

value) . However, if the IF statement is of the form;

IF ABS (A- 1) < . lE-8 THEN . ..

the value of A will be compared with 1 to an accuracy of 1 I 108 .

1) Varying the accuracy of comparison, determine what degree of error exists

between the value of A and 1 .

2) Determine whether or not any error occurs when the arithmetic expression

10 A = 1 * 10 I 10 is evaluated.

36

3.4.4 IF ~ GOTO

Format

Function

Description

3.4.5 IF ~ GOSUB

Format

Function

Description

IF e GOTO lr

e relational or logical expression

lr reference line number

This statement evaluates the state represented by a relational or logical expres

sion, and causes branching according to the result.

This statement induces conditional branching in the same manner as the IF~

THEN statement; the statement causes program operation to jump to line number

lr when specified conditions are fulfilled, and advances program execution to the

following line when the conditions are not fulfilled. IF ~ GOTO lr and IF ~

THEN lr have identical functions; however, multi-statements following an IF~

GOTO statement have no meaning in program execution.

IF e GOSUB lr

e relational or logical expression

lr reference line number

This statement evaluates the state represented by a relational or logical expres

sion, and causes program operation to jump to a subroutine according to the

result.

This statement, like the IF ~THEN statement, activates conditional branching; it

calls the subroutine beginning on line number lr when specified conditions are

satisfied. Return from the subroutine will be made to the first executable state

ment following the IF ~ GOSUB statement (or to a statement preceded by the IF

~ GOSUB statement when it includes a multi-statement). ·

37

3.4.6 ON ~ GOTO

Format ON e GOTO lr 1 (, lr2 , lr3 , •••• , lrn)

e numeric variable, array element or expression

lri reference line number

Function This statement causes program operation to jump to one of several specified line

numbers according to the value of the expression e.

Description: The target lines of a transfer caused by ON~ GOTO statements are specified by

placing the corresponding reference line numbers after GOTO - with each line

number separated by a comma(,). Any number of line numbers may be specified

provided they can be placed on one line. Transfer to the first line specified will be

made if the integer part of the value of the expression is 1; transfer to the second

line specified if the value is 2, and so forth. If the value of the expression is less

than 1, or if its integer part exceeds the number of line specifications made, pro

gram execution advances to the first executable statement following the ON ~

GOTO statement.

If the internally represented value of the expression is not an integer, its integer

part decides the target line for the transfer; e.g., when the internal representation

of value A is 1.9999999, transfer is made to the first target line specified. Accord

ingly, it is necessary to consider the internal representation of each value of the

expression being used. (See the description of the IF ~ THEN statement.)

3.4.7 ON ~ GOSUB

Format ON e GOSUB lr1 (, lr2 , lr3 , ••••• , lrn >

e numeric variable, array element or expression

lri reference line number

Function This statement calls one of several subroutines whose line numbers are specified.

Description: The ON "' GOSUB statement is fundamentally the same as the ON "' GOTO state-

ment, but differs in that program operation returns to the first executable state

ment following the ON"' GOSUB statement after execution of the subroutine.

38

3.5 Definitive statements

3.5.1 DIM

Format DIM a 1 (i1) (, a2 (i2), , an Cin))

DIM b1 (il, jd (' b2 (i2, j2)' • · •' bn Cin 'jn))

ai one-dimensional array

bi two-dimensional array

in, jn dimensions

Function This statement declares the dimensions of one-dimensional or two-dimensional

arrays and secures necessary memory area.

Description: Use of either one-dimensional or two-dimensional arrays (numeric or string arrays)

requires that the size of each array be declared by the DIM statement.

The subscripts which indicate the elements of an array can be expressed with any

numbers from 0 to 255, but the range of usable numbers may be limited according

to how the memory is used.

When two or more arrays are declared they must be punctuated with commas (,).

Array declaration for the one-dimensional array (list)

DIM A (20) This prepares 21 array elements - A (0) to A (20) - for one

dimensional numeric array A ().

DIM ST$ (99) ... This prepares I 00 array elements - ST$ (0) to ST$ (99) - for

one-dimensional string array ST$ ().

Array declaration for the two-dimensional array (table)

DIM Nl (5, 11) This prepares 72 (6xl2) array elements- Nl (0, 0) to Nl

(5, 11)- for two-dimensional numeric array Nl (,).

DIMS$ (11, 30) This prepared 372 (12x31) array elements- S$ (0, 0) to S$

(11, 30) - for two-dimensional string array S$ (,).

On execution of the DIM statement, all elements of the declared array are loaded

with 0 (zeroes), or"" (null string).

If any array is specified which is larger than the declared array size, Error 7 (Di

mension Overflow) occurs.

Execution of the CLR statement disables all array declarations.

39

3.5.2 DEF FN

Format DEF FN f(x) = e

f name of function: one of the alphabetical capital letters A ~z

x name of variable: one of the alphabetical capital letters A ~z

e numeric expression

Function This statement can be used to define any single-variable function.

Description: The name of each function to be defined can be specified by putting an appro

priate alphabetical character directly after FN, and the name of the variable to

which the desired function is to be assigned can be specified by placing the corre

sponding set of characters in parentheses following the name of the function. Ac

cordingly, a maximum of 26 user functions may be concurrently defined. The

statement may also be used to define nested functions by placing the definitive

expression of a previously defined function in the function which is currently being

defined. Nested functions may contain a maximum of 5 levels of definitions.

Example

If functions are nested beyond this limit, Error 12 (Function Nesting) occurs. A

single DEF statement can define only one user function.

Examples of definition of commonly used functions other than those built into the

system (trigonometric, inverse trigonometric, and hyperbolic functions) are given

in Table A.4 at the end of this manual.

FIGURE 3.5 shows a graphic display using two defined functions.

LIST
~ ~rJhi;j~KOSCT!.liCOS<Tl +168
lB DEF FNYITl~KOS<T!.liSIN(J)+188
lB FO!! I~ TO Bit STEP 8.82
58 SET fli)(ITl ,FNYITl
6B 1£)(1 I

~00 (~~)
--~,·-.,::.~.:·.:::.-. .-.~~:.-. ..-... :::::.~:~-~::.:::.,,.-''"'

FIGURE 3.5

40

Correct

Incorrect

10 DEF FNA (X)= TAN (X -Tr I 6)

20 DEF FNB (X) = FNA (X) I C + X

.... FNA (X), a function previously defined, is used in the definition of FNB (X).

Nested function.

10 DEF FNK (X)= SIN (X I 3 + 1r I 4), FNL (X)= X" 2

.... DEF and FN are not coupled.

3.5.3 DEF KEY

Format DEF KEY (k) = s

k key number : 1 ~ 1 0

s character string

Function This statement defines function for any of the ten function keys.

Description: A number from 1 through 10 is assigned to key number, and a string or command

representing the function is indicated on the left of the definitive expression. The

carriage return function may be included in each function assigned to a special

function assigned to a special function key; if the (sh LOcK) and [-GRPH J keys are

simultaneously pressed, the "1" symbol is input, so that the carriage return func

tion is performed when the function key is pressed.

If two or more DEF KEY statements are executed against the same function key,

only the last defmition is valid.

When defining a multi-command or multi-statement to a special function key, use

"!" as a separator. For example, when the multi-command, LOAD : RUN [CR],

is defined to special function key 1, execute DEF KEY (1) =LOAD! RUN 1

For the KLIST command,"!" is displayed as":".

FIGURE 3.6

41

3.6 Remark statement and control statements

3.6.1 REM

Format REM r

r a remark message

Function This statement refers to a comment statement contained in the program list.

Description: The REM statement, a non-executable statement, serves as a comment statement to

make it easy to review the program list. When this statement is encountered during

program execution, execution jumps to the next executable statement.

