
Personal Computer

im-7/m
OWNER'S MANUAL

SHARP

IMPORTANT

The wires in this mains lead are coloured in accordance with the
following code:

BLUE: Neutral
BROWN: Live

A s the colours of the wires in the mains lead of this apparatus may not
correspond with the coloured markings identifying the terminals in
your plug proceed as follows.
The wire which is coloured BLUE must be connected to the terminal
which is marked with the letter N or coloured black.
The wire which is coloured BROWN must be connected to the ter-
minal which is marked with the letter L or coloured red.

This apparatus complies wi th requirements of EEC directive 76/889/EEC.

Das Gerat st immt mit den Bedingungen der EG-Richtlinien 76/889/EWG
iiberein.

Cet appareil repond aux specifications de la directive CCE 76/889/CCE.

Dit apparaat voldoet aan de vereisten van EEG-reglementen 76/889/EEG.

Apparatet opfylder kravene i EF direktivet 76/889/EF.

Quest'apparecchio e stato prodotto in conformita alle direttive CEE
76/889/CEE.

Personal Computer

mz-Tf f ixo)

Owner's
Manual

© SHARP CORPORATION

NOTICE

This manual has been written for the MZ-700 series personal computers and the
> BASIC interpreter which is provided with the MZ-700.
* i w X l i f f Y
* m M • m i i
| (1) All system software for the MZ-700 series computers is supported in software

packs (cassette tape, etc.) in file form. The contents of all system software and the
material presented in this manual are subject to change without prior notice

i for the purpose of product improvement and other reasons, and care should be
taken to confirm that the file version number of the system software used matches
that specified in this manual.

T .
* - •
I
$ (2) All system software for the Sharp MZ-700 series personal computer has been

developed by the Sharp Corporation, and all rights to such software are reserved.
f Reproduction of the system software or the contents of this book is prohibited.
t
*
4
| (3) This computer and the contents of this manual have been fully checked for

completeness and correctness prior to shipment; however, if you should encoun-
ter any problems during operation or have any questions which cannot be resolv-

T
i ed by reading this manual, please do not hesitate to contact your Sharp dealer

for assistance.
Not withstanding the foregoing, note that the Sharp Corporation and its repre-
sentatives will not assume responsibility for any losses or damages incurred as

V
$ a result of operation or use of this equipment.

Preface
Congratulations on your purchase of a Sharp MZ-700 series personal computer. Before using
your computer, please read and make sure you understand the operating procedures which
are described in this manual. The features and general operating procedures are described in
Chapters 1 and 3, so please read those chapters first.

All software for the MZ-700 series computers is distributed on cassette tape.
The cassette tape included with the computer contains BASIC 1Z-013B, a high level BASIC
interpreter which enables programming in the BASIC language and makes it possible to utilize
the full capabilities of the MZ-700. The BASIC 1Z-013B interpreter and procedures for its use
are fully described in this manual.

MZ-700 OWNER S MANUAL

CONTENTS

Chapter 1 The world of MZ-700 Series Personal Computer
1. 1 Features of the MZ-700 Series 10
1. 2 Using this Manual 12
1 . 3 An Introduction to the World of Computers 13

Chapter 2 BASIC
2. 1 Introduction to Programming in BASIC 16
2. 2 An Outline of BASIC 21
2. 3 Frequently Used BASIC Commands and Statements 28
2. 4 Built-in Function 71
2. 5 String Function 76
2. 6 Color display state ment 80
2. 7 Color Plotter-Printer Commands 82
2. 8 Machine Language Program Control Statements 91
2. 9 I/O Statements 95
2. 10 Other Statements 96
2. 11 Monitor Function 99

Chapter 3 Operating the MZ-700
3. 1 Appearance of the MZ-700 Series Personal Computers 104
3. 2 Connection to Display Unit 106
3. 3 Data Recorder 108
3. 4 Color Plotter-Printer 110
3. 5 Key Operation 114

Chapter 4 Hardware
4. 1 MZ-700 System Diagram 122
4. 2 Memory configuration 123
4. 3 Memory Mapped I/O ($E000-$E008) 130
4. 4 Signal System of Color V-RAM 133
4. 5 MZ-700 Circuit Diagrams 134

Chapter 5 Monitor Commands and Subroutines
5. 1 Monitor Commands 146
5. 2 Functions and Use of Monitor Commands 147
5. 3 Monitor Subroutines 151

APPENDICES
A. 1 Code Tables 154
A. 2 MZ-700 Series Computer Specifications 157
A. 3 BASIC Error Message List 159
A. 4 Z80A Instruction Set 160
A. 5 Monitor Program Assembly List 164
A. 6 Color Plotter-Printer Control Codes 198
A. 7 Notes Concerning Operation 201

INDEX

[BASIC COMMANDS] () is abbreviated format

®
ABS

71
ASC 78
ATN 71
AUTO (A.) 31
AXIS (AX.) 89

®
BYE . (B.) 35

CHR$ 78
CIRCLE (CI.) 90
CLOSE (CLO.) 68
CLR 59
COLOR (COL.) 80
CONSOLE (CONS.) 98
CONT (C.) 34
COS 71
CURSOR (CU.) 61

®
DEFFN 56
DEF KEY 57
DELETE (D.) 31
DIM 56

END
EXP .

(E.)

•
FOR-NEXT (F. ~N.)

GET
GOSUB
-RETURN (GOS.-RET.)

GOTO (G.)
GPRINT (GP.)

59
71

47

43

49
48
88

®
HSET (H.) 88

s
IFERL 97
IFERN 96
IF-GOSUB (IF-GOS.) 53
IF-GOTO (IF—G.) 53
IF-THEN (IF—TH.) 50
INP 95
INPUT (I.) 42
INPUT/T (I./T) 68
INT 71

0

KEY LIST (K. L.)

LEFTS

35

77
LEN 76
LET 36
LIMIT (LIM.) 92
LINE 85
LIST (L.) 32
LIST/P (L. /P) 84
LN 71
LOAD (LO.) 28
LOG 71

MERGE (ME.)
MID$
MODE GR (M. GR)
MODE TL (M. TL)
MODE TN (M. TN)
MODE TS (M. TS)
MOVE
MUSIC (MU.)

32
77
83
83
83
83
87
65

®
NEW 32

®
ON ERROR

GOTO (ON ERR. G.) 96
ON~GOSUB (ON-GOS.) 55
ON-GOTO (ON~G.) 54
OUT 95

®
PAGE 84
PAI 71
PCOLOR (PC.) 83
PEEK 93
PHOME (PH.) 87
PLOT OFF (PL. OFF) 98
PLOT ON (PL. ON) 98
POKE 92
PRINT (?) • • • • 37
PRINT USING (?USI.) 38
PRINT/P (?/P) 84
PRINT/T (?/T) 68
PRINT [a,/3] (? [a ,0]) 81

©

®
RAD 71
READ-DATA (REA. ~DA.) 44
REM 58
RENUM (REN.) 33
RESET 63
RESTORE (RES.) 46
RESUME (RESU.) 97
RIGHTS 77
RLINE (RL.) 86
RMOVE (RM.) 87
RND 72
ROPEN (RO.) 68
RUN (R.) 34

®
SAVE (SA.) 29

SET 63
SGN 71
SIN 71
SIZE 97
SKIP 84
SPC 62
SQR 71
STOP (S.) 59
STR$ 79

©
TAB 62
TAN 71
TEMPO (TEM.) 67
TEST (TE.) 84
TI$ 60

©
USR (U.) 93

®
VAL 79
VERIFY (V.) 30

®
WOPEN (W.) 68

®
®
®

3VA2

. z n

P.)

a/. 3
{.A1 - ;v

.

TT i .

-

THE WORLD OF MZ-700
SERIES PERSONAL
COMPUTER

Chapter 1

1.1 Features of the MZ-700 Series
In the space of just a few decades, the computer has undergone a dramatic transformation, changing

from an intricate, enormously expensive monster weighing several dozen tons into a compact, inexpensive
device which can be used by almost anyone. Whereas access to computers used to be limited to a few
privileged individuals with special training, the inexpensive, user-friendly machines now available make
the world of computing open to people in all different walks of life. The Sharp MZ-700 series computers
are representative of such machines.

People use words and expressions to convey meanings.
Computers of the Sharp MZ-700 series, however, convey meaning through an ordinary television set

or special printer. Any TV set can be used, either color or black-and-white; or, you may invest in one
of the special display screens available if you want greater resolution and sharpness; you will be surprised
at the beauty which is provided by such displays.

A tape recorder can be connected to computers of the Sharp MZ-700 series to record programs, the
instructions which control the operation of the computer. When printed records of such programs or of
the results of computer processing are desired, they can be obtained on the MZ-700's compact, elegantly
designed 4-color plotter-printer.

M Z - 7 3 1

Note: In the remainder of this manual, the term "MZ-700" will be used to indicate any of the computers
of the MZ-700 series (the MZ-711, MZ-721, and MZ-731).

10

1.2 Using this Manual
Before starting to study programming, why not try playing with the MZ-700 a bit? We're sure you

want to do that anyway, rather than waiting until after you have read this book. First, read "Operating
the MZ-700" in Chapter 3 (you need read only those parts which apply to the model which you are us-
ing). Connect the MZ-700 to a television, read the explanation of procedures for using the keyboard, and
learn which characters are output when each key is pressed.

If you are using the MZ-700 for the first time, read Chapters 1 and 2, in that order. At first, you may
find it difficult to grasp the meanings of the various commands and statements of the BASIC programming
language; however, even if you don' t understand the explanations, be sure to key in the examples as
they are encountered. As you do so, you will gradually develop a concept of what BASIC is all about.

You may skip over those portions of Chapter 2 which start with 2. 8 "Machine Language Program
Control Statements"; however, these sections will prove useful when you have completely mastered
programming in BASIC, or wish to become more familiar with the computer's internal operation.

If you have used the MZ-80K, you will find that the commands and statements of BASIC for the
MZ-700 are used in the same manner as those of the SP-5025 family, so that the MZ-700 can be used
in almost exactly the same manner as the MZ-80K. The major difference between the two is in the color
statements (applicable to both the television screen and the color plotter-printer) which have been added;
however, you should find it easy to become familiar with these by reading sections 2. 6 "Color display
statement" and 2. 7 "Color Plotter-printer Commands." Having done this, you will quickly be captivated
by the power of expanded BASIC.

This manual also includes a discussion of "Operating the MZ-700" (Chapter 3), a reference section
entitled "Hardware" (Chapter 4), a discussion of the "Monitor Commands and Subroutines" (Chapter 5),
and appendices of other information.

Now go ahead and learn everything you can about the MZ-700. We hope that you will find this manual
helpful.

12

1.3 An Introduction to the World of Computers
1.3.1 What is BASIC?

People use language to communicate with each other, and specially designed languages are also used for
communicat ion with computers. BASIC is one such language.

Beginner's All-purpose Symbolic Instruction Code

Just as human beings use languages such as English, French, German, and Japanese for communication,
there are also many different languages which are used for communication with computers. Among these
are BASIC, FORTRAN, COBOL, and PASCAL. Of these, BASIC is the computer language whose struc-
ture is closest to that of the languages used by humans, and therefore is the easiest for humans to under-
stand.

1.3.2 Loading BASIC into the MZ-700
The BASIC language must be loaded into the MZ-700 before it can be used to do any work. A cassette

tape containing this language has been included in the case containing the MZ-700. Now let's teach the
language to the computer ; procedures for doing this are described below. (The explanation assumes that
you are using an MZ-731; however, the procedures are basically the same for all computers of the MZ-
700 series.)

(1) Connect the display as described on page 106.
(2) Turn on the power switch located on the back of the computer.
(3) The following characters are displayed on the screen and a square, blinking pat tern appears. This

pattern is referred to as the cursor.

X * M O N I T O R 1 Z - 0 1 3 A X X
XSf

t 1 Cursor

(4) Set the cassette tape containing the BASIC language in the computer 's data recorder.
(5) Type in the word (l][o][a][d| and press the |CR| key. After doing this, the message ± PLAY appears

on the screen.
(6) Press the data recorder's | PLAY | bu t ton ; the cassette tape starts moving and loading of the BASIC

language begins.
(7) After loading has been completed, the message READY is displayed and the cursor starts to

blink again.

Notes:
* i [I S ® ! ! . . . This is the instruction for loading programs or data from cassette tape.

| CR| This is referred to as the carriage return key, and is mainly used to indicate comple-
tion of entry of an instruction.

13

r
* * MSNfTOR 1Z-013A**

LOAD
J. PLAY
L3ADING BASIC '

BASIC INTERPRETER 1Z-01SBVX.XX
CorrKIQHT 1^83 By SHARP COW
XXXXX BYTES

READY
> 8

This completes loading of the BASIC program. You can talk to the computer using BASIC, and the
computer will respond.

1.3.3 Try Executing a Program
Loading BASIC into the computer doesn' t cause it to do anything; first, it must be given instructions

in BASIC as to what it is to do. Although we will not explain the instructions of BASIC until later, let's
go ahead and try executing a BASIC program right now.

Remove the cassette tape f rom the recorder and turn it over so that the " B " side is up. A sample
program is recorded on this side of the cassette tape. Using the following procedures, load this program
into the computer and execute it.

(1) Af te r turning the tape over and reloading it into the recorder, press the REWIND but ton to
rewind it. Next, type in [2[0][a][d] and press the |CR| key; when the message ± PLAY is display-
ed, press the I PLAY | but ton on the data recorder. This begins loading of the sample program.

(2) When loading is completed, the cassette tape stops, READY is displayed on the screen, and the
cursor starts to blink again.

(3) Now that the program has been loaded into the computer 's memory, try executing it. This is done
by typing in [r]|u]|n] and pressing the |CR| key.

(4) Now let's take a peek at the program. Hold down the 1 SHIFT key and press the 1 BREAK-]
key. This stops program execution and displays the words BREAK and READY, then the cursor
starts to blink again.

(5) Type in [I][T][s][t] and press the | CR| key. This lists the lines of the program on the screen one
after another. (Output of the list can be temporarily stopped at any time by pressing the space
bar.)