42

3.6.2 STOP

Format STOP

Function This statement stops program execution and returns system operation to the com

mand level.

Description: Execution of a STOP statement stops program execution and displays "Stop in/",

where l is the number of the line at which program execution has been interrupted.

This allows data content to be checked. The CONT command serves to restart pro

gram execution. (For details, see the CONT command.) The STOP statement,

unlike the END statement, does not close any files (see below).

3.6.3 END

Format

Function

END

This statement terminated program execution and returns system operation to the

command level.

Description: Execution of this statement terminates program execution, closes all files, displays

the message "Ready", and returns system operation to the command level.

3.6.4 CLR

Format CLR

Function This statement clears all variables and arrays.

Description: This statement sets the value of all numeric variables to 0 (zero), and clears all

string variables; it also cancels dimensional declarations for all arrays.

Hence, when an array is required after the CLR statement has been executed, it

must be redeclared by executing the DIM statement.

3.6.5 CURSOR

Format CURSOR x, y

X

y

X-coordinate : arithmetic expression

Y -coordinate : arithmetic expression

43

Function This statement positions the cursor on the display.

Description: Messages issued by a PRINT or an INPUT statement appear beginning at the cursor

position.

3.6.6 CSRH

Format

Function

The CURSOR statement can move the cursor to any position on the display. Co

ordinate data carried by the CURSOR statement is represented by arithmetic ex

pression .. The data may be composed of integers within the following range for the

80-character and the 40-character modes:

• 80-character mode

X-coordinate : 0 to 79

Y -coordinate : 0 to 24

• 40-character mode

X-coordinate : 0 to 39

Y -coordinate : 0 to 24

If the value of arithmetic expression is not an integer, its decimal fraction is dis- .

carded. TheY -coordinate may extend beyond the scrolling area.

CSRH

This is a system variable which indicates the current location of the cursor on the

horizontal axis.

Description: The cursor position changes each time the CURSOR, PRINT, or INPUT statement

is executed, and its X-coordinate is shown by this variable. The value this function

takes stays within the following ranges for each character display mode:

80-character mode: 0 ~ CSRH ~ 79

40-character mode: 0 ~ CSRH ~ 39

44

3.6.7 CSRV

Format

Function

CSRV

This is a system variable which indicates the current location of the cursor on the

vertical axis.

Description: The value CSRV takes stays within the following range for both character modes

mentioned above:

O~CSRV~24

3.6.8 CONSOLE

Format CONSOLE (Sis, le) (, C n > (, R > (, N)

Is

le

start line of the scrolling area

end line of the scrolling area

n number of the characters/line

Function This statement fixes the scrolling area of the display, changes the character display

mode between 80 characters/line and 40 characters/line, or character and graphic

display mode between reverse mode and normal mode.

Description: The operand of the CONSOLE statement determines which of three functions

shown below are activated.

• Fixing the scrolling area

CONSOLE Sis, le The top line refers to line 0 of the display and the

bottom line to line 24. ls and le fix the scrolling area.

Herce, 0 ~ ls < le ~ 24.