(6) If you wish to resume program execution, type in [r][u][n] again and hit the |CR[key.
(7) If you want to run a different program, set the cassette tape containing that program in the

recorder, LOAD the program, then RUN it. The previous program is automatically erased f rom
memory when the new one is loaded, so the computer contains only "the BASIC language and
the last program loaded.

14

BASIC

BASIC
Programming

2.1 Introduction to Programming in BASIC
2.1.1 Direct Mode

Now that you have made some key entries on the MZ-700, you have reached the point where you
are ready to start learning how to program. Before you start, however, try using the MZ-700 as you
would an ordinary pocket calculator. (This is called operating the MZ-700 in the "direct mode".) Key
in the following, just as you would on a pocket calculator.

f4ll+ll9lFllCRl

As you can see, the computer doesn't do anything when it is presented with a problem in this form;
your computer and an ordinary calculator are completely different in this respect, and instructions must
be entered in a form which can be understood by the computer (i.e, in the form prescribed by the BASIC
language). Now try typing in the following.

fpiRimfNim SEEDER]

If you have done this correctly, the number "13" will be displayed and the screen will appear as shown
below.

R E A D Y
P R I N T

1 3
R E A D Y

4 + 9
PRINT is an instruction which tells the computer to display
something on the screen. Here, the computer is instructed to
display the sum of 4 + 9.

Now let's try doing a somewhat more complex calculation.
With BASIC for the MZ-700, the operators (symbols) for the basic arithmetic operations are as follows.

Addition: +
Subtraction: —
Multiplication: X (the asterisk)
Division: / (the slash)
Exponentiation: T

When symbols such a " X ", " + ", and " T " are mixed together in a single arithmetic expression,
the order in which calculations indicated by the symbols are performed is referred to as their priority.
Just as with ordinary algebra, operations can be included in parentheses, so operations within the inner-
most set of parentheses are performed first. Within a set of parentheses, exponentiation is performed
first, followed by multiplication and division (which have equal priority, and therefore are performed
as they are encountered in the expression, from left to right), and then by addition and subtraction.

For example, to obtain the answer to the expression 3 x 6 x C6 + 3 x !9 - 2 x (4 - 2) + II enter the
following.

t s e m e m s i m s H E m s B E E B E E m H i B E n B f f l m m

Now try using the computer to do a variety of other problems in arithmetic.

16

[EXERCISE]

6 + 4
• 6 - 4

2 . 3 X I5 + 9 X (9 - 2) — I + 5

PR I NT (6 + 4) / (6 — 4)
5

P R I N T 3 X (5 + 9 X (9 - 2) - 6 / (4 - 2) > + 5
200

P R I N T (3 + 4) X (5 + 6)
7 7

P R I N T (1 0 + 2 0) / 6 X (2 + 3)
2 5

P R I N T (1 0 + 2 0) / (6 X C 2 + 3))
1

[ANSWER]

3 . (3 + 4) x (5 + 6)

4 . 10+20
6 x (2 + 3)

5 . 10+20
6 x (2 + 3)

After going through the exercises, try typing in [T][I]@[8] and pressing the [CR| key; the answer "40" is
displayed. The reason for this is that BASIC interprets the question mark in the same manner as the
instruction PRINT. Remember this as a convenient, abbreviated form of the PRINT instruction.

Now try entering the following. (The quotation marks are entered by holding down | SHIFT and
pressing the [2] key.)

E e m e m m s o E H E H

As you can see, the characters within quotation marks are displayed on the screen, but the answer is not.
Now try entering the following.

E O f f l m O T E O G E E l G H E E]

This causes ABCDEFG to be displayed on the screen.

In other words, using the PRINT instruction together with quotation marks tells the MZ-700 to display
characters on the screen exactly as they are specified between quotation marks. The characters within
any set of quotation marks are referred to as a "character string" or "string".

Now go on to enter the following.

E e m e m E m s B E B m s s i H E J E E]

This causes the following to be displayed on the screen.

4 + 9 = ^ 1 3 (The "i_," symbol indicates a space. Actually, nothing is display-
ed on the TV screen in the position indicated by this symbol.)

In other words, the instruction above tells the computer to display both the character string "4 + 9 ="
and the result of the arithmetic expression "4 + 9 =". Now try entering the following.

fpiiRimif^mrni^RfoiFiFirTii^i+ifQiicH

After typing in this entry, the following should be displayed on the screen.

The reason the screen appears different this time is because the PRINT instruction displays items of
information (character strings or the results of arithmetic expressions) differently depending on whether
they are separated from each other by semicolons or commas.

4 + 9 = 1 3

Semicolon (;)
Comma (,) .

Instructs the computer to display items immediately adjacent to each other.
Instructs the computer to display the item at the position which is 10
spaces (columns) from the beginning of the display line.

If you have the MZ-731 (or a separate plotter-printer), now try appending the characters T /P j to the
end of the word PRINT.

B e m P f f l O T H s m ^ F F i m s m ^ E R i

This time nothing appears on the display screen, but the same result is printed out on the plotter-printer.
In other words, the T /P j symbols switch output from the display to the plotter-printer.

This completes our explanation of procedures for using the MZ-700 as you would a pocket calculator.

Note: PRINT "5 + 8 ="; 5 + 8 displays 5 + 8 = 1 3 , while PRINT 11 5 - 8 ="; 5 - 8 displays 5 - 8 = - 3 .
The reason for this is that one space is always reserved for a symbol indicating whether the result is
positive or negative, but the symbol is only displayed in that space when the result is negative.

2.1.2 Programming
Let's try making a simple program. However, first let's make sure that the area in the computer's

memory which is used for storing programs is completely empty. Do this by typing in NEW and pressing
the|CRlkey. (This instruction will be explained in more detail later; see page 32.)

Type in the following program exactly as shown.

1 0 A = 3 E E] Assigns the value 3 to A.
2 0 B = 6[CR] Assigns the value 6 to B.
3 0 C = A + B f f l Assigns the result of A + B to C.
4 0 9 OICRI Displays the value assigned to C.
50 E N PICRI Instruction indicating the end of the program.

The numbers 10, 20, 30, and so forth at the left end of each line are referred to as program line numbers,
or simply line numbers; these numbers indicate the order in which instructions are to be executed by the
computer. Instructions on the lowest numbered line are executed first, followed by those on the next
lowest numbered line, and so forth. Line numbers must be integers in the range from 1 to 65535.

The line numbers 1, 2, 3, and so forth could have been used in this program instead of 10, 20, 30.
However, it is common practice to assign line numbers in increments of 10 to provide room for later
insertion of other lines.

Now let's check whether the lines have been correctly entered. Type in LIST and press the |CR[key;
this causes a list of the program lines to be displayed. Notice that the question mark entered at the beginn-
ing of line 40 has been converted to PRINT, the full form of the command for displaying data on the
display screen.

Novelet's try executing the program.

[RlPfNlfCRl

Enter RUN and press the |CR| key; the result is displayed on line 9 of the screen.
Now we will explain procedures for making changes in programs. First, let's change the instruction on

line 20 from B = 6 to B = 8. Type in LIST 20 and press the [CR] key; this displays just line 20 of the
program on the screen. Next, use the cursor control keys (the keys at the right side of the keyboard which
are marked with arrows) to move the cursor to the number r 6 j , then press the 00 key and the |CR| key in
succession to make the change. Note that the change is not completed until the|CR|key is pressed.

Now type in LIST and press the |CR| key again to confirm that the change has been made.

Next, let's change line 30 of the program to C = 30 X A + B.
Using the cursor control keys, move the cursor so that it is positioned on top of the "A" in line 30,

then press the | INST | key three times in succession. This moves "A + B" three spaces to the right.

Cursor position

Now type in [3][o][x] and press the |CR| key to complete the insertion. LIST the program to confirm that
the change has been made correctly.

Now change line 30 again so that it reads "C = 30 X A" instead of "C = 30 X A + B". Do this by
moving the cursor to the position immediately to the right of B and pressing the | DEL 1 key two times;
this deletes "+B". Press the |CR| key to complete the change.

Now LIST the program and confirm that it appears as shown below.

1 0 A = 3
2 0 B = 8
3 0 C = 3 0 X A
4 0 P R I N T C
5 0 E N D

To delete an entire line from a program, simply enter the line number of that line and press the |CR| key;
delete line 20 in this manner, then LIST the program to confirm that the line has been deleted.

We could insert the instruction "?A" between lines 30 and 40, by typing in 35_?A and pressing the
| CR[key. Try this, then LIST the program to confirm that the line has been added. Now delete line 35 by
entering 35 and pressing the |CR| key.

The process of changing or inserting lines in a program in this manner is referred to as editing, and the
program which results from this process is referred to as the BASIC text. Each line of the program can
include a maximum of 255 characters, including the line number, but the maximum length is reduced
by four characters if the question mark is used to represent the PRINT instruction.

At this point, the program contained in the computer's memory should be as follows.

1 0 A = 3
3 0 C = 3 0 X A
4 0 P R I N T C
5 0 E N D

Now we will use this program to explain the procedures for recording programs on cassette tape.
Prepare a blank cassette tape (one on which nothing has been recorded) and set it in the data recorder,

19

then type in the following from the keyboard.

SAVE 11 CALCULATION" J

Here, "CALCULATION" is the name which is to be recorded on the cassette tape to identify the
program. Any name may be assigned, but the name connot be longer than 16 characters.

Note: The J symbol in the example above represents the |CR| key.

When the[CR]key is pressed, " ± RECORD. PLAY" is displayed on the screen. Pressing the I RECORD!
button on the data recorder at this time records the program on cassette tape.

The name which is assigned to the program is referred to as its file name. Specification of a file name is
not absolutely necessary, but from the point of view of file management it is a good idea to assign one.
Of course, the file name is recorded on the tape together with the program.

When recording is completed, READY is displayed to indicate that the computer is finished. Now press
the STOP button on the data recorder and rewind the tape.

The program is still present in the computer's memory after recording is completed, so type in NEW J
to delete it (enter LIST J to confirm that the program has been deleted). Now let's try using the LOAD
instruction to load the program back into memory from the cassette tape as described on page 14.

When a cassette tape contains many programs, that which is to be loaded can be identified by specifying
the program's file name together with the LOAD instruction as follows.

LOAD "CALCULATION" J

Specifying the file name in this manner tells the computer to ignore all programs on the tape other than
that with the specified name. If the file name is not specified (if only LOAD J is entered), the computer
loads the first program encountered.

Note: When using cassette recorder other than the data recorder built into the MZ-731, and MZ-721 read
the instructions on page 109 before attempting to record or load programs.

The LIST command shown above can be used in a variety of different ways. For example, during
editing LIST 20 J can be used to display just line 20 of a program. The entire program can be listed
by entering LIST J . Other uses of the instruction are as follows.

omis im B l l l C R l Lists all lines of the program to line 30.
• m e m [3][0]B[CH] Lists all lines from line 30 to the end of the program,
• m o m m E B E E a E E] Lists all lines from line 30 to line 50.
o m e m mSJESBl Lists line 30.

When editing programs by listing individual lines with the LIST instruction, press the [CLR | key (the
| INST | key) together with the | SHIFT ~| key when the screen becomes distractingly crowded. This
clears the entire screen and moves the cursor to its upper left corner. (This does not affect the program
in memory). Afterwards, enter LIST < line number > J again to list the line which is to be edited.

20

2.2 An Outline of BASIC
2.2.1 Constants

A constant is a number or string of characters which is written into a program, and which is used by
that program as it is executed. Types of constants include numeric constants, string (character) constants,
and system constants. These are explained below.

Numeric constants
A numeric constant is a number which has a maximum of 8 significant digits. The exponent of such

constants must be in the range from 10"38 to 1038 (the maximum range is 1.548437E-38 to 1.7014118E
+38).

(Examples:)
- 1 2 3 . 4
0 . 7 8 9
3 7 4 8 . 0
3 . 7 E + 1 2 3 . 7X101 2 1
7 . 6 5 E - 9 7 . 6 5 X 1 0 " 9 E indicates the exponent.
1 4 . 8 E 9 1 4 . 8 X 1 0 9 J

Hexadecimal numbers: Numbers can be specified in hexadecimal format only for direct memory
addressing with the LIMIT, POKE, PEEK, and USR instructions (see pages 92 and 93), and are repre-
sented as four digits preceded by a dollar sign ($).

(Examples:)
L I M I T S B F F F
U S R C S C 0 0 0 , X S) X$ represents a string variable.

String constants
String constants are letters and symbols between quotation marks which are included in programs to

allow titles or messages to be output to the display screen or printer. The characters " 4+9" appearing on
page 17 are a character constant, and not a numeric constant. With BASIC, a string constant may consist
of a maximum of 255 characters. (Not including quotation marks which cannot be included in a string
constant.)

. (Examples:)
11 A B C D E F G 11

11 1 2 3 4 5 6 7 8 9 1 0 "
D A T A A B C D E F G Quotation marks are not needed when string constants are

specified in a DATA statement; however, they may be used
if desired.

21

2.2.2 Variables
The word "variable" has a different meaning with BASIC than it does when used with regard to alge-

braic expressions. To put it in very simple terms, the variables of BASIC are "boxes" in memory for
the storage of numbers and characters (character strings). The types of variables used in BASIC include
numeric variables, string variables, and system variables.

System variables Numeric variables String variables

SIZE

Numeric variables
Only numeric data can be stored in numeric variables.
Names must be assigned to these variables in accordance with the following rules.
i) A variable name may consist of any number of characters, bu t only the first two characters are

actually used by the BASIC interpreter to identify the variable. Further , the first character of the
variable name must be a letter (A to Z), either letters or numerals may be used for subsequent
characters.

ii) It is not possible to use the names of BASIC commands and statements as variable names.

Correct variable names: ABC, XY, ABCD, A12345
(ABC and ABCD are regarded as the same variable.)

Incorrect variable names: PRINT (PRINT is a BASIC statement)
C@ (Variable names may no t include special charac-

ters.)

(Example:)
1 0 A = 5 Stores 5 in variable A.
2 0 P R I N T A Displays the value stored in variable A.