~ ~8W~ 13 1~~8 2
13 GOSUB 2000
13 END
13138 I=1 FOR X=0 TO 9

Hl18 GOSUB 1500
11328 PRIM<X,Yl=l PRINT I;
1038 NEXT Y, X
1848 RETURN

FOR ·~=•3 H• ·~·~

1588 I=l+1 M=B,N=B
1518 IF INTCPRIMCM,NlA2+B.BBBBBBB1•>I

HEN RETURN
1528 L=I/PR!MCM,Nl
1538 IF ABS<L-INTCLll<B.BBBBBBBi THEN

'5BB
1548
1558
1568
2888
2010
2020
2830

Ready
ill

N=N+1
IF rj(1BB THEN 151B
M=M+i N=B GOTO 1510
FOR M=0 TO 9 FOR N=B TO
~~~~TN~~I~l(M,Nl, 
RETURN 

This area, however, must cover at least three lines. 

FIGURE 3.7 



45 

• Changing the character display mode 

CONSOLE C80 . . . . . . This sets the character display mode to "80 charac

ters/line". 

CONSOLE C40 . . . . . . This sets the character display mode to "40 charac

ters/line". 

48 JS=~HRS(192)+CHR$(192) k:t=CHFt•240•+ 

(~SS~f!~~R$ ( 12 J +CHR $ ( 12) . ~1 I=CHF' I • 6 3 • +•:HP 
s\63' NI=CHR$(48) +CHR$(48) 
55 0$=CHR$ (51) +CHR$ <51) PJ:=(:HRt: 243 • +•:h 

Rlo243-' 
68 !11=HI+NI+OI+OI+M$+B$+AI+HI+HI+PI+HI 
+~I+~I+MI+DI+J$+HI+G$+0$+PI+DI+CI+~I+JI 

';'0 !2$=11$ +BI +A$ +11 $ +C $ +M $ +B $+HI +HI +1·11+ _II 
+!oi+M$ +VI +D I +1·1 I +A$ +C $+I<$ +D $ +BI +[.• I+ I I 

1<3•3 GF'APH I 1 
110 FOF' :~=40 TO 260 STEP ::::.3 
12•~1 F(•F' 'r=58 TO 110 STEP 2€1 
B•~1 F··:··3 IT I Ot·l >•: . 'r PAT TEF:N 16 . !11 
1·W liE:< T 'r'. ; • .; . 
2tH~1 GF'AF'H 12, •)2 . Fo:)R ;,:=48 TC• 26•~1 ·:;:. TEF' :;:: 

~) F•)F' 'r'=SE1 T(:• 11~:::1 '3 TEP 28 

'/. 
1 

SIJ 
2 
2 

Pe 

0 P.:•'3!T!C•I·I ;,;, 'r' PATTERtl !E .. !2! IIE::T 

PH 01 G~)SUB 
GO TO 1<3•30 

IC "Rl(H3G-G" 
IC "R1C811CC" 

GRAPH ,-, 

RETURN 
RETURN 

FIGURE3.8 

• Changing the character and graphic display mode 

CONSOLE R . . . . . . . This sets the character and graphic display mode to 

reverse mode. 

CONSOLE N . . . . . . . This sets the character and graphic display mode to 

normal mode. 

FIGURE 3.9 



46 

3.6.9 CHANGE 

Format 

Function 

Description 

CHANGE 

Reverses the function of the [ SHIFT I key concerned with alphabetic keys. 

Small letters are input from the keyboard by pressing the [ SHIFT I key after 

the BASIC interpreter has been activated. This is convenient for entry of BASIC 

commands and statements, which mainly consist of capital letters. However, it 

is natural to input messages with capitals entered by pressing the [ SHIFT I key 

in the same manner as with an ordinary typewriter. This can be achieved by issu

ing the CHANGE statement. Issuing the CHANGE statement again returns the 

function of the [ SHIFT I key to its original condition. 

[DDDDDDDDDDj 
C£D.ITD Cill C£D CilllliJ @J lliJ ~ ~ 

TAPE CONTROL 

3.6.10 REW 

Format 

Function 

Description 

FIGURE 3.10 Locations of alphabetic keys 

REW 

This statement rewinds the cassette tape. 

The REW statement operates in the same manner as the cassette deck I REW) key. 

The system executes the next statement immediately after the REW statement 

has been issued to the cassette tape deck. The cassette tape deck will',~iitom~tic

ally stop when rewind is completed. If no cassette tape is loaded, !J.O operation is 

performed and the next statement is executed. 



3.6.11 FAST 

Format 

Function 

Description 

3.6.12 SIZE 

Format 

Function 

Description 

3.6.13 Tl$ 

Format 

Function 

Description 

47 

FAST 

Fast-forward the cassette tape. 

The FAST statement operates in the same manner as the cassette deck CEO key. 

The system executes the next statement immediately after the FAST statement 

has been issued to the cassette tape deck. 

SIZE 

This variable shows the amount of unused memory area. 

In detail, this variable shows the number of bytes of unused BASIC program 

memory area. 

If "PRINT SIZE" is executed, the number of bytes of unused BASIC memory 

area is displayed on the screen in decimal notation. 

Tl$ 

This system variable is a 6-digit string which represents the current time told by 

the built-in clock. 

The clock indicates the current time with the six digit number of the TI$ variable 

as it ticks off seconds. This variable shows the hour with its first two digits, the 

minute with the next two digits, and the second with the last two digits. For 

example, when TI$ is "131753", it indicates that the clock time is 13 hours 

17 minutes 53 seconds. Tl$ begins with "000000" when the BASIC interpreter 

is activated. The clock may be adjusted to any time. To adjust the clock to 8:00 

pm according to a time signal, enter the string TI$ = "200000" and input a car

riage return at the moment the time signal occurs. Of course, indication is made 

within the following limits: 

00 to 23 hours, 00 to 59 minutes, 00 to 59 seconds. 



48 

3. 7 Music control statements 

3.7.1 MUSIC 

Format 

Function 

Description 

MUSIC x$ 

x$ .. . .. string data 

This statement automatically plays music. 

Musical data is composed of string data which symbolize musical notes; the 

tempo of the musical performance is as set by the TEMPO statement. 

The following indicates how the melody or sound effect is converted into string 

data. 

Musical notes are assigned according to pitch (octave and scale) and duration; 

a musical note ..... (octave assignment> (#(sharp)> scale (duration> 

Octave assignment 

The sound range covers three octaves as shown in Figure 3 .11. 

1 Low range I 1 Mid-range I 1 High range 1 

Not assigned + 

FIGURE 3.11 

The black points indicate C notes, and the three C notes are separated by octave 

assignments as follows; 

Lowe ............... -C 

Middle C.............. C 

High C ............... +C 



~ 
32nd 
rest 

~ 
32nd 
note 

0 

Example 

49 

Scale assignment 

CDEFGAB and # are used for scale assignment. 

Relationship between the scale and CDEFGAB is shown in Figure 3.12. The # 

symbol is used for semitone assignment. 

Rests (no sound) are assigned with R. 

I I I I 
F G A B 

Rest 

I 
#F #G #A R 

FIGURE 3.12 

Duration assignment 

This assignment determines the duration of a note whose pitch has already been 

assigned. Note durations from thirty-second to whole are assigned with numbers 

from 0 to 9 as shown in Figure 3.13. This assignment also applies to rests (R). 

:; :;· I 
,. I I· ...-.• 

16th Dot 16th 8th Dot 8th Quarter Dot quarter Half Dot half Whole 
rest rest rest rest rest rest rest rest rest 

)l J;. )> ~ J J. J d. 0 

16th Dot 16th 8th Dot 8th Quarter Dot quarter Half Dot half Whole 
note note note note note note note note note 

1 2 3 4 5 6 7 8 9 

FIGURE 3.13 

When notes of identical duration are repeated, duration assignment for the second 

note may be omitted. 

If no duration assignment is made, program execution is carried out with quarter 

note durations (duration 5) regarded to be assigned. 

Substitute the 2 octave G major scale into G$ using quarter and eighth" notes and 

play G$. 

I 0 G$="-G5-A3-BCDE#FG5A3B+C+D+E+#FG8R5" 

20 MUSIC G$ 



50 

3.7.2 TEMPO 

Format 

Function 

TEMPO x 

x . . ... an integer from 1 through 7 

This statement sets a musical tempo. 

Musical notes contained in MUSIC statements are played at a speed corresponding 

to the tempo set with this statement. 

Tempo data represented by x must be an integer from 1 through 7. "1" activates 

the slowest tempo and "7" the fastest tempo: 

TEMPO 1 . . . . . . Lento, Adagio (slowest speed) 

TEMPO 4 ...... Moderato (medium speed) 

TEMPO 7 Molto Allegro, Presto (fastest speed) 



51 

3.8 Graphic control statements 

3.8.1 GRAPH 

Format 

Function 

Description 

Example 

GRAPH Oa ) ( , Ob > ( , C) ( , F) 

a . . . . . graphic area number : 1 or 2 

b ..... graphic area number : 1, 2, 12 or 0 

This statement sets the graphic input or output mode and clears or fills the graphic 

memory area. 

This statement performs the following four functions; the particular function 

performed depends on the operand of the GRAPH statement. 

• Assignment of the graphic input mode to graphic areas 

GRAPH 11 ..... Assigns the graphic input mode to graphic area 1. 

GRAPH 12 ..... Assigns the graphic input mode to graphic area 2. 

• Assignment of the graphic output mode to graphic areas 

GRAPH 01 Assigns the graphic output mode to graphic area 1. 

GRAPH 02 

GRAPH 012 

(or 021) 

Assigns the graphic output mode to graphic area 2. 

Assigns the graphic output mode to graphic areas 1 and 2. 

GRAPH 00 .... Resets the graphic output mode. 

• Clearing graphic areas 

GRAPH C . . . . . Clears the graphic area that is in the graphic input mode. 

• Graphic area filling 

GRAPH F . . . . . Fills the graphic area that is in the graphic input mode. 

Graphic display information is stored in areas that are in the graphic input mode 

by the GRAPH, SET, RESET, LINE, BLINE, or PATTERN statements, whole 

data contained in areas in the graphic output mode is displayed on the screen. 

Other information appearing on the screen may be overlaid with information 

stored in graphic areas 1 and/or 2. 

Operands of the GRAPH statement may be punctuated by commas(,). 

The GRAPH statement shown below clears graphic data from the display, puts 

graphic area 2 in the input mode, clears graphic area 2, puts graphic area 1 in the 

input mode, clears graphic area 1 and puts graphic area 1 in the output mode. 

GRAPH 00, 12, C, 11, C, 01 



52 

3.8.2 SET 

Format 

Function 

Description 

Example 

SET x,y 

x . . . . . numeric data : X-coordinates 

y . . . . . numeric data : Y -coordinates 

This statement sets a dot in any position in a graphic area operating in the input 

mode. 

The dot position is specified with X- and Y-coordinates. As shown in Figure 

3.17, the X-coordinate of the graphic area can range from 0 to 319 - from left to 

right - and the Y -coordinate from 0 to 199 - from top to bottom. If specified 

coordinates lie outside of the graphic area they are ignored and no error occurs as 

long as the coordinates stay within the following ranges: 

0 ~ X-coordinate s. 16383 

0 ~ Y-coordinate ~ 16383 

If the limits of the graphic area are exceeded during a sequence of operations, 

interruption of program execution does not occur as long as data stays within 

these ranges. 

Figure 3.14 shows a graphic display using the SET statement. 

FIGURE 3.14 



3.8.3 RESET 

Format 

Function 

Description 

Example 

RESET X,Y. 

x . . . . . numeric data : X-coordinates 

y . . . . . numeric data : Y -coordinates 

53 

This statement resets any dot in a graphic area operating in the input mode. 

Specification of dot positions with X-Y-coordinates and the range of the out

of-area coordinates are the same as for the SET statement. 

The following program is intended to fill graphic area 1 and draw concentric 

circles with radii of 10, 20,30 ... , 150. 

Coordinates outside the graphic area are ignored. 

Figure 3.15. 

Program 

10 GRAPH 11, F,01 :FOR R=O TO 150 STEP 10 

20 FOR T=O TO 2 STEP 0.01 

30 RESET R*COS(T*7T) + 200, R*SIN(T*7T)+ 160 

40 NEXT T, R 

50 END 

Operation 

Figure 3. 1 5 shows the J;esu1 t of execution this program. 

FIGURE 3.15 



54 

3.8.4 LINE 

Format 

Function 

Description 

Example 

3.8.5 BLINE 

Format 

Function 

Description 

LINE X 1 , Y 1 , X 2 , Y 2 ( , X 3 , Y 3 , · .. , X n , Y n 

xi numeric data : X-coordinates 

Yi numeric data : Y -coordinates 

This statement draws a line in the graphic area that is in the input mode. 

This statement draws a line by setting dots from the first set of coordinates to 

the second set of coordinates. When the operand specifies three or more sets of 

coordinates, the system draws corresponding segments one after another. 

Drawing a square in the graphic area 1. 

GRr'PH ll.C , Ol 
Read':! LINE 130 , 188,228,158 , 198,68,108 , 98 . 138 1 
88 
Read.,; 
II __.., 

---------- \ .------ \ ' I 

'\ __ /~J 
FIGURE 3.16 

BLINE X1,Y1,X2,Y2 ( ,X3,Y3,···,Xn,Yn) 

xi numeric data : X-coordinates 

Yi numeric data: Y-coordinates 

This statement draws a black line in a graphic area. 

The procedure for drawing a black line and for describing the operand are the 

same as for the LINE statement. 



3.8.6 POSITION 

Format 

Function 

Description 

POSITION x, y 

x . . . . . numeric data : X-coordinates 

y ..... numeric data: Y-coordinates 

This statement sets the location of the position pointer in the graphic area. 

55 

The PATTERN statement is executed starting at position coordinates indicated 

by the position pointer. The position pointer moves each time any one of these 

statements is executed. The POSITION statement specifies the coordinates to 

which the pointer is to be moved. 

The position pointer can be set to any point within the following maximum and 

minimum limits. 

0 ~ X-coordinate ~ 319 

0 ~ Y -coordinate~ 199 

Because, the graphic display area extends only from 0 to 319 on the X axis and 

from 0 to 199 on the Y axis. Figure 3 .I 7. 

X-coordinates 

00--------------------------~319 

Y -coordinates 

199 

FIGURE 3.17 

Position pointer 

The position pointer indicates the dot position in the graphic area. The pointer 

is controlled by graphic control statement PATTERN. 

Execution of a statement moves the position pointer to the position indicated. 

Thus, the position pointer has a function similar to that of the cursor for 

character display . 



56 

3.8.7 PATTERN 

Format 

Function 

Description 

PATTERN ( x 1 ,) x$ (, X2 ) (, X2 $) ..... (, Xn ) ( , Xn $ ) 

xi ..... numeric data : number of layers 

xi$ .... string data : dot pattern data in units of 8 bits 

This statement draws a desired dot pattern in the graphic area which is in the input 

mode. 

The statement includes a number of pairs of numeric values and string variables 

separated by commas. 

The string variable specifies the arrangement of dots in a single line of the graphic 

pattern, and the numeric value indicates the number of layers of that line. The 

pattern is drawn starting at the location specified by the position pointer. The 

position pointer moves automatically as the statement is executed. 

The direction in which lines are stacked depends upon the sign of the numeric 

value. If the value's sign is "-", stacking progresses from the top down; if the 

value is positive, stacking is performed in the opposite direction. Any number 

of layers of dots may be stacked, but any dots outside the graphic area are not 

displayed. When the operand does not include a numeric value to specify the 

number of layers, the data last specified serves as the default value. 

The default value when BASIC is activated is "8". Dot patterns are given in 

units of 8 bits, and dot units of 8 dots each are set along the X axis from the 

location of the position pointer according to each 8 bit unit. Since each unit 

consists of 8 bits, there are 256 possible combinations of dots. Each combination 

is expressed as a binary number. 

For example, the following dot-pattern is given by binary number "01001110", 

or decimal number 78. This dot pattern is represented by string data CHR$(78) 

or CHR$($4E). 

I 
Dots to be set 

FIGURE 3.18 

String constant "N" may be used in this case because CHR$(78) = CHR$($4E) 

=''N'' 

If A$ = "ABCDEFG", for example, the graphic pattern shown below is drawn 

when the following PATTERN statement is executed: 

PATTERN -5, A$ 



Example 

$10 

$28 

$26 

$66 

$66 

$66 

$26 

$16 

$24 

$08 

$06 

$03 

$00 

$00 

The position pointer starts here. 

5 layers 

The position pointer stops here. 

FIGURE 3.19 

The 8-dot pattern is drawn from the top downwards because the numerical value 

specified by the operand is negative -5, and "FG" moves to the right as it is 

drawn since a S-layer stack is specified. 

Let's produce Gothic characters as a graphic pattern. Let capital letters be formed 