22

String variables
String variables are variables which are used for storing character strings. Names assigned to string

variables must conform to the same rules as those assigned to numeric variables; however a dollar sign
($) is appended to the end of string variable names to differentiate them from other types of variables.

String variables may be used to store a maximum of 255 characters. Such variables are blank until
string data is assigned to them.

The only operator which can be used in expressions including more than one string variable is the
"+" sign.

(Example:)
1 0 A $ = " A B C D " Substitutes the character string ABCD into string variable A$.
2 0 B $ = " X Y Z " Substitutes the character string XYZ' into string variable B$.
3 0 C $ = A $ + B $ Substitutes the sum of string variables A$ and B$ (ABCDXYZ)

into string variable C$.
4 0 P R I N T C S Displays the contents of string variable C$.

System Variables
System variables contain values which are automatically changed by the BASIC interpreter. The system

variables are size (the variable which indicates the amount of BASIC free area) and TI$ (a 6-digit variable
which contains the value of the system's 24-hour clock).

(Examples:)
1 0 T I $ = " 0 1 3 5 0 0 " ••• This statement assigns the value corresponding to 1:35:00 A.M.

to system variable TI$ and sets the system clock to that time.
2 0 P R I N T T I S Executing this statement displays the current time of the system

clock (24-hour time).

Display format:
1 3 2 8 1 9 Indicates that the time is 13:28:19.

P R I N T S I Z E J This displays the current amount of free space in the computer 's
memory (in other words, the amount of space which is available
for additional program lines). The value indicated by this variable
is reduced each time a program line is entered.

23

2.2.3 Arrays
Arrays can be thought of as shelves within the computer's memory which contain rows of boxes, each

of which represents a variable. The boxes on these shelves are arranged in an orderly sequence, and are
identified by means of numbers; these numbers are referred to as subscripts, because they are subscripted
to the name which identifies the entire group of boxes.

Such shelves of boxes are set up simply by executing an instruction which declares that they exist;
this is referred to as making an array declaration. The array declaration specifies the number of boxes
which are to be included in each set of shelves (i.e., the size of the shelves) and the manner in which
they are to be arranged.

The boxes in each unit of shelves may be arranged in sequences which have any number of dimensions.
Thus, a one-dimensional array can be thought of as a single shelf which holds, one row of boxes; a two-
dimensional array can be thought of as a stack of shelves, each of which holds one row of boxes; and
so forth. These boxes, or variables, are referred to as the array's elements.

The number of subscripts used to identify each of the array elements of a corresponds to the number
of dimensions in that array. For example, each of the elements in a one-dimensional array is identified by
a single subscript which indicates the box's position in the row; each of the elements in a two dimensional
array is identified by two subscripts, one which identifies the box's row, and one which indicates the box's
position within that row; and so forth. The numbers which are used as the subscripts start with zero, and
have a maximum value which is determined by the size of each of the array's dimensions (i.e., the number
of boxes in each row, etc.).

The maximum size of an array is limited by the amount of free space which is available in the com-
puter's memory (i.e., by the size of the program, the number of items of data which are to be stored
in the array, and so forth). The syntax of BASIC places no restrictions on the number of dimensions
which can be used for any array, but in practice the number of dimensions is limited by the amount of
free memory space which is available for storage of array variables.

An array must be declared before values can be stored in any of its elements.

(Example 1)
1 0 D I M
2 0 D I M

A (5) -
X $ (8)

Declares 1-dimensional numeric array A with 6 elements.
Declares 1-dimensional string array X$ with 9 elements.

1 0 D I M ACS), X S C 8) Performs the same function as lines 10 and 20 above.

(Example 2)
1 0 D I M BC5, 5) Declares 2-dimensional numeric array B with 6 x 6

elements.
2 0 D I M Y S C 5 , 8) Declares 2-dimensional string array Y$ with 6 x 9 elements.

1 0 D I M BC5, 5) , Y S C 5 , 8) , AC5) , X S C 8) Declares two numeric arrays
and two string arrays.

(Example 3)
1 0 D I M CC3, 3 , 3) Declares 3-dimensional array C with 4 x 4 x 4 elements.

Note: Different names must be used for each array which is declared; for example, the instruction DIM
A(5), A(6) is not a legal array declaration.

Try executing the program shown below and check the results which are obtained.

1 0 D I M AC2) , B S C 2)
2 0 A (0) = 2 6
3 0 AC1) = 9
4 0 A (2) = —1 0 0
5 0 B $ (0) = " A B C ".
6 0 B $ (1) = " X Y Z "
7 0 B $ (2) = " M Z - 7 0 0 "
8 0 P R I N T AC1)
9 0 P R I N T B $ (2)
1 0 0 P R I N T AC2)
1 1 0 P R I N T B $ (0) + B $ (1)
1 2 0 P R I N T A (0)

Note: Individual variables within an array, such as A(5) and X$(8), are referred to as an array's elements.
Numeric constants, numeric variables, and numeric arrays are collectively referred to as numeric
expressions, and string constants, string variables, and string arrays are collectively referred to as
string expressions.

25

2.2.4 BASIC Operations
In BASIC, arithmetic operations take a slightly different form than is the case with ordinary arithmetic.

The various arithmetic operators used in BASIC are shown in the table below. The priority of these
operators when they are used together within a single expression (the sequence in which the different
arithmetic operations are performed) is as indicated by the numbers in the left column of the table;
however, operators within parentheses always have the highest priority.

Arithmetic operations

Operator Operation Format

1 t Exponentiation X t Y (Indicates XY ; i.e., X to the Yth power.)

2 — Negation - X

3 Multiplication,
division X X Y (X times Y), X/Y i.e., X divided by Y)

4 Plus, minus X + Y (X plus Y), X - Y (X minus Y)

(Example 1)
1 0 A = 3 X 8 / 4 When a series of operators with the same priority are used in

an arithmetic expression, calculations are carried out from left
to right; thus, the result of the expression at left is 6.

(Example 2)
1 0 A = 6 0 - 6 X 8 + 2---- Result is 14.
2 0 B = (6 0 - 6) X 8 + 2 Result is 434.

(Example 3)
1 0 A = 2 T 3 Assigns 2 to the 3rd power to A; result is 8.

String operations
String operations are used to create new strings of character data by concatenating (linking) two or

more shorter strings. The only operator which can be used in string operations is the "+" sign.

(Example)
P R I N T " A B C " + " D E F " J » Displays the character string "ABCDEF".

26

2.2.5 Initial settings
Initial settings made when BASIC 1Z-013B is started are as described below.

Keyboard
1) Operation mode: Normal (alphanumeric)
2) Definable function keys

R U N " + C H R S (1 3)
L I S T "
A U T O "
R E N U M "
C O L O R "

I SH I FT l +
I SH I FT l+
I SH I FT l +
I SH I FT l +
I SH I FT 14-

Note A carriage return code is included in the definition of function key F1 .

• Built-in clock
The initial value set to system variable TI$ is "000000".

• Music function
1) Musical performance tempo: 4 (moderato, approximately medium speed)
2) Note duration: 5 (quarter note J)

C H R $ ("
D E F K E Y C
C O N T "
S A V E "
L O A D "

• Control keys and control characters
The control keys are keys which perform special functions when pressed together with the I CTRL I key.

Functions of these keys and their corresponding ASCII codes are as shown in the table below.

Control codes]

CTRL + ASCII code
(decimal)

E 5

F 6

M 13
P 16
Q 17
R 18
S 19
T 20
U 21
V 22

W 23

X 24
Y 25

Function

Selects the lowercase letter input mode for alphanumeric
characters.
Selects the uppercase letter input mode for alphanumeric
characters.
Carriage return (|CR[).
Same as the | DEL 1 key.
Moves the cursor down one line (O) .
Moves the cursor up one line (Hi).
Moves the cursor one column (character) to the right (H) .
Moves the cursor one column (character) to the left (•) .
Moves the cursor to the home position ([HOME |).
Clears the screen to the background color ([CLR]).
Places the computer in the graphic character input mode
(1 GRAPH |).
Inserts one space (| INST |).
Places the computer in the alphanumeric input mode.

• Other
The lower limit of the BASIC text area is set to address SFEFF; this is the same as LIMIT MAX is

executed).
For initial printer settings, see the discussion of the printer.

-27

2.3 Frequently Used BASIC Commands and
Statements

2.3.1 Program file input/output instructions
2. 3. 1. 1 LOAD (abbreviated format : LO.)

Format
Function

LOAD or LOAD 1 filename"
This command loads the specified BASIC text file or a machine language file to be
linked with a BASIC program f rom cassette tape.

(See pages 14 and 20.)

Note

Only BASIC text files and machine language programs can be loaded with this
command. When the file to be loaded is a BASIC text file, the current program is
cleared f rom the BASIC text area when the new program is loaded.
When loading a machine language routine to be linked with a BASIC program, the
LIMIT statement must be executed to reserve a machine language progam area
in memory. Further , the applicable machine language program file is executed as
soon as loading is completed if the loading address is inside that area. (In this case,
the BASIC text is not erased.)

The LOAD command can be used within a program to load a machine language
program file.

S O O O O

$1 200
Monitor

BASIC interpreter

BASIC text area
LIMIT ($9FFF)

($ A O O O)

S F E F F

Machine language
area

Note: The lower limit of the BASIC text area shifts according to the size the program text loaded.

28

2. 3. 1. 3 VERIFY (abbreviated format : V.)

Function This command assigns a file name to the BASIC program in the computer 's memory
and saves it on cassette tape.

Type in
SAVE " N A M E " [CRl.

Assign any name of
up to 16 characters.

Screen display (<f R E C O R D ' P L A Y) Ready for recording!!

o
Tape recorder
operation Press the RECORD 1 button.) Recording start!!

o
Screen display WRITING- " N A M E J Recording in progress.

o NAME is not displayed if no pro-
gram file name has been specified.

Screen display R E A D Y ^) Recording completed!!

Note This command saves only the BASIC program text (i.e., the program text displayed
by executing the LIST command); it does not save any machine language program in
the machine language area.
The file name specified is recorded on tape together with the BASIC text file;
specify any name desired using up to 16 characters. If no file name is specified,
the program is recorded wi thout a file name; however note that this can make file
management difficult if more than one program is recorded on a single tape.

29

2. 3. 1. 3 VERIFY (abbreviated format: V.)

Format
Function

VERIFY or VERIFY "filename"
This command is used to confirm that programs have been properly recorded on
tape by the SAVE command. This is done by playing the tape and comparing the
program read with the program contained in memory. If both programs are the
same, "OK" is displayed; if they are different, "READ error" is displayed.
In the latter case, save the program again.

Then use the VERIFY comand!

VERIFY I want to check whether my program has
been properly recorded. . .

L
(S

(1) Rewind the tape.

(3) A PLAY is displayed on the TV
screen.

d

(2) Type in VERIFY " N A M E '
(" N A M E " is not necessary if no
file name has been assigned).

(4) Press the |PLAY[button on the data recorder

!5) FOUND "%. This is displayed if the program finds another program
before that which is to be verified. If that program has

J ^ \ ^Jy V a n a m e . it is displayed where indicated by "% x x x

0 6) FOUND " N A M E " Displayed when the program to be verified is found.

V ^
(8) READ error, / ~ (7) VERIFY ING " N A M E

READY Indicates that the tape fi le is being
Indicates that the progrannwas\J compared wi th the program in
not correctly recorded; re-record)\rnemory.
i t w i th the SAVE command.

30

2.3.2 Text editing commands
2. 3. 2. 1 AUTO (abbreviated format: A.)

Format

Function

Example

AUTO or AUTO Ls, n
Ls Starting line number
n Line number increment

This command automatically generates program line numbers during entry of
BASIC program statements.
(Example 1)
A U T O J

1 0 J

2 0 J

30 J

(Example 2)
A U T O 3 0 0 ,
3 0 0
3 0 5
3 1 0

5 J
. . . . j

. . . .

.... J

Automatically generates program line numbers with an increment of 5, starting with
line 300.

(Example 3)
A U T O 1 0 0 J
1 0 0 J
1 1 0 J
1 2 0 J

(Example 4)
A U T O , 2 0 J
1 0 J
3 0 J

5 0 J

Generates program line numbers with an increment
of 10, starting with line 100.

Generates program line numbers with an increment
of 20, starting with line 10.

Note: The AUTO command is terminated by pressing | SHIFT | and| BREAK |.

2. 3. 2. 2 DELETE (abbreviated format: D.)

Format

Example

D E L E T E L s - L e -
D E L E T E - L e

D E L E T E Ls-

Deletes program lines from Ls to Le.
Deletes all program lines from the beginning of the
program to line Le.
Deletes all program lines from line Ls to the end of
the program.
Deletes line Ls. D E L E T E L s

(Example 1)
D E L E T E 1 5 0 — 3 5 0 J Deletes all program lines from 150 to 350.
(Example 2)
D E L E T E - 1 0 0 J - -
(Example 3)
D E L E T E 4 0 0 - J - -

•Deletes all program lines up to line 100.

•Deletes all program lines from 400 to the end
of the program.

31

2. 3. 1. 3 VERIFY (abbreviated format : V.)

Format

Function

L I S T
L I S T L s — L e Ls indicates the starting line number and Le indicates
L I S T Ls— the ending line number.
L I S T - L e .
This command lists all or part of the program lines contained in the BASIC text
area on the display screen.

Lists the entire program.
Lists all lines of the program to line 30.
Lists all lines of the program from line 30 to the end.

; Lists all lines of the program from line 30 to line 50.
Lists line 30 of the program.

Output of the program list to the display screen can be temporarily interrupted by
pressing the space bar; listing is then resumed when the space bar is released. T o
terminate list ou tput , press the | BREAK] key together with the 1 SHIFT] key.

2. 3. 2. 4 LIST/P (abbreviated format : L./P)

L I S T J

L I S T - 3 0 J
L I S T 3 0 — J
L I S T 3 0 — 5 0 J
L I S T 3 0 J

Format

Function

LIST/P <Ls—Le>
L s Starting line number
L e Ending line number
This command lists all or part of the program in the BASIC text area on the printer.
The range of program lines to be listed is specified in the same manner as with the
LIST command described above.