of 16 x 16 dot patterns and small letters of 16 x 8 dot patterns, keeping in mind 

that dots are set along the X-axis in units of 8 dots each. Dot pattern data is gen

erated by writing each character on graph paper. For example, "A" is written on 

graph paper as shown in FIGURE 3.40. This 16 x 16 dot pattern data is stored in 

array CL$ ( 1 ). The layer is to be stacked from the top downward. 

Then, the array is given by 

CL$ (1) = CHR$ ($1 0) + CHR$ ($ 28) + ----- + CHR$ ($00) 

In a similar manner, CL$ ( 1) through CL$ (26) and SL$ ( 1) through SL$ (26) are 

given data. Then, issue 

PATTERN -16, CL$ (1) 

and Gothic type will be displayed on the CRT screen. 

$10 

$20 

$AO 

$60 

$60 

$60 

$60 

$60 

$60 

$60 

$60 

$68 

$FO 

$60 

$00 

$00 

FIGURE 3.20 Die Fraktur 

57 



58 

3.8.8 POINT 

Format 

Function 

3.8.9 POSH 

Format 

Function 

3.8.10 POSY 

Format 

Function 

POINT (x,y) 

x . . . . . numeric data : X-coordinates 

y ..... numeric data : Y-coordinates 

/ 

This function scans graphic areas to determine whether specified dots are set or 

reset. 

The results are indicated by numerals 0 through 3. 

Result of the 
POINT function 

0 

2 

3 

Point information 

Points in both graphic areas 1 and 2 are reset. 

Only point in graphic area 1 is set. 

Only point in graphic area 2 is set. 

Points in both graphic areas 1 and 2 are set. 

When the system is provided only with graphic area 1, the result of the POINT 

function is 0 or 1. 

With this statement, for example, the coordinates of the intersection of two 

curves can be obtained. 

POSH 

This is a system variable which indicates the current location on the horizontal 

axis of the position pointer in the graphic display area. 

The value POSH takes stays within the following range: 

0 ~POSH~ 319 

POSY 

This is a system variable which indicates the current location on the vertical axis 

of the position pointer in the graphic display area. The value POSY takes stays 

within the following range: 

0~ POSY~ 199 



59 

3.9 Data file input/ output statements 

3.9.1 WOPEN/T 

Format 

Function 

Description 

3.9.2 PRINT/T 

Format 

Function 

Description 

Note 

Example 

WOP EN ( /T ) (file name ) 

This statement opens a cassette file to allow a sequential data file to be written on 

cassette tape. 

The WOPEN/T statement declares "Write Open" for each sequential data file, and 

file name specifies the name of the sequential data file to be written. 

If the WOPEN/T statement has been executed, numeric and string data are 

assembled in sequence in the memory when the PRINT/T statement is executed. 

This data set is not stored on cassette tape as a sequential data file until the 

CLOSE/T statement is executed. 

Nameless data files will result it no file names are specified. It is advisable to give 

to each data file a distinct name to indicate its contents. This will prevent confus

ing data files with each other. 

PRINT/T d1 ( , d2, d3, . .. . . , dn ) 

d; ..... numeric or string data 

This statement writes data in succession to the cassette data file opened with the 

WOPEN/T statement. 

Execution of the PRINT/T statement writes the output list specified in its 

operand in succession on a cassette data file. Output lists can contain both 

numeric and string data. When assigning two or more sets of data to one PRINT/T 

statement, the data sets must be separated by commas(,). 

Do not attempt to replace or run a cassette tape while any file stored there is 

open; otherwise correct file control will become impossible. 

The following program creates the sequential data file "Name list" on the cassette 

tape. This file may have two hundred Name-strings. 

10 WOPEN/T "Name list" 

20 FOR N= 1 TO 200 :PRINT/T N$(N) NEXT 

30 CLOSE/T 



60 

3.9 .3 CLOSE/T 

Format 

Function 

Description 

3.9.4 ROPEN/T 

Format 

Function 

Description 

3.9 .5 INPUT /T 

Format 

Function 

CLOSE ( /T) 

When the WOPEN/T statement has been executed, this statement closes 

WOPEN/T and creates a sequential data file on the cassette tape. 

When the ROPEN/T statement has been executed, it closes ROPEN/T. 

When WOPEN/T is closed, the statement stores the sequential data file data list 

set up by the PRINT/T statement on cassette tape, under the file name declared 

by the WOPEN/T statement. Closing ROPEN/T allows ROPEN/T or WOPEN/T 

to be declared for other data files. 

ROPEN ( /T ) ( file name) 

This statement opens cassette files, enabling the system to read data from 

sequential data files on a cassette tape. 

The ROPEN/T statement declares "Read Open" for each sequential data file , 

and file name specifies the name of the sequential data file to be opened for 

reading. If the ROPEN/T statement has been executed, data stored on the 

cassette tape can be sequentially assigned to variables or array elements with 

the INPUT/T statement. After the data has been read, the CLOSE/T statement 

is executed to close the file. 

If the ROPEN/T statement is not accompanied by a file name, it opens the 

BASIC sequential data file which is first found. 

INPUT /T V 1 ( , V2 , V 3, ••• , Vn ) 

vi . . .. numeric or string variable or array element 

This statement reads data in sequence from the cassette data file opened with 

the ROPEN/T statement. 



Description 

61 

When the INPUT /T statement is executed, data read from the cassette file are 

assigned in succession to the variables or array elements of the input list specified 

by the INPUT/T statement's operand. Hence, the data list on the cassette-file 

and that of the INPUT /T statement must be identical in data type. Out of File 

occurs if the file data is exhausted before completion of the INPUT/T statement. 

If numeric data elements on a sequential data file read by the INPUT /T statement 

correspond to string variables (or array elements), they are assigned accordingly. 

When such numeric data is "5.17", for example, it is handled as a string data 

" 5.17". 

Handling the file end 

If "Out of File" occurs while data is being read from a sequential data file, an error 

is generated and the system returns to the BASIC command level. When the 

number of field data elements is known, the error is prevented by setting an equal 

number of data reads. When the number of filed data elements is unknown and 

program execution is not to be interrupted by "Out of File", it is advisable to 

attach the character string "END OF FILE" to the end of each sequential data 

file to indicate its end, thereby preventing the Error 63 (out of file). 



62 

3.10 Machine language control statements 

3.10.1 LIMIT 

Format 

Function 

Description 

Example 

3.10.2 POKE 

Format 

Function 

Description 

LIMIT x 

x . .... address : numeric data or a four-digit hexadecimal number 

This statement limits the BASIC program memory area. 

When a machine language program is to be used in conjunction with a BASIC 

program, or when specific data is to be placed in memory, reservation of user 

memory area with the LIMIT statement is required to partition it from the 

BASIC program area. To divide the memory into two areas, the last address of 

the BASIC program area must be specified in the operand; the value of that 

address is specified with a numeric variable, or a hexadecimal number. 

The LIMIT MAX statement is used to restore the original BASIC text area. 

Refer to the memory map in the Appendix. 

LIMIT $DFFF ..... This statement limits the BASIC program memory area 

up to $DFFF (hexadecimal). 

POKE x, d 

x ..... address : numeric data or a four-digit hexadecimal number 

d . . . . . numeric data 

This statement stores data in arbitrary memory addresses. 

This statement writes one byte of data in the memory address specified in 

address; any address may be specified. 

Each byte of data stored must have a binary value from 0 to 255. If it is numeric 

data, any integer from 0 to 255 may be stored; if it is string data, the ASCII code 

corresponding to its leading character is stored. The POKE statement may be 

executed for any memory address irrespective of the LIMIT statement, and thus 

may destroy the entire BASIC or MONITOR if not used with care. 

The user area secured with the LIMIT statement is not used at all by the BASIC 

program. When entering machine language programs or data with the POKE 

statement, it is advisable to execute the LIMIT statement in advance. 



3.10.3 PEEK 

Format 

Operation 

3.10.4 USR 

Format 

Operation 

Format 

Operation 

63 

PEEK (x) 

x ..... address : numeric data or a four-digit hexadecimal number 

This function gives the contents of the memory address indicated by the value of 

numeric data x. Since data in the memory consists of 8 binary digits (bits), a 

result from 0 to 255 will be obtained. 

The value of x must be from 0 to 65535. Memory addresses may also be specified 

by four hexadecimal digits preceded by a $ sign. To store data in specified 

memory addresses, the POKE statement is used. 

USR (X) 

x ..... address : numeric data or a four-digit hexadecimal number 

In this format, the USR function transfers program control to the memory 

address indicated by the value of numeric data x. This operation is the same as 

that resulting from CALL x, the machine-language command which causes 

branching to a subroutine. Accordingly, when the system encounters any return 

command - RET, RETcc - during execution of a machine-language program, 

program control is returned to the statement following the statement which 

executed the USR function. 

The value of x must be in the range from 0 to 65535. Memory addresses may also 

be specified by four hexadecimal digits preceded by a sign($). 

USR (x,x$) 

x . ..... address : numeric data or a four-digit hexadecimal number 

x$ ..... string data 

When string data is given together with address data, this USR function places the 

first address of the memory area containing string data x$ in the CPU's DE 

register and the length of x$ in the BC register prior to execution of a CALL 

command contained in a machine-language program. This function can also serve 

to deliver string data used in a BASIC program to a machine-language program. 



64 

3.11 Printer control statements 

Refer to the Printer (MZ-80P5) Manual for details of BASIC program operation and printer 

handling. 

3.11.1 PRINT/P 

Format 

Function 

Description 

PRINT/P < e1 d1 e2 d 2 . . . .. en dn > 

ei Output data 

di Separator or tabulation function 

This statement outputs print data (characters or control codes) to the printer. 

Print data output by PRINT/P statement are handled in nearly the same manner 

as the PRINT statement does with the display. 

In detail, the PRINT /P statement causes the printer to print numeric data (value 

of numeric constants, numeric variables, numeric array elements or expressions) 

and string data (contents of string constants, string variables, string array 

elements, or string connective expressions), and uses separators ";", "," and the 

TAB function in the same manner as does the PRINT statement. 

Only when transfer codes CHR$ (0) to CHR$ (30), or CHR$ ($00) to CHR$ 

($IE), are output does the PRINT/P statement cause data processing different 

from that of the PRINT statement. 

The character print mode has eight settings which determine the size of individual 

characters printed (or the number of characters per line) and whether to space 

lines or not as shown below. These eight settings are selected by CHR$ ( 16) to 

CHR$ (21) and maintained, once chosen, until another character print mode 

conversion code is received. Both character print mode conversion and control 

codes can be placed in any locations in the output data list. 

CHR$ (5) 

CHR$ (6) 

CHR$ (16) 

CHR$ (17) 

CHR$ (18) 

CHR$ (19) 

CHR$ (20) 

CHR$ (21) 

•• 0. 0 0 

0. 0 0 •• 

.. . ... 

•• 0 ••• 

0 ••••• 

0 •• 0 0. 

Home 

Cancels the enlarged character mode or reduced character 

mode , and sets the normal mode 1 with line spacing, and 

home. 

Sets the normal mode 1 with line spacing 

Sets the normal mode 2 without line spacing 

Enlarged character mode 

Cancels the enlarged character mode 

Reduced character mode · 

Cancels the reduced character mode 



3.11.2 IMAGE/P 

Format 

Function 

Description 

65 

IMAGE/P x$ 

x$ ..... string data 

This statement causes the printer to draw a desired dot pattern according to the 

operating mode (image mode 1 or 2). 

The MZ-80P5 printer can operate in the normal mode, used for printing charac

ters, and in two image modes. 

Image mode 1 

When the printer is operating in image mode 1, data output to the printer with 

the IMAGE/P statement are handled as following dot patterns. 

Each dot pattern consists of 8 bits of data which determine the vertical arrange

ment of eight dots. Image mode 1 allows the printer to print 480 dot patterns on 

one line, so that the dots are arranged as a square lattice. CHR$ functions 0 to 

255 may be used to represent any possible arrangement of dots. 

Image mode 2 

When the printer is operating in image mode 2, output data are handled in the 

same manner as in image mode 1. Image mode 2 differs from image mode 1 in 

that it allows the printer to print 816 dot patterns on one line; horizontal spacing 

of dots is smaller than vertical spacing. 



66 

3.11.3 COPY/P 

Format 

Function 

Description 

3.11.4 PAGE/P 

Format 

Function 

Description 

COPY/P n 

n . . . . . . display area : 1 , 2, 3 or 4 

This statement causes the printer to copy an entire frame of data displayed on 

the computer screen. 

There are three types of data display: character display, graphic display of graphic 

area 1 and graphic display of graphic area 2. The type of data display to be copied 

is specified in the operand of the COPY/P statement. The statement may be used 

without regard for the mode in which the printer is operating. 

Copying a character display 

To copy a character display, the following COPY /P statement must be executed. 

COPY/P 1 

Copying a graphic display 

Dot pattern data is output for printing in the same manner as in the image mode. 

Since the system has two graphic areas, the following three typ~s of COPY /P 

statements are allowed : 

COPY /P 2 ... This causes the printer to copy the dot patterns set in graphic 

area 1. 

COPY /P 3 ... This causes the printer to copy the dot patterns set in graphic 

area 2. 

COPY /P 4 ... This causes the printer to copy the dot patterns set in both 

graphic area 1 and graphic area 2. 

The COPY /P statement can be used without regard for any GRAPH statements 

executed. 

PAGE/P x 

x . . . . . numeric data 

This statement sets the number of lines to be contained in one page of the printer. 

The printer normally prints 66 lines per page. When the number of lines is speci

fied by the PAGE statement, the system forces the printer to print out informa

tion on the specified number of lines as one page. This holds true for both the 

character and image print mode. 



67 

3.12 1/ 0 input/ output statements 

3.12.1 INP 

Format 

Function 

3.12.2 OUT 

Format 

Function 

INP @p, v 

p ..... port number : numeric data 

v .. ... numeric variable or array element, or string variable or array element 

The 1/0 port number is specified by @p . This number is identical to the I/0 port 

number for the CPU which is represented by a decimal number (0 ~ p ~ 255). 

· Each 1/0 port is a parallel terminal of 8 bits, and is loaded with input data from 