Note : The angle brackets < . . . > in the above indicate that the enclosed item is optional.

2. 3. 2. 5 MERGE (abbreviated format : ME.)

MERGE or MERGE " filename"
The MERGE command is used to read a program f rom cassette tape. When a pro-
gram is read using this command, it is appended to the program in memory. If
" f i lename" is omitted, the computer reads the first file encountered on the cassette
tape.

If any line numbers in the program read are the same as those of the program in
memory, corresponding lines of the program in memory are replaced with lines
of the program read.

2. 3. 2. 6 NEW

NEW
The NEW command erases the BASIC text area and clears all variables. Execute
this command when you wish to clear the program in memory prior to entering
another program. This command does not erase the machine language area reserved
by the LIMIT statement.
Since the BASIC text area is automatically cleared by the LOAD command, it is
no t necessary to execute this command before loading a BASIC program f rom
cassette tape.

Format
Function

32

2. 3. 2. 7 RENUM (abbreviated format: REN.)

Format R E N U M
R E N U M Ln
R E N U M Ln, Lo, n

Ln New line number
Lo Old line number
n Increment

Function This command renumbers the lines of a BASIC program. When this command is
executed, line numbers referenced in branch statements such as GOTO, GOSUB,
ON ~ GOTO, and ON ~ GOSUB are also reassigned.

R E N U M Renumbers the lines of the current
program in memory so that they start
with 10 and are incremented in units
of 10.

R E N U M 1 0 0 Renumbers the lines of the current
program in memory so that they start
with 100 and incremented in units of 10.

R E N U M 1 0 0 , 5 0 , 2 0 Renumbers lines of the current program
in memory starting with line number
50; line number 50 is renumbered to
100, and subsequent line numbers are
incremented in units of 20.

Example~| The example below shows the result of executing RENUM 100, 50, 20 for a sample
program.

(Before renumbering) (After renumbering)
5 0 A = 1
6 0 A = A + 1
7 0 P R I N T
1 0 0 G O T O

A
60

1 0 0 A = 1
1 2 0 A = A + 1

' l 4 0 P R I N T A
1 6 0 G O T O 1 2 0

Note When specifying the new and old line numbers, the new line number specified must
be larger than the old line number. Note that an error will result if execution of this
command results in generation of a line number which is greater than 65535.

2.3.3 Control commands
2. 3. 1. 3 VERIFY (abbreviated format : V.)

RUN or RUN Ls
Ls Starting line number
This command executes the current program in the BASIC text area.
If the program is to be executed starting with the first program line, just enter
RUN and press the |CR| key. If execution is to begin with a line other than that
the lowest line number , type in RUN Ls (where Ls is the line number at which
execution is to start) and press the [CR] key.
When this command is executed, the BASIC interpreter clears all variables and
arrays before passing control to the BASIC program.

(abbreviated format : C.)

CONT
The CONT command is used to resume execution of a program which has been
interrupted by pressing | SHIFT ~| + 1 BREAKl or by a STOP statement in the
program. This command can also be used to continue execution of a program which
has been interrupted by an END statement; however, in this case care must be taken
to ensure that lines following the END statement are not the lines of a subroutine.
Examples of situations in which the CONT command can and cannot be used are
shown in the table below.

Program continuation possible Program continuation not possible

• Program execution stopped by
pressing | SHIFT | + | BREAK |.

• Program execution stopped by a
STOP command.

• Program execution stopped by
pressing | SHIFT | + | BREAKl

• Before a RUN command has been
executed.

• " R E A D Y " displayed due to an
error occurring during program
execution.

• Cassette tape operation interrupted
bv pressing I SHIFT | + | BREAK j.

while the program was a waiting
input for an INPUT statement. • Program execution stopped during

execution of a MUSIC statement.

• Program execution stopped and
"READY" displayed after
execution of an END statement.

Format

Function

7 3 1 m N T

34

2. 3. 3. 3 BYE (abbreviated format: B.)

BYE
This command returns control of the computer from BASIC interpreter 1Z-013B
to the monitor program in RAM. (The monitor commands are explained starting
on page 99.)

2. 3. 3. 4 KEY LIST (abbreviated format: K. L.)

KEY LIST
This command displays a list of the character strings assigned to the definable
functions keys.

K E Y L 1 S T
D E F K E Y (1) = 11 R U N " + C H R $ (1 3)
D E F K E Y (2) = 11 L I S T ' "
D E F K E Y (3) = " A U T O "
D E F K E Y (4) = « R E N U M "
D E F K E Y (5) = 11 C O L O R "
D E F K E Y (6) = 11 C H R S ("
D E F K E Y (7) = " D E F K E Y ("
D E F K E Y (8) = " C O N T "
D E F K E Y (9) = 11 S A V E "
D E F K E Y (1 0) = " L O A D "
R E A D Y

35

2.3.4 Assignment statement
LET

Format

Function

LET v = e or v = e
v . . . Numeric variable or array element, or string variable or array element.

e . . . Numeric expression (consisting of one or more constants, variables, or array
elements) or string expression (consisting of one or more constants, variables,
or array elements).

This statement assigns the value (numeric or string) specified by e to the variable
or array element specified by v. As shown in the examples below, LET may be
omitted.

Example 1 0 A = 1 0 1 0 L E T
2 0 B = 2 0 2 0 L E T
3 0 A = A + B 3 0 L E T
4 0 P R I N T A 4 0 P R I N
5 0 E N D 5 0 E N D

R U N J
30 The two programs above produce exactly

the same result.

The following are examples of incorrect use of the LET statement.
2 0 A $ = A + B Invalid because different types of variables (string and

numeric) are specified on either sides of the "=" sign.
2 0 L O G (L K) = L K + 1 Invalid because the left side of the statement

is not an numeric variable or array element.

2.3.5 Input/output statements
Input/output statements are the means by which data is submitted to the computer for processing,

and by which the results of processing are output to the TV screen or printer.

2. 3. 5. 1 PRINT

Format

Function

PRINT variable
•

constant
1 ? expression

< > variable
• constant
.expression J

This statement outputs the values of variables, constants, character strings, or
expressions to the display screen. Values are displayed starting at the cursor's
current location on the screen. (To move the cursor down one line on the screen,
execute the PRINT statement without specifying any variables, constants, or ex-
pressions.)
To simplify key input when entering this statement, a question mark (?) may
be typed instead of the word PRINT.

Numeric data is displayed by this statement in one of two formats: real number
format or exponential format.

Real number format
Numeric values in the range from 1 x 10"8 to 1 x 108 are displayed in real

number format.

-1 - 9 9 9 9
6 3 5 9 8 7 5 7
0. 00000001
9 9 9 9 9 9 9 9

•1 x 10 - 8

Exponential format
Numbers which cannot be displayed in real number format are displayed in

exponential format.

- . 3 1 4 1 5 E + 9 —0.31415 x 109

. 5 1 3 6 0 6 E — 2 0 0.513606 x 10":20

A plus (+) or minus (—) sign is always displayed ahead of the exponent (the number
following "E") of a number displayed in exponential format.

Some special methods of using the PRINT statement are shown below.

P R I N T

P R I N T

P R I N T
P R I N T
P R I N T
P R I N T

D
a

Clears the entire screen and moves the cursor to the home
position (the upper left corner of the screen).
Moves the cursor to the home position without clearing the
screen.
Moves the cursor one column to the right.
Moves the cursor one column to the left.
Moves the cursor up one line.
Moves the cursor down one line.

37

P R I N T " B D D D D D A " Clears the screen, then displays the character " A " at the begin-
ning of the sixth line f rom the top.

Note : The vertical bars I...I in the format description indicate that any one of the enclosed items may
be selected.

To enter the special characters for cursor control, press the | GRAPHl key; this places BASIC in the
graphic character input mode and changes the form of the cursor to "11" . Next, enter the characters
as follows.

E)
•

Press the
Press the
Press the
Press the
Press the

CLR key.
HOME 1 key.

key.
key.
key.

Press the • key.

After entering a special character, press the I ALPHA |key to return f rom the graphic character input
mode to the alphanumeric input mode.

2. 3. 5. 2 PRINT USING (abbreviated format : ?USI.)

PRINT USING " format string"; variable < Format

Function

variable . . . >

This statement displays data on the screen in a specific format. The format specifi-
cation consists of a character or string of characters in quotat ion marks, and is
specified immediately after the word USING as follows.
(1) Format specification strings for numeric values

(a) #
The number sign is used to specify the maximum number of digits to be
displayed. If the number of digits in the number displayed is smaller than
the number of # signs specified in " fo rmat string", numbers are right-
justified in the field defined by that string.
(Example:)
10 A = 123
20 PRINT USING " # # # # " ; A
RUN J

123

38

A period may be included in a format string consisting of # signs to specify
the position in which the decimal point is to be displayed. The number of
signs to the right of the decimal point specifies the number of decimal
places to be displayed.
(Example:)
10 A = 12.345 :B = 6.789
20 PRINT USING " # # # . # # " ; A
30 PRINT USING " # # # . # # " ;B
RUN J
^ 12.34
^ 6 . 7 9

(c) ,
Commas may also be included in "format string" to indicate positions in
which commas are to be displayed. Numbers are right-justified in the same
manner as when # signs are used alone.
(Example:)
10 A = 6345123 : B = 987324
20 PRINT USING " # , # # # , # # # " ; A
30 PRINT USING ' # , # # # , # # # " ;B
RUN J
6,345,123
^ 9 8 7 , 3 2 4

(d) + and -
A plus (+) or minus (—) sign may be included at the end of " format string"
to specify that the sign of the number is to be displayed in that position
instead of a space. For instance, PRINT USING " # # # # + " will cause the sign
to be displayed immediately after the number. (PRINT USING " # # # # - "
causes a minus sign to be displayed following the number if the number is
negative; if the number is positive, only a space is displayed in that position.)
Further, a plus sign may be specified at the beginning of a format string to
indicate that the number's sign is to be displayed in that position regardless
of whether it is positive or negative.
(Examples)
PRINT USING " ####+1 1 ; - 1 3
t - ,^ 13—

PRINT USING + # # # # " ; 25

(Note:)

Although a minus sign will be displayed if one is specified at the beginning
of the format string, it will have no relationship to the sign of the number.

39

(e) X X
Specifying a pair of asterisks at the beginning of the format string indicates
that asterisks are to be displayed in the positions of leading zeros.
(Example:)
10 A = 1234
20 PRINT USING " X X # # # # " ; A
RUN J

X X 1 2 3 4

(f) £ £
Specifying a pair of pound signs at the beginning of the format string indi-
cates that a pound sign is to be displayed in the position immediately to the
left of the number.
(Example:)
10 A = 123
20 PRINT USING " £ £ # # # # " ; A
RUN J

- - £ 1 2 3

(g) $$
Specifying a pair of dollar signs at the beginning of the format string indi-
cates that a dollar sign is to be displayed in the position immediately to the
left of the number.

(h) t t t t
Four exponential operators may be included at the end of a fo rmat string
to control display of numbers in exponential format .
(Example:)
10 A = 51123
20 PRINT USING " # # . # # # 1 1 t t " ; A
RUN J
- 5 . 1 1 2 E + 0 4
In this case, the first number sign is reserved for display of the sign of the
number.

(i) Extended list of operands
A list of variables may be specified following a single PRINT USING state-
ment by separating them f rom each others with commas or semicolons.
When this is done, the format specified in "format string" is used for display
of all resulting values.
(Example:)
10 A = 5 . 3 : B = 6.9 : C = 7.123
20 PRINT USING " # # . # # # " ; A, B, C
RUN J

— 5.300— 6.900 ^ 7.123

(2) Format specification for string values
(a) !

When the values being displayed are character strings, specifying an excla-
mation mark in "format string" causes just the first character of the string
specified to be displayed.
(Example:)
10 A$ = CDE"
20 PRINT USING "!" ; A$
RUN J
C

(b) &
Specifying — — — in the format string causes the first 2 + n charac-
ters of specified string expressions to be displayed (where n is the number
of spaces between the two ampersands). If fewer than 2 + n characters
are specified in a string expression, characters displayed are left-justified
in the field defined by " & - - - - &".
(Examples:)
10 A$ = "ABCDEFGH "
20 PRINT USING ; A$
RUN J
ABCDEF
10 A$ = "XY"
20 PRINT USING 11 & ^ - - &" ; A$
RUN J
XY

(3) String constant output function
When any character other than those described above is included in the format
string of a PRINT USING statement, that character is displayed together with
the value specified following the semicolon.
(Example:)
10 A = 123
20 PRINT USING " DATA####" ; A
RUN J
DATA^123

(4) Separation of USING
Usually, PRINT and USING are specified adjacent to each other; however,
it is possible to use them separately within the same statement.
(Example:)
10 A = - 1 2 : B = 14 : C = 12
20 PRINT A; B; USING " # # # # " ; C

Normal PRINT function USING function
RUN J
- 1 2 - 1 4 ^ 1 2

41

2. 3. 1. 3 VERIFY (abbreviated format: V.)

Format numeric variable
INPUT J string variable

i array element

numeric variable
. or INPUT "character string" ; string variable

i array element

I N P U T A
I N P U T B $
I N P U T X (5)

I N P U T 11 D A T A A-
I N P U T " Y E S OR
I N P U T 1 K E Y I N

= " ; A
N O " ; B S
; X (5)

Function INPUT is one of the statements which is used for entering values for assignment to
variables during program execution. Program execution pauses when an INPUT
statement is encountered to allow values to be typed in from the keyboard. After
input has been completed, the values are substituted into specified variables by
pressing the |CR| key, then program execution resumes.

(Example:)
1 0 I N P U T A , B
2 0 C = A + B
3 0 P R I N T C
4 0 E N D

When the program above is executed, a question mark is displayed and the cursor
blinks to indicate that the computer is waiting for data input; enter any arbitrary
number, then press the| CRj key. This assigns the value entered to variable A.
After doing this, the question mark will be displayed again. The reason for this
is that two variables (A and B) are specified in the INPUT statement on line 10,
but only one value has been entered (that which is substituted into variable A).
Enter another arbitrary number and press the |CR| key again; this substitutes the
second value entered into variable B and causes execution to go on to the next
line of the program. In the example above, subsequent lines add the values of A
and B, substitute the result into C, then display the contents of C.
Since the variables used in this example are numeric variables, the computer will
display the message ILLEGAL DATA ERROR if an attempt is made to enter any
characters other than numerics. The question mark is then redisplayed to prompt
the user to reenter a legal value (a value whose type is the same as that of the varia-
ble or array element into which it is to be substituted). Be sure to enter data whose
type matches that of the variable(s) specified in the INPUT statement.
During program execution, it may be difficult to remember what data is to be
entered when the question mark is displayed; therefore, prompt strings are usually
included in INPUT statements for display on the screen as a reminder. This is done
as shown in the program example below.

1 0 I N P U T A = " ; A
2 0 I N P U T B = " ; B
3 0 P R I N T A + B = ii A + B
4 0 P R I N T A —B = ii A - B
5 0 P R I N T A X B = ii A X B
6 0 P R I N T A / B = ii A / B
7 0 E N D

42

Try running the program shown above. Inclusion of character strings in the PRINT
and INPUT statements provides a clear indication of the program's operation.
Practical computer programs consist of combinations of sequences similar to the
one shown here. By combining commands, statements, and sequences in different
manners, you will soon find that there are many different methods of achieving
a desired result.

2. 3. 5. 4 GET
Format

Function

GET v
v Numeric variable or array element, or string variable or array element.

When this statement is encountered during program execution, the BASIC inter-
preter checks whether any key on the keyboard is being pressed and, if so, assigns
the corresponding value to the variable specified in v. Whereas the INPUT statement
prompts for entry of data and waits until that data has been entered before resuming
execution, the GET statement continues execution regardless of whether any key
is being pressed.
Although data is substituted into variable v by the GET statement if any keys are
pressed when the statement is executed, the variable will be left empty (0 for a
numeric variable or null for a string variable) if no keys are pressed.
With numeric variables, this statement allows a single digit (from 0 to 9) to be
entered; with string variables, it allows a single character to be entered.
This statement can be extremely useful when you want to enter data without
pressing the [CR| key, as is often the case with game programs.

(Example:)
1 0
20
3 0

4 0
5 0
60

P R I N T " N E X T
G E T A S
I F A $ = " Y " T H E N

G O ? CY O R N)

5 0 - In the example above, execution
jumps from line 30 to line 50 if the
value of variable A$ is "Y".

G O T O 2 0 Line 40 unconditionally transfers exe-
P R I N T " P R O G R A M E N D " cution to line 20.
E N D

This program displays the prompt " NEXT GO? (Y OR N)" and waits for input.
When the Y key is pressed, execution moves to line 50 and the program ends.
Until that time, however, execution loops repeatedly between lines 20 and 40.
Now delete lines 30 and 40 and try executing the program again. As you can see,
execution is completed immediately regardless of whether any keys have been
pressed.

Note: When GET statements are executed in succession, a routine should be includ-
ed between them to ensure that each is completed before going on to the
next. The reason for this is that key chatter (vibration of the contacts of
the key switches) may result in two GET statements being executed simul-
taneously.

43

2. 3. 5. 5 READ
Format

Function

DATA . .
READ

DATA

numeric variable
string variable
array element

f numeric constant
I string constant

(abbreviated format: REA. ~ DA.)
numeric variable j >
string variable f •
array element i

< j numeric constant]
1 string constant j

>

Like the INPUT and GET statements, the READ statement is used to submit data to
the computer for processing. However, unlike the INPUT and GET statements,
data is not entered from the keyboard, but is stored in the program itself in DATA
statements. More specifically, the function of the READ statement is to read succes-
sive items of data into variables from a list of values which follows a DATA state-
ment. When doing this, there must be a one-to-one correspondence between the
variables of the READ statements and the data items specified in the DATA state-
ments.

Example (Example 1)
1 0 R E A D A , B , C , D
2 0 P R I N T A ; B ; C ; D
3 0 E N D
4 0 D A T A 1 0 . 1 0 0 , 5 0 , 6 0
RUN J

1 0 1 0 0 5 0 6 0

(Example 2)
1 0 R E A D X $, A 1 , Z S
2 0 P R I N T X $; A 1 ; Z $
3 0 E N D
4 0 D A T A A , 1 , C

RUN J
A ^ 1 C

•In this example, values specified in the
DATA statement are read into variables
A, B, C, and D by the READ statement,
then the values of those variable are
displayed.

•As shown by the example below, string
data included in DATA statements does
not need to be enclosed in quotation
marks.

•The READ statement in this example
picks successive data items from the list
specified in the DATA statement, then
substitutes each item into the correspond-
ing variable in the list following the
READ statement.

44

(Example 3)
1 0 D I M A (2)

R E A D A (0) ,
P R I N T A (0)
E N D
D A T A

20
3 0
4 0
5 0
RUN J

3 4

A (1) . A (2)
; A (1) ; A (2)

3 , 4 , 5

(Example 4)
1 0 R E A D
2 0 R E A D
3 0 D A T A

A
B
X

•The READ statement in this program
substitutes the numeric values following
the DATA statement into array elements
A(0), A(1), and A(2), then the PRINT
statement on line 30 displays the values
of those array elements.

The example above is incorrect because
(1) a numeric variable is specified by the
READ statement on line 10, but the value
specified following the DATA statement
is a string value, and (2) there is no data
which can be read by the READ statement
on line 20.

45

2. 3. 5. 6 RESTORE (abbreviated format: . . . RES.)
RESTORE or RESTORE Ln
When READ statements are executed, a pointer managed by the BASIC interpreter
is incremented to keep track of the next item of data to be read from DATA state-
ments. The RESTORE statement resets this pointer to (1) the beginning of the
first DATA statement in the program or (2) the beginning of the DATA statement
on a specified line.
1 0 D A T A 1 , 2 , 3
2 0 D A T A " A A " , " B B "
3 0 R E A D X , Y
4 0 R E A D Z , V $

1 0 0 R E S T O R E
1 1 0 R E A D A , B , C , D $, E S

2 0 0 R E A D I , J
2 1 0 R E S T O R E
2 2 0 R E A D M, N
2 3 0 R E S T O R E 2 6 0
2 4 0 R E A D O, P
2 5 0 D A T A 1 , 2 , 3 , 4
2 6 0 D A T A - 1 , - 2 , - 3 , - 4
An error will result if the number specified in Ln is the number of non-existent line.

1 0 X = 3 3 X R N D (1)
2 0 F O R A = 1 T O !
3 0 R E A D M S
4 0 P R I N T T A B (0) ; "
5 0 P R I N T T A B (3 7) ;
6 0 N E X T A
7 0 Y = 1 0 X R N D (1)
8 0 F O R A = 1 T O Y
9 0 P R I N T T A B (0) ; '
1 0 0 P R I N T T A B (3 7)
1 1 0 R E S T O R E : G O T O
1 2 0 D A T A " a n B "
1 3 0 D A T A " 3SSSS5
1 4 0 D A T A " HBPr\"

This function creates random
numbers (see page 12).

" ; T A B (X) ; M S ;

• l! ;
n ^^ ii

1 0
m"

N E X T

Note: See page 62 for the TAB function and page 47 for the FOR . . . NEXT statement.

46

2.3.6 Loop and branch instructions
2. 3. 6. 1 FOR ~ NEXT

Format FOR cv = iv TO fv < STEP sv >
(abbreviated format: F. ~ N.)

Function

NEXT < cv >
cv Control variable; a numeric variable or array element,
iv Initial value; a numeric expression,
fv Final value; a numeric expression.
sv Increment, or step value; a numeric expression (if omitted, 1 is assumed).
This statement repeats the instructions between FOR and NEXT a certain number
of times.

1 0 A = 0
2 0 F O R N = 0 T O 1 0 S T E P 2
3 0 A = A + 1
4 0 P R I N T " N = " ; N ,
5 0 P R I N T " A = " ; A
6 0 N E X T N

(1) In the program above, 0 is assigned to N as the initial value.
(2) Next, lines 20 through 50 are executed and the values of variables A and N

displayed.
(3) In line 60, the value of N is increased by 2, after which the BASIC interpreter

checks to see whether N is greater than 10, the final value. If not, lines following
line 20 are repeated.

When the value of N exceeds 10, execution leaves the loop and subsequent instruc-
tions (on lines following line 60) are executed. The program above repeats the loop
6 times.
If < STEP sv > is omitted from the statement specification, the value of N is increas-
ed by 1 each time the loop is repeated. In the case of the program above, omitting
< STEP sv > in this manner would result in 11 repetitions of the loop.

i j

47

Example

FOR . . . NEXT loops may be nested within other FOR . . . NEXT loops. When
doing this, inner loops must be completely included within outer ones. Further,
separate control variables must be used for each loop.

1 0 F O R X = 1 T O
2 0 F O R Y = 1 T O
3 0 P R I N T X X Y ;
4 0 N E X T Y
5 0 P R I N T
6 0 N E X T X
7 0 E N D

9-
9- Oh o o n o o

3 o

F O R
F O R
F O R

A = 1
B = 1
C = 1

T O
T O
T O

o

5
7

N E X T
C , B , A

N E X T C
N E X T B
N E X T A
When loops C, B, and A all end at the
same point as in the example above, one
NEXT statement may be used to indicate
the end of all the loops.

Incorrect example:

— T O R J = 1 T O 1 0
p F O R J = K T O K + S

- I—NEXT J

X Different control variables
must be used in each loop.

F O R 1 = 1 T O 1 0
F O R J = K T O K + 5

— N E X T I
— N E X T J

X Loops may not cross one
another.

Note The syntax of BASIC does not limit the number of levels to which loops may be
nested; however, space is required to store return addresses for each level, so the
number of levels is limited by the amount of available free space.
The CLR statement (see page 59) cannot be used within a FOR . . . NEXT loop.

2.3.6.2 GOTO
Format

Function

Example

(abbreviated format: . . . G.)
GOTO Ln
Ln Destination line number
This statement unconditionally transfers program execution to the line number
specified in Ln. If Ln is the number of a line which contains executable statements
(statements other than REM or DATA statements), execution resumes with that
line; otherwise, execution resumes with the first executable statement following
line number Ln.

1 0 N = 1
2 0 P R I N T N
3 0 N = N + 1
4 0 G O T O 2 0
5 0 E N D

•Transfers program execution to line 20.

48

Since execution of the program shown above will continue indefinitely, stop it
by pressing the | SHIFT] and BREAK] keys together (this may be done at any
time to stop execution of a BASIC program). To resume execution, execute the
CONT J command.

Note The line number specified in a GOTO statement may not be that of a line included
within a FOR . . . NEXT loop.

2. 3. 6. 3 GOSUB ~ RETURN .
GOSUB Ln

(abbreviated format: GOS. ~ RET.)
Format

Function

RETURN
Ln . . . Destination line number
The GOSUB statement unconditionally transfers program execution to a BASIC
subroutine beginning at the line number specified in Ln; after execution of the
subroutine has been completed, execution is returned to the statement following
GOSUB when a RETURN statement is executed.
GOSUB ~ RETURN statements are frequently used when the same processing is
required at several different points in a program. In such cases, a subroutine which
performs this processing is included at some point in the program, and execution
is branched to this subroutine at appropriate points by means of the GOSUB state-
ment. After the required processing has been completed, execution is returned to
the main routine by the RETURN statement.

49

Note The syntax of BASIC imposes no limit on the extent to which subroutines can be
nested (that is, on the number of levels of subroutine calls which can be made f rom
other subroutines); however, in practice a limitation is imposed by the amount of
free space in memory which is available for storing return addresses.

10 B = 5
20 C = 8
30 GOSUB 100
40 PRINT A
SO B - 2

6 0 C = 10
70 GOSUB 100
80 P R I N T A
90 E N D
100 A = B + G
I IO RETURN

B = 5
c = 8

O
(G 0 S U B I 0 q > = ^ \

•>Q oo~)
A = B + C

< R E T U R N)

<0

G O S U B (0 0
r '

-A-

P R I N T A 12 displayed.

0

2 . 3 . 6 . 4 IF
Format

Function

THEN (abbreviated format : . . . IF ~ TH.)
IF e THEN Ln
IF e THEN statement
e: A relational expression or logical expression
Ln: Destination line number
IF . . . THEN statements are used to control branching of program execution accord-
ing to the result of a logical or relational expression. When the result of such an
expression is true, statements following THEN are executed. If a line number is
specified following THEN, program execution jumps to that line of the program if
the result of the expression is true.
If the result of the logical or relational expression is false, execution continues with
the program line following that containing the IF . . . THEN statement.

IF Condition THEN Statement or line number

50

Example F ••=••• • • • T H E N
F - • • • T H E N
F - • • • T H E N
F - • • • T H E N
F - • • • T H E N
F - • • • T H E N
F - • • • T H E N
F - • • • T H E N
F - • • • T H E N
F - - T H E N
P— • • • T H E N

1 00
G O T O or I F G O T O
P R I N T or I F T H E N <?
A = 5 ^ 7 assignment
1 = 1 0 : J = 5 0
I N P U T

R E A D
G O S U B
R E T U R N
S T O P
E N D

Examples of logical and relational expressions

Operator Sample application Explanation

I F A = X T H E N - If the value of numeric variable A equals the
value of X, execute the statements following
THEN.

I F A $ = ' X Y Z " If the contents of string variable A$ equal
T H E N - "XYZ", execute the statements following

C/3 a THEN.
o "t/5 GO > I F A > X T H E N - If the value of variable A is greater than X,
<L> V-4 execute the statements following THEN. <L> V-4

< I F A < X T H E N - If the value of variable A is less then X, execute

CJ the statements following THEN.
< > or > < I F A O X T H E N - If the value of variable A is not equal to X,

execute the statements following THEN.
Pi > = or = > I F A > = X T H E N - If the value of variable A is greater than or

equal to X, execute the statements following
THEN.