0 to 255. A number from 0 to 255 is assigned to each numeric variable, and a 

name from CHR$ (0) to CHR$ (255) is assigned to each string variable. 

OUT @p,x 

p . .... port number : numeric data 

x . . . . . numeric or string data 

The I/0 port number is specified in the same manner as with the INP statement. 

Data to be output must range from 0 to 255. If the data is numeric data, a 

number from 0 to 255 is output; if it is string data, the ASCII code corresponding 

to its first character is output. 

Use of the INP and OUT statements depends on how the I/0 port is used. For 

details, consult the universal I/0 card manual. 





Chapter 4 

BASIC SB-5510 Functions 

This chapter lists all built-in functions of BASIC 58-5570 in the order of arithmetic functions, 

string control functions and tabulation functions. For functions relating to graphic display and ma

chine language control, refer to the description of each group in the preceding chapter. 

Any of the built-in functions can be called at any program location without prior definition. 

69 



70 

4.1 Arithmetic functions 

4.1.1 ABS 

Format 

Function 

Example 

4.1.2 INT 

Format 

Function 

Example 

4.1.3 SGN 

Format 

Function 

Example 

ABS (X) 

This function gives the absolute value lxl of numeric data x. That is, when x ~ 0, 

ABS (x) = x, and when x < 0, ABS (x) = -x. 

PRINT ABS (3 - 8) 

5 

Ready 

INT ( x) 

This function gives the largest integer smaller than x for numeric data x. 

PRINT INT (9 .99), INT (1r) 

9 3 

Ready 

PRINT INT (-35.6) 

-36 

Ready 

SGN (X) 

This function ascertains whether the value of numeric data x is greater than, less 

than or equal to zero and indicates the result with 1, 0 or -1 as follows: 

Whenx > 0, SGN (x) = 1 

When x = 0, SGN (x) = 0 

When x < 0, SGN (x) = -1 

PRINT SGN (SGN (A*(-A)) -0.5) 

-1 

Ready 



4.1.4 SQR 

Format 

Function 

Example 

4.1.5 SIN 

Format 

Function 

Example 

71 

SQR (X) 

This function gives the square root Vx of numeric data x. x must be greater than 

or equal to zero. 

Program 

10 FOR X = 1 TO 5 

20 PRINT X, SQR (X) 

30 NEXT 

Operation 

RUN 

2 

3 

4 

5 

Ready 

SIN (X) 

1.4142136 

1.7320508 

2 

2.236068 

This function gives the sine of numeric data x in radians. 

Figure 4.1 shows a sine curve. 

FIGURE 4.1 A sine curve 



72 

4.1.6 cos 

Format 

Function 

Example 

4.1.7 TAN 

Format 

Function 

4.1.8 ATN 

Format 

Function 

COS (X) 

This function gives the cosine of numeric data x in radians. When the value of 

numeric data D is given in degrees, its cosine is obtained by converting it to 

radians and applying the COS function is as follows: 

cos (D*7T I 180) 

Figure 4.2 shows a curve. 

TAN (X) 

FIGURE4.2 

This function gives the tangent of numeric data x in radians. If the value ofT AN 

(x) is too large, Error 2 (Operation result overflow) occurs. 

ATN(x) 

This function gives the arctangent of numeric data x (the angle whose tangent is 

x) in radians. Though arctan x has an infinite number of results, only the result 

between -7T/2 and 7T/2 will be obtained (that is, the principal value). When the 

result is to be expressed in degrees, the expression ATN (x )* 180/7T is used. 



4.1.9 EXP 

Format 

Function 

Example 

4.1.10 LOG 

Format 

Function 

4.1.11 LN 

Format 

Function 

73 

EXP ( x) 

This function gives the value of exponential function ex (the natural logarithmic 

base e raised to the x power) for numeric data x. 

PRINT EXP ( 1 ), EXP (2) 

2.7182818 

Ready 

LOG (X) 

7.3890561 

This function gives log10 x (the value of the common logarithm of x) for numeric 

data x. 

x must be greater than 0. 

When A> 0, A =I= I and numeric data X is given, log A X (the value of the loga

rithm of X with the base A) can be obtained with either of the following expres

sions: 

LOG (X) I LOG (A) 

or 

LN (X) I LN (A) 

LN (x) 

This function gives In x (the value of the natural logarithm of x) for numeric 

data x. 

x must be greater than 0. 



74 

4.1.12 RND 

Format 

Function 

RND(x) 

This function generates pseudo-random numbers, which take any value between 

0.00000001 and 0.99999999, and works in two manners depending on the value 

of numeric data x. 

When the value of x is 0 or a negative number, the function gives the initial value 

of the pseudo-random number group it generates, and when the value of x is 

larger than 0, the function gives a pseudo-random number next to the one 

previously given in the pseudo-random number group. 

Usually, a number larger than 0 is used as the value of x. However, initializing 

the pseudo-random number group by setting x at 0 or a negative number gives 

duplicability to the group. 



75 

4.2 String control functions 

4.2.1 LEFT$ 

Format 

Function 

Example 

4.2.2 MID$ 

Format 

Function 

Example 

LEFT$ ( x$, n) 

This function gives string data comprised of the left n characters of string data 

x$. 

n must be a number between 0 and 255. 

If n > LEN (x$), then LEFT $ (x$, n) = x$; and if n = 0, then LEFT$ (x$, n) = 

" " (null string). 

Program 

10 A$= "Personal Computer MZ-80B" 

20 B$ =LEFT$ (A$, 17) 

30 PRINT B$ 

Operation 

RUN 

Personal Computer 

Ready 

MID$(x$,m,n) 

This function gives string data comprised of the n characters following the mth 

character from the beginning of string data x$. 

m must be a number between I and 255, and n a number between 0 and 255. 

If n > LEN (x$)- m, then MID (x$, m, n) =RIGHT$ (x$ , LEN (x$),- m +I); 

and if n = 0, then MID $ (x$ , m, n) = " "(null string). 

Program 

I 0 A$= "Personal Computer MZ-80B" 

20 C$ =MID$ (A$, 10, 8) 

30 PRINT C$ 

Operation 

RUN 

Computer 

Ready 



76 

4.2.3 RIGHT $ 

Format 

Function 

Example 

4.2.4 SPACE$ 

Format 

Function 

Example 

RIGHT$ ( x$, n) 

This function gives string data comprised of the right n characters of string data 

x$. 

n must be a number between 0 and 25 5. 

If n > LEN (x$), then RIGHT $ (x$, n) = x$; and if n = 0, then RIGHT $ (x$, 

n) = " " (null string). 

Program 

10 A$ = "Personal Computer MZ-80B" 

20 D$ =RIGHT$ (A$, 6) 

30 PRINT D$ 

Operation 

RUN 

MZ-80B 

Ready 

SPACE$ ( x) 

This function gives a string of successive spaces whose length is expressed by the 

value of numeric data x. 

This function, when used with the PRINT statement, may serve as tabulation 

or to delete items displayed. 

Program 

10 PRINT SPACE$ (5); "Code"; SPACE$ (7); "Meaning" 

Operation 

RUN 

Code Meaning 

Ready 



4.2.5 STRING$ 

Format 

Function 

Example 

4.2.6 CHR$ 

Format 

Function 

Example 

77 

STRING$ ( x$, n) 

This function gives a string of n repetitions of the first character of string data 

x$. 

A string of consecutive spaces is given by the SPACE$ function. 

Program 

10 R$ =STRING$("*", 10) 

20 PRINT R$;" Table 1 " ; R$ 

Operation 

RUN 

********** Table 1 ********** 

Ready 

CHR$(x) 

This function gives characters corresponding to ASCII codes expressed as numeric 

data x . 

To convert characters into ASCII codes, the ASC function is used. 

Figure 4.3 shows all characters corresponding to ASCII codes 31 - 255. Opera

tion of PRINT CHR$ (x) statement in case of ASCII codes 0 through 30 is 

summarized in pages 84- 85. 

Lf~TFOR A=31 TO 255 
28 PRINT CHR$(A) ;SPACE$<1>; 
38 NEXT 

Ready 
RUN 

!~~~~E~~~~~~i$ee§~~~ 

I.U i I i i ' i I I I i i I i i U I 
• 

FIGURE 4.3 



78 

4.2.7 ASC 

Format 

Function 

Example 

4.2.8 STR$ 

Format 

Function 

Example 

ASC ( x$) 

This function gives the ASCII code - a decimal number - of the first character 

of string data x$. 

For the relations between characters and ASCII codes, see the ASCII Code Table 

(Table A.2 ). 

To convert ASCII codes into characters, the CHR$ function is used. 

PRINT ASC ("ABC") 

65 

Ready 

STR$ ( x) 