< = or = < I F A < = X T H E N - - - If the value of variable A is less than or equal to
X, execute the statements following THEN.

cn C * I F (A > X) * (B > Y) If the value of variable A is greater than X.and
o T H E N - the value of variable B is greater than Y, execute
<D |H ft the statements following THEN.
<D
•a
o *5b

+ I F (A > X) + (B > Y) If the value of variable A is greater than X or <D
•a
o *5b T H E N - - - the value of variable B is greater than Y, execute
O hJ the statements following THEN.

51

Precautions on comparison of numeric values with BASIC 1Z-013B, numeric values
are internally represented in binary floating point representation; since such values
must be converted to other forms for processing or external display (such as in
decimal format with the PRINT statement), a certain amount of conversion error
can occur.
For example, when an arithmetic expression is evaluated whose mathematical result
is an integer, an integer value may not be returned upon completion of the opera-
tion if values other than integers are handled while calculations are being made.
Be especially sure to take this into consideration when evaluating relational expres-
sions using "=".
This need is illustrated by the sample program below, which returns FALSE after
testing for equality between 1 and 1/100 X 100.

1 0 A = 1 / 1 0 0 X 1 0 0
2 0 I F A = 1 T H E N P R I N T " T R U E " : G O T O 4 0
3 0 P R I N T " . F A L S E "
4 0 P R I N T " A = " ; A
5 0 E N D

R U N
F A L S E
A—1

The fact that both "FALSE" and " A = 1" are displayed as the result of this pro-
gram showns that external representation of numbers may differ from the number's
internal representation.
Therefore, a better method of checking for equality in the program example above
is as follows.

2 0 I F A B S C A - 1) < .1 E - 8 T H E N P R I N T " T R U E
G O T O 4 0

Format

Function

Example

2. 3. 6. 5 IF ~ GOTO (abbreviated format: IF ~ G.)
IF e GOTO Lr
e: Relational expression or logical expression
Lr: Destination line number
This statement sequence evaluates the condition defined by relational or logical
expression e, then branches to the line number specified in Lr if the condition is
satisfied. As with the IF . . . THEN sequence, IF ~ GOTO is used for conditional
branching; when the specified condition is satisfied, program execution jumps to
the line number specified in Lr. If the condition is not satisfied, execution continues
with the next line of the program. (Any statements following IF ~ GOTO on the
same program line will be ignored.)
1 0 G=0:N=0
2 0 I N P U T " G R A D E = " ; X

I F X = 9 9 9 G O T O 1 0 0
T = T + X : N = N + 1
G O T O 2 0

P R I N T " "
T O T A L : " ; T
NO. P E O P L E : " ; N
A V E R A G E : " ; T / N

3 0
4 0
5 0
1 00
1 1 0
1 2 0
1 3 0
1 4 0

P R I N T
P R I N T
P R I N T
E N D

Format

Function

Example

2. 3. 6. 6 IF ~ GOSUB (abbreviated format: IF ~ GOS.)
IF e GOSUB Lr
e: Relational expression or logical expression
Lr: Destination line number
This statement evaluates the condition defined by relational or logical expression e,
then, if the condition is satisfied, branches to the subroutine beginning on the
line number specified in Lr. Upon completion of the subroutine, execution returns
to the first executable statement following the calling IF ~ GOSUB statement;
therefore, if multiple statements are included on the line with the IF ~ GOSUB
statement, execution returns to the first statement following IF ~ GOSUB.
1 0 I N P U T
2 0 I F X < 0
3 0 I F X = 0
4 0 I F X > 0
5 0 P R I N T "
6 0 G O T O 1 0
1 0 0 P R I N T
2 0 0 P R I N T
3 0 0 P R I N T

X = " ; X
G O S U B 1 0 0
G O S U B 2 0 0
G O S U B 3 0 0

P R I N T " X < 0
P R I N T " X = 0
P R I N T " X > 0

X P R O G R A M L I N E 1 0 0
X P R O G R A M L I N E 2 0 0
X P R O G R A M L I N E 3 0 0

R E T U R N
R E T U R N
R E T U R N

53

Format

Function

2 . 3 . 6 . 7 ON-GOTO (abbreviated format: ON~G.)

ON e GOTO L ^ < , Lr2 , Lr3 , , Lri >
e . . . Numeric variable, array element, or expression
Lri . List of destination line numbers
This statement branches execution to one of the line numbers following GOTO,
depending on the value of e.
The value of e indicates which of the line numbers following GOTO is to be used
for making the branch; in other words, if e is 1, execution branches to the first
line number in the list; if e is 2, execution branches to the second line number
in the list; and so forth. For example:

1 0 0 O N A G O T O
Destination when

A is 1
A is 2
A is 3
A is 4

2 0 0 , 3 0 0 , 4 0 0 , 5 0 0

Example 1 0 I N P U T " N U M B E R " ; A
2 0 O N A G O T O 5 0 , 6 0 , 7 0
5 0 P R I N T
6 0 P R I N T
7 0 P R I N T
R U N
N U M B E R ?
X X X
N U M B E R 9
Y Y Y
N U M B E R ?

X X X "
Y Y Y "
Z Z Z "

1

BS

G O T O
G O T O
G O T O

1 0
1 0
1 0

If a decimal number such as 1 . 2 is
specified, the decimal pcrtion is truncated
before evaluating the statement.

Note When the value of e in an ON~GOTO statement is greater than the number of
line numbers specified following GOTO, execution continues with the next line
of the program.
This also applies if the value of e is less than 1 or negative.
Further, if the value of e is a non-integer, the decimal portion is truncated to obtain
an integer value before the statement is evaluated.

54

2. 3. 6. 8 ON-GOSUB (abbreviated format: ON-GOS.)
Format ON e GOSUB Lr j < , Lr2 , Lr 3 , , Lri >

e . . . Numeric variable, array element, or expression
Lri . Destination line numbers

Function This statement branches execution to the subroutine beginning on one of the
line numbers following GOSUB, depending on the value of e. Operation of this
statement is basically the same as with the ON~GOTO statement, but all branches
are made to subroutines. Upon return from the subroutine, execution resumes
with the first executable statement following the ON~GOSUB statement which
made the call.

Example Let's try using the ON~GOSUB statement in a scheduling program. The most
important point to note in the following program is that, a subroutine call is made
at line 180, even though line 180 itself is part of a subroutine (from line 170 to
190) which is called by line 90. Subroutines can be nested to many levels in this
manner.

1 0
20
3 0
4 0
5 0
60
F R
7 0
80
9 0
1 00
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 60
1 7 0
1 80
1 9 0
200
2 1 0

A S = " E N G L " : B $ =
D $ = " S C I " : E S =
G $ = " H I S T l! : H $ =
J $ = " B U S " : K $ =
I N P U T " W H A T D A Y ?

F O R Z = 1 T O 7 : Y $ =
S A T " , 1 + 3 X C Z - 1) , 3)
N E X T Z
F O R Y = 0 T O 4 : P R
N E X T Y : P R I N T

O N X G O S U B 1 8 0 , 1 2 0 , 1 3 0 , 1 4 0 , 1 5 0 , 1 6 0 , 1 7 0

M A T H " : C $ = " F R E N "
M U S " : F $ = " G Y M
A R T " : I $ = " G E O G "
H RM " : P R I N T " B "

; X S
:M I D S C " S U N M O N T U E W E D T H U

: I F Y $ = X $ T H E N X = Z

I N T T A B C 5 + 6 X Y) ; Y + 1 ;

P R N T : G O T O 5 0
P R N T " M O N " A S B S D S G S K S R E T U R N
P R N T " T U E " B $ E $ H S H S D S R E T U R N
P R N T " W E D " O S C S I S A S F S R E T U R N
P R N T " T H U " B S D $ F S G S E $ R E T U R N
P R N T " F R I " A S D S I S C S C S R E T U R N
P R N T " S A T " B S G S D S K S R E T U R N
F O R Y - 1 T O 6
O N Y G O S U B 1 2 0 ,
P R I N T : N E X T Y
R E T U R N

1 3 0 , 1 4 0 , 1 5 0 , 1 6 0 , 1 7 0

55

2.3.7 Definition statements
2. 3. 7. 1 DIM

Format

Function

| Example

Note

2. 3. 7. 2 DEF FN
Format

Function

DIM aj (i j) < , a2 (i2), ai (im) >
DIMbj (i i , j i) < , b 2 (i2 , j2) , bi (in J n) >

ai 1-dimensional array name (list)
bi 2-dimensional array name (table)
im, in, jn Dimensions

This statement is used to declare (define) arrays with from one to four dimensions
and to reserve space in memory for the number of dimensions declared (DIM:
dimension). Up to two characters can be specified as the array name, and subscripts
of any value may be specified to define the size of dimensions; however, the number
of dimensions which can be used is limited in practice by the amount of free
memory available.

(Examples:)
1 0 D I M A (1 0 0)
2 0 F O R J = 0 T O 1 0 0
3 0 R E A D A CJ)
4 0 N E X T J
5 0 D A T A 5 , 3 0 , 1 2 ,

(Examples:)
1 0 D I M A $ (1) , B $ (1) , O S (1)
2 0 F O R J = 0 T O 1 : R E A D A S (J) , B $ CJ)
3 0 O S CJ) = A $ CJ) + " " + B S CJ)
4 0 P R I N T A S CJ) , B $ CJ) , O S CJ)
5 0 N E X T J
6 0 E N D
7 0 D A T A Y O U N G , G I R L , WH I T E , R O S E

Execution of the DIM statement sets the values of all elements of declared arrays
to 0 (for numeric arrays) or null (for string arrays). Therefore, this statement should
be executed before values are assigned to arrays.
Different names must be used for each array which is declared; for example, the
instruction DIM A(5), A(6) is not a legal array declaration.
All array declarations are nullified by execution of a CLR statement (see page 59)
and a NEW statement (see page 32).

DEF FN f (x) = e
f . . . Name assigned to the function being defined (one uppercase letter from A to Z)
x . . . Argument (variable name)
e . . . Numeric expression (constant, variable, array element, or function) or pre-

viously defined user function

The DEF FN statement is used to define user function FN f (x). Such functions
consist of combinations of functions which are intrinsic to BASIC.

56

Example D E F F N A (X) = 2 X X T 2 + 3 X X + 1 Defines 2X2 + 3X + 1 as FNA
(X).

D E F F N E CV) = 1 / 2 X M X V T 2 Defines 1/2MV2 as FNE (V).
1 0 D E F F N B (X) = T A N (X - P A I (1) 0 6)
2 0 D E F F N D (X) = F N B (X) / C + X--Defines function FNB using the

function defined on line 10.
(Incorrect definitions)
1 0 D E F F N K (X) = S I N CX/3+PAIC1)/4), F N L (X) = E X P (- X T2/K)
. . . . Only one user function can be defined by a single DEF FN statement.

Find the kinetic energy of a mass of 5.5 when it is imparted with initial accelerations
of 3.5, 3.5 x 2, and 3.5 x 3.

1 0 D E F F N E (V) = 1 Y 2 X M X V T 2
2 0 M = 5 . 5 : V = 3 . 5
3 0 P R I N T F N E CV) , F N E C V X 2) , F N E C V X 3)
• 4 0 E N D

Note All user function definitions are cleared when the CLR statement and the NEW
statement is executed.

2. 3. 7. 3 DEF KEY
Format

Function

DEF KEY (k) = S$
k Definable function key number (1 to 10)
S$ Character string (up to 15 characters).
Character strings can be assigned to any of the ten function keys to allow strings
to be entered at any time just by pressing a single key. This statement is used to
define such strings and assign them to the definable function keys. Function key
numbers 1 to 5 are entered just by pressing the corresponding key at the top left
corner of the keyboard; keys 6 to 10 are entered by pressing the I SHIFT ~| key
together with the corresponding key. The function key number (1 to 10) is specified
in k, and the string or command which is to be assigned to the key is specified
exactly as it is to be entered in S$. Execution of the DEF KEY statement cancels
the previous definition of the definable function key.

No other statement can be specified after a DEF KEY statement on the same line.

(Example:)
1 0 D E F K E Y (1) = " I N P U T " Defines key [FT] as INPUT
2 0 D E F K E Y (2) = " R U N " + C H R $ (1 3) - Defines RF2l as RUN J

Note: CHR$ (13) indicates the ASCII code foriCR|, and specifying it together with the string assigned to
a definable function key has the same effect as pressing the |CRj key. (See the description of the
CHR$ function on page 78 and the ASCII code table on page 154.)

57

2.3.8 Remark statement and control commands
2. 3. 8. 1 REM

Format

Function

REM r
r Programmer's remark
REM is a non-executable statement which is specified in a program line to cause
the BASIC interpreter to ignore the remainder of that line. Since REM statements
are non-executable, they may be included at any point in the program without
affecting the results of execution. REM statements are generally used to make a
program easier to read, or to add explanatory notes to a program.

Multiple statement program lines
When more than one statement is included on a single program line, each statement must be
separated f rom the one preceding it by a colon (:). Operation of the BASIC interpreter is
generally the same in such cases as when the same statements are specified on different lines.
For example, the two programs below produce exactly the same result.

1 0 A = 5
2 0 B = 8
3 0 C = A X B
4 0 P R ! N T C

1 0 A = 5 : B = 8 : C = A X B : P R I N T C

Note: Also note that program operation may differ when multiple s tatement lines are used as
shown below.

1 0 I N P U T A
2 0 B = 0
3 0 I F 9 9 < A T H E N B = 1
4 0 P R I N T B
5 0 E N D

This program displays 1 if the value entered at
line 10 is greater than or equal to 100, and 0
if the value entered is less than 100.

1 0 I N P U T A : B = 0 : I F 9 9 < A T H E N B = 1 : P R I N T B
2 0 E N D

This program displays 1 if the value entered is greater than or equal to 100, bu t nothing
at all if the value entered is less than 100. The reason for this is that statements follow-
ing THEN on line 10 are no t executed if the IF condition is not satisfied.

58

2 . 3 . 8 . 2 STOP (abbreviated format: S.)

Format
Function

Example

Note

STOP
Temporarily stops program execution, displays BREAK and READY, then waits for
entry of executable commands in the direct mode.
The STOP statement is used to temporarily interrupt program execution, and
may be inserted at as many points and locations in the program as required. Since
execution of the program is only interrupted temporarily, the PRINT statement can
be used in the direct mode to check the values stored in variables, after which
execution can be resumed by entering CONT J .

1 0
20
30

40

5 0

60
7 0
R U N
B R E A K I N

R E A D A . B
X = A X B
S T O P
Y = A / B
P R I N T X , Y
D A T A 1 5 . 5
E N D

3 0

2. 3. 8. 3 END

Note

Unlike the END statement, no files are closed by the STOP statement. (See page 68
concerning procedures for opening and closing of files.)

(abbreviated format: E.)

END
The END statement terminates program execution and returns the BASIC inter-
preter to the command mode for input of direct mode commands. When this state-
ment is executed, READY is displayed to indicate that the BASIC interpreter is
ready. After the END statement has been executed, execution cannot be resumed by
executing the CONT command even if there are executable statements on program
lines following the END statement.

All open files are closed when the END statement is executed. (See page 68 concern-
ing procedures for opening and closing files.)

Differences between the STOP and END statements

Screen display Files Resumption of execution

S T O P
B R E A K I N x x x x

R E A D Y
Open files are
not closed.

Can be resumed by
executing CONT.

E N D R E A D Y Open files are
closed Cannot be resumed.

2. 3. 8. 4 CLR

CLR
The CLR command clears all variables and cancels all array definitions. All numeric
variables are cleared to 0, and null strings (" ") are placed in all string variables;
arrays are eliminated entirely by nullifying all previously executed DIM statements.
Therefore, DIM statements must be executed to redefine the dimensions of required
arrays before they can be used again.

59

Note

2. 3. 8. 5 TIS

Format
Function

Example

The CLR command also cancels all funct ion definitions made with the DEF FN
statement; therefore, it is also necessary to reexecute DEF FN statements to rede-
fine such funct ions before they can be used again.
CLR statements cannot be included in a F O R ~ N E X T loop or BASIC subroutine.

TIS " hh mm ss"
TI$ is the name of the system string variable which contains the time of the com-
puter ' s built-in clock.
This built-in variable is automatically incremented once each second, and the six
character string contained in this variable indicates the hour, minute, and second,
with two characters used for each. For example, if the string contained in TIS is
11092035", the time is 9 :20:35 A. M.
Variable TIS is automatically set to 00 :00 :00 when BASIC is loaded into the com-
puter . To set the current time of day, use the string assignment statement. For
example, the clock can be set to 7 :00 :00 P. M. by executing the following.
TIS = ." 190000"
The clock is set to 7 :00 :00 and then restarted automatically when the CR key
is pressed.
The digits specified for the hour must be in the range f rom 00 to 23, and those
specified for the minute and second must each be in the range f rom 00 to 59.
The following program displays the current local time in various cities of the world.

1 0 P R I N T " H "
2 0 D I M C S C1 0) , D C1 0) , E C1 0) , T $ (1 0)
3 0 F O R 1 = 1 T O 1 0 : R E A D C S CI) , D C I) : N E X T I
4 0 P R I N T " E N T E R N E W Y O R K T I M E (H O U R , M I N U T
E, S E C O N D) "
5 0 I N P U T B $: T I $ = B $: P R I N T " H "
6 0 P R I N T " EP : T S C1) = T I S
7 0 F O R 1 = 1 T O 1 0
8 0 E (I) = V A L C L E F T S CTS C1) , 2)) + D C I)
9 0 I F E CI) = 2 4 T H E N E CI) = 0
1 0 0 I F E CI) < 0 T H E N E CI) = 2 4 + E (I)
1 1 0 T S C I) = S T R $ CE C I)) + R I G H T $ CTS C1) , 4)
1 2 0 I F L E N CTS C I)) = 5 T H E N T S C I) = " 0 " + T S C I)
1 3 0 P R I N T C S C I) ; T A B C1 5) ; L E F T S CTS C I) , 2) ;
1 4 0 P R I N T " : " ; M I D S CTS C I) , 3 , 2) ; " : : " ; R I G H T S C
T S C I) , 2) ;
1 5 0 N E X T
1 6 0 D A T A
I RO, 2
1 7 0 D A T A
C A I RO, 7
1 8 0 D A T A
, 6

I : G O T O 6 0
N E W Y O R K , 0 , M O S C O W , 8 , R I O D E U A N E

S Y D N E Y , 1 5 , H O N O L U L U , - 5 , L O N D O N , 5 ,

T O K Y O , 1 4 , S A N F R A N C I S C O , - 3 , P A R I S

60-

Note The TI$ variable cannot be specified in an INPUT statement. Further, after the time
changes from 23:59:59 to 00:00:00, the time "00:00:01" is not displayed.

2. 3. 8. 6 CURSOR (abbreviated format: CU.)

Format

Function

Example

Note

CURSOR x , y
x . . . X coordinate (0 to 39)
y . . . Y coordinate (0 to 24)

This command is used to move the cursor to a specified position on the TV (display)
screen, and can be used together with the PRINT and INPUT statements to display
characters in any desired location.
In the system of screen coordinates used, the columns of the screen are numbered
from left to right, starting with 0 on the left side and ending with 39 on the right
side; lines of the screen are numbered from top to bottom, with 0 indicating the
top line of the screen and 24 indicating the bottom line. Thus, the cursor can be
moved to any desired position in the range from (0, 0), which indicates the top
left corner of the screen, to (39, 24) indicates the bottom right corner.
The following program moves an asterisk (>K) about on the screen as the cursor
keys are pressed.

1 0
1 5
20
3 0
4 0
5 0 .
60
7 0
80
9 0
1 00
1 1 0
1 20
1 5 0

X = 0 : Y = 0
P R I N T " E "
C U R S O R X , Y : P R I N T " * " ;
G E T A $: I F A $ = " " T H E N
C U R S O R X , Y : P R I N T " " ;

3 0

F A $ = " D
F A $ = " D
F A $ = " B
F A $ = " B
F X < 0
I F Y < 0
I F X > 3 8
I F Y > 2 4

G O T O 2 0

T H E N
T H E N
T H E N
T H E N
T H E N
T H E N
T H E N
T H E N

Y = Y — 1
Y = Y + 1
X = X - 1
X = X + 1
X = 0
Y = 0
X = 3 8
Y = 2 4

R E M
R E M
R E M
R E M

U P
DOWN
L E F T
R I G H T

If the value specified for either X or Y is other than an integer, it is converted to
an integer by truncating the decimal portion before the cursor is moved.
Other methods of moving the cursor which are used together with the PRINT
statement include the TAB and SPC functions. (See page 62 for a description of
the SPC function.)

0

1 0

Y

0 X

CURSOR 8.10

2. 3. 9. 2 TEMPO (abbreviated format: TEM.)

Format

Function

Example

Note

2. 3. 8. 8 SPC

Format

Function

Example

TAB (x)
x . . . A numeric expression

The TAB function is used together with the PRINT statement to move the cursor
to the character position which is x + 1 positions from the left side of the screen.
(This is referred to as space tabulation.)

P R I N T T A B (5) ; " X Y Z " ; T A B (1 0) ; " A B C "

0 1 2 3 4 5 6 7 8 9 0 1 2 <]=[Not actually displayed.
— — — — — X Y Z — — A B C 1 j

Tabulation can only be used to move the cursor to the right; therefore, nothing
happens if this function is used together with the PRINT statement when the cursor
is already to the right of the character position specified in (x).

(Example:)
P R I N T T A B (5) ; 11 X Y Z 11 ; T A B (5) ; 11 A B C
0 1 2 3 4 5 6 7 8 9 0
— — — — — X Y Z A B C

SPC (n)
n . . . A numeric expression
Use together with the PRINT statement, this function outputs a string of n spaces
and thus moves the cursor n character positions to the right of its current position.

(Example 1)
P R I N T S P C (5) ; " A B C 11

O 1 2 3 4 5 6 7

- - - - - A B C

(Example 2)

The following example illustrates the difference between the TAB and SPC func-
tions.
1 0 9 T A B (2) ; " A B C " ; T A B (6) ; " D E F "
2 0 9 S P C (2) ; " A B C " ; S P C (6) ; " D E F "
0 1 2 3 4 5 6 7 8 9 0 1 2 3
- - A B C - D E F - - - - -
- - A B C - - - - - - D E F

62

2 . 3 . 8 . 9 SET, RESET

These statements are used to turn dots on or off at a specified position on the screen.

Format Function Range of X, Y coordinates
SET X, Y < , C >
X . . . Numeric expression speci-

fying the X coordinate.
Y . . . Numeric expression speci-

fying the Y coordinate.
C . . . Color code (0 to 7).

Turns on the dots at
the screen coordinates
specified by X and Y.

(SET)

0 < X < 1 9
0 < Y<49

RESET X, Y
X . . . Numeric expression speci-

fying the X coordinate.
Y . . . Numeric expression speci-

fying the Y coordinate.

Turns off the dots at
the screen coordinates
specified by X and Y.

(RESET)

0 < X < 1 9
0 < Y < 4 9

When a color code is specified, the color of the dots displayed by the SET statement is as follows.
(0) Black
(1) Blue
(2) Red
(3) Purple
(4) Green
(5) Light blue
(6) Yellow
(7) White

Since four dots are turned on simultaneously by the SET statement, changing the color of any one
dot in that four dot group also causes the color of the other dots to change.

The SET and RESET statements can be use to produce a wide variety of interesting effects; some
examples are introduced below.

1. Turning on one dot on the

1 0 P R I N T " M "
2 0 X = 7 9 : Y = 4 9
3 0 S E T X , Y , 2 <
4 0 R E S E T X, Y <
5 0 G O T O 3 0

2. Coloring the entire screen whi

1 0 P R I N T ' S '
2 0 F O R X = 0 T O
3 0 F O R Y = 0 T O
4 0 S E T X , Y , 7
5 0 N E X T Y , X
6 0 G O T O 1 0

een.

C] ^Turns dots on.)
^Turns dots off.)

te.

7 9
4 9

3. Drawing a rectangle around the edge of the screen.

1 0 P R I N T ' S "
2 0 F O R X = 0 T O 7 9
3 0 S E T X . 0
4 0 S E T X . 4 9
5 0 N E X T X
6 0 F O R Y = 0 T O 4 9
7 0 S E T 0 . Y
8 0 S E T 7 9 . Y
9 0 N E X T Y
1 0 0 G O T O 1 0 0

4. A program which simulates the ripples produced by throwing a pebble into a pond.

1 0 X = 4 0 : Y = 2 5
2 0 D E F F N Y CZ) = S Q R C R X R - Z X Z)
3 0 P R I N T ' S " : S E T X , Y
4 0 R = R + 5
5 0 F O R Z = 0 T O R
6 0 T = F N Y CZ)
7 0 S E T X + Z , Y + T
8 0 S E T X + Z . Y - T
9 0 S E T X - Z , Y + T
1 0 0 S E T X - Z , Y - T
1 1 0 N E X T Z
1 2 0 I F R < > 2 5 T H E N 4 0
1 3 0 G O T O 1 3 0

5. A program which simulates a ball bouncing off four walls.

1 0 P R I N T " 0 "
2 0 F O R X = 0 T O 7 9
3 0 S E T X , 0 : S E T X , 4 9
4 0 N E X T X
5 0 F O R Y = 0 T O 4 9
6 0 S E T 0 , Y : S E T 7 9 , Y
7 0 N E X T Y
8 0 X = 7 9 X R N D C 1) : Y = 4 9 X R N D C 1)
9 0 A = 1 : B = 1
1 0 0 S E T X , Y
1 1 0 I F X < 2 G O S U B 2 0 0
1 2 0 I F X > 7 8 G O S U B 2 0 0
1 3 0 I F Y < 2 G O S U B 2 5 0
1 4 0 I F Y > 4 8 G O S U B 2 5 0
1 5 0 R E S E T X , Y
1 6 0 X = X + A : Y = Y + B : G O T O 1 0 0
2 0 0 A = — A : M U S I C " + A 0 " : R E T U R N
2 5 0 B = - B : M U S I C " A 0 " : R E T U R N

Note As to JOY command, refer to the instruction manual of Joy Stick.
66-

2.3.9 Music control statements
This section discusses the MUSIC and TEMPO statements which are used to control performance of

music by the computer. As its name implies, the TEMPO statement specifies the speed with which music is
performed. The notes (including half notes and upper and lower octaves) and duration of notes produced
are controlled by the MUSIC statement.

Tempo:

Melody:

Note specification

Specified with TEMPO as a numeric variable or constant with a value from
1 (slow) to 7 (fast).
Specified with MUSIC as a string variable consisting of a collection of
notes.

octave # (sharp) note name duration

2. 3. 9. 1 MUSIC (abbreviated format: MU.)

Format

Discussion

MUSIC X$
X$. . . String data

Automatically performs music.

This statement outputs the melody or sound effects specified by the character string
or string variable of its argument to the speaker. The speed with which this melody-
is played is that which is specified with the TEMPO statement (see page 67).

The format for specification of each note is as follows:
< octave specification > < # (sharp) > note name < duration >

The plus or minus signs are used to specify the octave. If neither is specified, the
middle range is assumed.

The three ranges of sounds which can be output by the computer are as shown in the
figure below. For example, the C notes ("do" on the 8-note C scale) indicated by
the black dots below are differentiated from each other by the octave specification.

Low C - C
Middle C C
High C +C

?
>

V

Low Middle High
range [| range [| range

— No specification +

65-

Note specification
The symbols used to specify notes within each range are as follows:

CDEFGAB # R
The relationship between the 8-note scale (do, re, mi, fa, so, la, ti, do) and these
symbols are as shown below. The sharp symbol (#) is used to specify half notes.
Silent intervals are specified with "R".

11
do

I I
r e

I I I
mi I f a

I I
so

I I
la

I |
ti I

I
C D

I I
E F

I
G A B

C # D # F # G # A R Rest

Duration specification
The duration specification determines the length of the specified note. The dura-
tions from 1/32 to whole are specified as numbers from 0 to 9. (When R is specified,
this determines the length of the silent interval.)