This function gives a string that expresses the value of numeric data x. This string 

will be expressed in scientific notation if that is the form in which the value of 

x is expressed. 

To convert a numeric string into a number, the VAL function is used. 

Figure 4.4 shows operation of the STR$ function. 

FIGURE4.4 



4.2.9 VAL 

Format 

Function 

Example 

4.2.10 LEN 

Format 

Function 

Example 

79 

VAL(x$) 

This function gives the numeric constant represented by string data x$. To 

convert numeric data into a string, the STR$ function is used. 

Figure 4.5 illustrates operation of the VAL function. 

FIGURE4.5 

LEN ( x$) 

This function gives the number of characters that make up string data x$, includ

ing spaces and characters which are not displayed by the PRINT statement. 

PRINT LEN ("Personal Computer MZ-80B") 

24 

Ready 



80 

4.2.11 CHARACTER$ 

Format 

Function 

Example 

CHARACTER $ ( x , y ) 

This function gives characters located on the screen in the positions specified by 

x andy as string data. 

Coordinate data are given by arithmetic expressions, variables or constants. 

Coordinates must lie within the ranges shown below. 

• 80-character mode 

x-coordinate : 0 to 79 

y-coordinate : 0 to 24 

• 40-character mode 

x-coordinate : 0 to 39 

y-coordinate : 0 to 24 

Figure 4.6 illustrates operation of the CHARACTER $ function. 

FIGURE4.6 



81 

4.3 Tabulation function 

4.3.1 TAB 

Format 

Function 

TAB (X) 

This function, used with the PRINT statement, causes the cursor to be moved 

forward to the line position indicated by numeric data x. 

If the current cursor position exceeds the value of x, the tabulation function is 

inoperative (no action is performed). 

The value of x must be between 0 and 25 5 (although 0 and 1 are considered 

identical). 





APPENDIX 

The Appendix includes the following; 

• ASCII Code Table . . .. . Table A . 7 

• BASIC interpreter SB-5570 Error Message Table . .. .. Table A.2 

This table lists all the possible errors which may occur during program execution. The interpreter 

notifies the operator of occurrence of an error during program execution or operation in the direct 

mode with the corresponding error number. 

• Memory Map 

• Trigonometric and hyperbolic functions 

83 



84 

A.l ASCII Code Table 

A table of hexadecimal ASCII codes is shown in FIGURE 2. 22 of the Owner's Manual. 

CODE CHARACTER CODE CHARACTER CODE CHARACTER CODE CHARACTER CODE CHARACTER 

0 !NULL I 26 52 [~] 78 ~ 104 [6] 
1 ITJ 27 53 [§] 79 [QJ 105 OJ 
2 [!] 28 54 [§] 80 [E] 106 OJ 
3 G 29 55 [7] 81 [gJ 107 [k] 
4 G 30 56 [§] 82 [BJ 108 [I] 
5 I HOME I 31 m . 57 ~ 83 ~ 109 [iTI] 
6 @!] 32 D 58 CJ 84 ITJ 110 [DJ 
7 [ill_] 33 rn 59 [I] 85 [Q] 111 [QJ 
8 IINSTI 34 B 60 [I] 86 [YJ 112 [EJ 
9 lsRPHI 35 [i] 61 EJ 87 ~ 113 @] 

10 [][] I 36 [IJ 62 [}] 88 00 114 0 
11 37 [%] 63 rn 89 [YJ 115 ~ 
12 [ill] 38 ~ 64 ~ 90 ~ 116 [!] 
13 39 ~ 65 ~ 91 [] 117 ~ 
14 I ~CHIP! I 40 rn 66 ~ 92 [S] 118 [YJ 
15 ~ l 41 OJ 67 [g 93 [J] 119 ~ 
16 42 ~ 68 [QJ 94 EJ 120 [!] 
17 43 [±] 69 [gJ 95 EJ 121 [YJ 
18 44 GJ 70 [EJ 96 ~ 122 ~ 
19 45 EJ 71 [§] 97 @] 123 rn 
20 46 GJ 72 [8] 98 [li] 124 OJ 
21 47 [Z] 73 [I] 99 ~ 125 rn 
22 48 [QJ 74 Q] 100 [4] 126 EJ 
23 49 [I] 75 ITS] 101 ~ 127 [j] 
24 50 [gJ 76 [g 102 rn 
25 51 @] 77 [MJ 103 [ID 



85 

CODE CHARACTER CODE CHARACTER CODE CHARACTER CODE CHARACTER CODE CHARACTER 

128 [IIJ 154 rn 180 II 206 m 232 Gl 
129 [!] 155 B 181 m 207 m 233 D 
130 [!] 156 E:g 182 m 208 m 234 n 
131 ~ 157 Ea 183 6 209 m 235 II 
132 [B 158 BJ 184 m 210 m 236 D 
133 [j] 159 [E 185 m 211 m 237 1m 
134 [tJ 160 II 186 II 212 D 238 m 
135 ~ 161 u 187 II 213 lD 239 m 
136 [I] 162 II 188 B 214 m 240 m 
137 [§ 163 rn 189 II 215 rlJ 241 m 
138 §] 164 D 190 IJ 216 Et 242 Iii 
139 tiij 165 ~ 191 II 217 a 243 m 
140 ~ 166 ~ 192 m 218 FA 244 n 
141 ~ 167 II 193 m 219 II 245 m 
142 ~ 168 II 194 m 220 Ill 246 m 
143 tm 169 IJ 195 [I 221 ~ 247 II 
144 § 170 E3 196 m 222 II 248 1!1! 
145 ~ 171 G 197 Iii 223 il 249 n: 
146 ~ 172 II 198 Iii 224 11 250 D 
147 [j] 173 = 199 &1 225 II 251 D 
148 Q] 174 II 200 m 226 m 252 D 
149 5J 175 - 201 D 227 m 253 D 
150 EJJ 176 m 202 II 228 m 254 a 
151 [Jj 177 D 203 13 229 m 255 [KJ 
152 [g 178 m 204 1!1 230 D 
153 EB 179 m 205 1m 231 m 



86 

A.2 Error Message Table 

Error No. Meaning 

1 Syntax error 

2 Operation result overflow 

3 Illegal data 

4 Data type mismatch 

5 String length exceeded 25 5 characters 

6 Insufficient memory capacity 

7 The size of an array defined was larger than that defined previously. 

8 The length of a BASIC text line was too long. 

9 

10 The number of levels of GOSUB nests exceeded 16. 

11 The number of levels of FOR-NEXT loops exceeded 16. 

12 The number of levels of functions exceeded 6. 

13 NEXT was used without a corresponding FOR. 

14 RETURN was used without a corresponding GOSUB. 

15 Undefined function was used. 

16 Unused line number was used. 

17 CONT command cannot be executed. 

18 A writing statement was issued to the BASIC control area. 

19 Direct mode commands and statements are mixed together. 

20 

21 

22 

23 

24 A READ statement was used without a corresponding DATA statement. 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 



87 

Error No. Meaning 

36 

37 

38 

39 

40 

41 

42 

43 OPEN statement (ROPEN or WOPEN) was issued to a file which is already open. 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 Out of file 

64 

65 The printer is not ready. 

66 Printer hardware error 

67 Out of paper 

68 

69 

70 Check sum error 



88 

A.3 Memory Map 

$OOOO .---M-O_N_IT_O_R_---., 

SB-1510 
$1220 

$1220 : Cold start address 
BASIC interpreter $1280 : Hot start address 
SB·5510 

$FFFF~--------~ 

A.4 Trigonometric and hyperbolic functions 

Some functions which are not provided as built-in functions can be easily obtained by using built

in functions in combination as shown below: 

secant 

cosecant 

cotangent 

arcsine 

arccosine 

arcsecant 

arccosecant 

arccotangent 

hyperbolic sine 

hyperbolic cosine 

hyperbolic tangent 

hyperbolic secant 

hyperbolic cosecant 

hyperbolic cotangent 

SEC(X) = 1 /COS(X) 

CSC(X) = 1/SIN(X) 

COT(X) = 1/TAN(X) 

ARCSIN(X) = ATN(X/SQR(-X*X+l)) 

ARCCOS(X) = -ATN(X/SQR(-X*X+l)) + 1.5708 

ARCSEC(X) = ATN(SQR(X*X-1)) + (SGN(X)- 1)*1.5708 

ARCCSC(X) = ATN(l/SQR(X*X-1)) + (SGN(X)-1)*1.5708 

ARCCOT(X) = -ATN(X) + 1.5708 

SINH(X) = (EXP(X) - EXP( -X))/2 

COSH(X) = (EXP(X) + EXP( -X))/2 

TANH(X) = -EXP(-X)/(EXP(X) + EXP(-X))*2+ 1 

SECH(X) = 2/(EXP(X) + EXP( -X)) 

CSCH(X) = 2/(EXP(X)- EXP(-X)) 

COTH(X) = EXP(-X)/(EXP(X)- EXP(-X))*2+1 

hyperbolic arcsine ARCSINH(X) = LOG(X + SQR(X*X+1)) 

hyperbolic arccosine ARCCOSH(X) = LOG(X + SQR(X*X-1)) 

hyperbolic arctangent ARCTANH(X) = LOG((l+X)/(1-X))/2 

hyperbolic arcsecant ARCSECH(X) = LOG((SQR(-X*X+1) + 1)/X) 

hyperbolic arccosecant ARCCSCH(X) = LOG((SGN(X)*SQR(X*X+1) + 1)/X) 

hyperbolic arccotangent ARCCOTH(X) = LOG((X+l)/(X-1))/2 




	Sharp_MZ-80B_BASIC_Language_Manual_front
	172605
	172616
	172622
	172625
	172631
	172635
	172641
	172644
	172650
	172654
	172700
	172703
	172710
	172713
	172719
	172723
	172729
	172732
	172738
	172742
	172748
	172751
	172758
	172801
	172807
	172811
	172817
	172820
	172826
	172830
	172836
	172839
	172846
	172849
	172855
	172859
	172905
	172908
	172915
	172918
	172924
	172927
	172934
	172937
	172944
	172947
	172953
	172957
	173003
	173006
	173012
	173016
	173022
	173025
	173032
	173035
	173041
	173044
	173116
	173126
	173132
	173136
	173142
	173145
	173151
	173155
	173201
	173204
	173211
	173214
	173220
	173224
	173230
	173233
	173239
	173240
	173241
	173243
	173249
	173252
	173259
	173302
	173308
	173312
	173318
	173321
	173327
	173331
	173337
	173340
	173346
	173350
	173356
	173400
	173406
	173413
	Sharp_MZ-80B_BASIC_Language_Manual_back