? f 7 - 7 7- } I- - -
1/32 rest 1/16 rest °°«e

r
d

es t 1/8 rest °°»est ™ m f e s t S s t

J> J> J i ' J> Ji J J. J J.
1/32note1/16notef;« e

n
d

o t e1/8note 1 / 4 note ^ 1/2note Whole note

0 1 2 3 4 5 6 7 8 9

Example

When sucessive notes have the same duration, the duration specification can be
omitted for the second and following notes. If no duration is specified for the first
note, 1/4 notes are assumed.

Sound volume
The volume of sound produced cannot be controlled by the program, but can be
adjusted with the computer's external volume control.

Let's try assigning a string to SR$ to play the theme from the beginning of
Beethoven's Serenade in D major (Opus 25).

S R $ = " + A 3 + # F 1 + A + B 3 A + D + # F 1 A + D 3 A + D
+ # F 1 A + D 3 + # F 1 A + D + E + # F + G + A 3 R "

-0
r f = r

0

- f t
 n k - 1

66-

2. 3. 9. 2 TEMPO (abbreviated format: TEM.)

Function

Format

Example

TEMPO x
x . . . Numeric expression (1 to 7)

This statement sets the tempo with which music is played by the MUSIC statement.
If this statement is not executed, TEMPO 4 is assumed for execution of MUSIC
statements.

3 0 T E M P O 1 Slowest tempo (Lento, adagio)
30 T E M P O 4 Medium tempo (Moderato);

four times as fast as TEMPO 1.
30 T E M P O 7 Fastest tempo (Motto allegro, presto);

seven times as fast as TEMPO 1.

1 0 R E M Chopin's mazourka
2 0 M M $ = " A 3 " : M 1 $ = " A 5 + # C 3 + D + E + # F + G + # F 0 + G + #

F 4 + E 3 + D + # C B ll

3 0 M 2 $ = " A 3 + D 2 R 0 + D 1 + E 2 + D + # C 3 B + # C 7 + # C 3 "
4 0 M 3 $ = " A 3 + # C 2 R 0 + # C 1 + D 2 + # C B 3 A + D 7 + D 3 "
5 0 T E M P O 3
6 0 M U S I C M M $, M1 S , M 2 S , M1 S , M 3 $, M1 $, M 2 S , M1

S , M 3 $
7 0 E N D

67

2.3.10 Data file input/output commands
Although the SAVE and LOAD commands can be used to write or read program text, other commands

are used to record or read the various types of data which is handled by programs. These commands
are described below.

Format Function

WOPEN
(abbreviated W.) WOPEN < file name >

Opens a data file on cassette tape
prior to writing data to it. This
command also assigns a name to
the data file.

PRINT/T
(abbreviated ?/T)

PRINT/T dx < , d 2 , d 3 , . . . dn >
dn Numeric data or string data

Writes data to cassette tape in the
same format as it would be displayed
by the PRINT statement.

ROPEN
(abbreviated RO.) ROPEN < file name >

Searches for the data file on cassette
tape with the specified name and
opens that file to prepare for reading
data from it.

INPUT/T
(abbreviated I./T)

INPUT/T V l < , v 2 , v3 , . . . vn >
vn Numeric data or string data

Used to input data from a cassette
file and pass it to the program (in a
manner similar to that in which the
INPUT statement is used to input
data from the keyboard).

CLOSE
(abbreviated CLO.) CLOSE

Statement which closes cassette data
files after writing or reading has
been completed.

Unlike the LOAD and SAVE commands, no messages are displayed by execution of the WOPEN and
ROPEN statements.
If display of a message is desired, use the PRINT statement to define one in the program.

Note: When an ordinary cassette recorder is used, it may not be possible to record data files even if no
problems are encountered in storing or reading programs with the SAVE and LOAD commands.

(Example 1)
The following program writes the numbers from 1 to 99 on cassette tape.
1 0 W O P E N " D A T A "
2 0 F O R X = 1 T O 9 9
3 0 P R I N T / T X
4 0 N E X T X
5 0 C L O S E
6 0 E N D

(Example 2)
The following program reads data from the data file prepared in Example 1 above. Before execut-
ing this program, be sure to rewind the cassette tape.
1 0 R O P E N " D A T A "
2 0 F O R X = 1 T O 9 9
3 0 I N P U T / T A
4 0 P R I N T A
5 0 N E X T X
6 0 C L O S E
7 0 E N D

(Example 3)
The following program creates a data file consisting of string data.

1 0 D I M N $ (5)
2 0 N $ (1) = " B A C H "
3 0 N S (2) = " M O Z A R T "
4 0 N $ (3) = " B E E T H O V E N "
5 0 N S (4) = " C H O P I N "
6 0 N S (5) = " B R A H M S "
7 0 W O P E N " G R E A T M U S I C I A N "
8 0 F O R J = 1 T O 5
9 0 P R I N T / T N S CJ)
1 0 0 N E X T J
1 1 0 C L O S E
1 2 0 E N D

(Example 4)
The following program reads string data from the file created in Example 3. Before executing this
program, be sure to rewind the cassette tape.

2 0 0 D I M M S (5)
2 1 0 R O P E N " G R E A T M U S I C I A N "
2 2 0 F O R K = 1 T O 5
2 3 0 I N P U T / T M S CK)
2 4 0 P R I N T M S CK)
2 5 0 N E X T K
2 6 0 C L O S E
2 7 0 E N D

It is also possible to create data files which include both numeric and string data. However, since an
error will occur if the type of data read does not match the type of variable specified in the INPUT/T
statement, it is generally best to limit files to one type of data or the other.

Note: It is possible to omit the file name when opening a sequential file with the WOPEN statement.
However, this is likely to result in errors if many files are included on the same tape; therefore,
it is recommended that you make a habit of assigning file names to sequential data files.

69-

The following program records student grades in English, French, science, and mathemetics to a
sequential data cassette file.

1 0 I N P U T " E N T E R N O . O F S T U D E N T S " ; N
D I M N $ CN) , K CN) , E CN)
D I M R CN) , S CN)
A S = " G R A D E I S "
F O R X = 1 T O N
P R I N T : P R I N T " S T U D E N T N O . " ; X
I N P U T " E N T E R S T U D E N T N A M E :

20
3 0
4 0
5 0
60
7 0
80
9 0
1 00
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0
1 80
1 9 0

N S CX)
P R I N T
P R I N T

P R I N T
P R I N T

E N G "
F R E N "
" S O I
" M A T H

; A S ;
; A S ;
" ; A S
" ; A S

I N P U T K CX)
I N P U T E CX)
: I N P U T R CX)
: I N P U T S CX)

N E X T X
W O P E N " G R A D E S '
P R I N T 0 T N
F O R X = 1 T O N
P R I N T / T N S CX)
N E X T X
C L O S E •C;Closes the cassette ffleT)
E N D

<C=(Opens data file "GRADES" for output on cassette tape.)
<C=(Writes the number of students in the class to the file.]

K CX) , E CX) , R CX) , S CX) < Writes grades
to the file.

1 0
20
3 0
4 0
5 0
60
7 0
80
9 0
1 00
1 1 0
1 20
1 3 0
1 4 0
1 5 0
1 60
1 7 0
1 80
1 9 0
200
2 1 0

Opens cassette file "GRADES" for input.]

The following program reads the grade data written to the cassette file by the program shown above,
then calculates displays the grade average for each student and class averages for each of the various
subjects.

R O P E N " G R A D E S "
I N P U T / T N Reads the number of people in the class.)

D I M N S CN) , K CN) , E CN)
D I M R CN) , S CN)

T O N
N S CX) , K CX)
E CX) , R CX) , S CX)

F O R X = 1
I N P U T 0 T
I N P U T / T

N E X T X
C L O S E

P R I N T
P R I N T
P R I N T
P R I N T
F O R X =
P R I N T
P R I N T
P R I N T
P R I N T
P R I N T

Reads student names and the grades for
English.

/ i J Reads the grades for French, science
^ , a n d mathematics.

Closes the file.)
T A B C1 0) ; " E N G l!

T A B C1 5) ; " F R E N '
T A B C 2 0) ; " S C I "
T A B C 2 5) ; 11 M A T H "

-•1 T O N
N S CX) ; T A B (1 0) ; K (X)

2 3 0
2 4 0 .
2 5 0

T A B (1 5)
T A B (2 0)
T A B (2 5)
T A B (3 0)

K (0) = K (0) + K (X)
R (0) = R (0) + R (X)
N E X T X
P R I N T T A B (1 0) ;
P R I N T T A B (2 0) ;
E N D

E (X)
R (X)
S (X)
(K (X) + E (X) + R (X) + S (X)) 0 4
: E (0) = E (0) + E (X)
: S (0) = S (0) + S (X)

K (0) 0 N
R (0) 0 N

T A B (1 5)
T A B (2 5)

E (0) 0 N
S (0) 0 N

70-

2.4 Built-in Function
Function BASIC

symbol Example Description

Absolute
value

ABS (X) A - ABS (X) Assigns the absolute value of variable | X | to vairable A.
Example: A = ABS (2. 9) ->A - 2 . 9

A = ABS (- 5 . 5) -»A = 5 . 5

Sign SGN (X) A - SGN (X) Assigns the numeric sign of variable X to variable A.
If the value of X is negative, — 1 is assigned to A; if X is 0,
0 is assigned to A; and if X is positive, 1 is assigned to A.

[1 (X > 0) Example: 1 is assigned to variable
A = 0 (X = 0) A when A = SGN (0.4)

' - 1 (X < 0) is executed.

Integer
conver-
sion

INT (X) A = INT (X) Assigns the greatest integer value to A which is less than
or equal to the value of variable X.
Examples: A = INT (3. 87) ->A - 3

A = INT (0. 6) ^ A = 0
A = INT (- 3 . 87) ->A = - 4

Trigono-
metric
functions

SIN (X) A = SIN (X)

A=SIN(30XPAI(1/180)

Assigns the sine of X (where X is in radians) to variable A.
If the value of X is in degrees, it must be converted to
radians before this function is used to obtain the sine. Since
1 degree equals 7r/180 radians, the value in radians is
obtained by multiplying the number of degrees by PAI(l) /
180. For example, 30° = 3 0 * PAI(1)/180 radians. The same
applies to the COS, TAN, and ATN functions.

Trigono-
metric
functions

COS (X) A = COS (X)
A=COS

(200XPAI(1)/180)

Assigns the cosine of X (where X is in radians) to variable A.

Trigono-
metric
functions

TAN (X) A = TAN (X)
A=TAN(YXPAI(1)/180)

Assigns the tangent of X (where X is in radians) to
variable A.

Trigono-
metric
functions

ATN (X) A = ATN (X)
A=180/PAI(1)XATN(X)

Assigns the arctangent in radians of X (tan - 1 X) to variable
A. The value returned will be in the range from —PI/2 to
PI/2.

Square
root

SQR (X) A = SQR (X) Calculates the square root of X and assigns the result to
variable A. X must be a positive number or 0.

Exponen-
tiation

EXP (X) A = EXP (X) Calculates the value of ex and assigns the result to variable
A.

Common
logarithm

LOG (X) A = LOG (X) Calculates the common logarithm of X (log10X) and assigns
the result to variable A.

Natural
logarithm

LN (X) A = LN (X) Calculates the natural logarithm of X (loge X) and assigns
the result to variable A.

Ratio of
circum-
ference to
diameter

PAI (X) A - PAI (X) Assigns the value to variable A which is X times the value
of PI.

Radians RAD (X) A = RAD (X) Converts the value of X (where X is in degrees) to radians
and assigns the result to variable A.

Examples of use of the built-in funcions

(Example 1)
Let's try solving the various elements of a triangle with a BASIC program.

Angle A of the triangle shown in the figure at right is 30°,
angle B is a right angle, and side CA has a length of 12. The
following program finds all angles of the triangle, the
length of its sides, and its total area.

1 0 A = 3 0 : B = 9 0 : C A = 1 2
2 0 A B = C A X C O S (A X P A I (1) 0 1 8 0)
3 0 B C = C A X S I N (A X P A I (1) 0 1 8 0)
4 0 S = A B X B C 0 2
5 0 C = 1 8 0 — A — B
6 0 P R I N T " A B = " ; A B , " B C = " ; B C ,
7 0 P R I N T " A R E A S = " ; S
8 0 P R I N T " A = " ; A , " B = " ; B . " C = "
9 0 E N D

C A = 1 2

A B

C A = " ; C A

C

(Example 2)
Now let's change line 50 of the program to use ATN, the function for finding the arctangent of a number,
to fine angle C from sides AB and BC.

1 0 A = 3 0 : B = 9 0 : C A = 1 2
2 0 A B = C A X C O S (A X P A I (1) 0 1 8 0)
3 0 B C = C A X S I N (A X P A I (1) 0 1 8 0)
4 0 S = A B X B C 0 2
5 0 C = A T N (A B 0 B C) X 1 8 0 0 P A I (1)
6 0 P R I N T " A B = " ; A B , |: B C = " ; B C ,
7 0 P R I N T " A R E A S = " ; S
8 0 P R I N T " A— " ; A , " B = " ; B , " C = "
9 0 E N D

C A = " ; C A

; C

RND function
Format RND (X)

X . . Numeric expression

Function The RND function returns a pseudo-random number in the range from 0.00000001
to 0.99999999.
When X is greater than 0, the random number returned is the one which follows that
previously generated by the BASIC interpreter in a given pseudo-random number
series.
When X 0, the BASIC Interpreter's pseudo-random number generator is reinitia-
lized to start a new series, and the pseudo-random number returned is the first one
in that series. Reinitialization of the pseudo-random number series in this manner
can be used to allow simulations based on random numbers to be reproduced.

72-

Example

The RND function is often used in game programs to produce unpredicatable
numbers, as in games of chance. Let's try using the RND function to investigate the
percentage of times each of the six sides of a die comes up by simulating the action
of throwing it a given number of times.
Since the sides of each die are numbered from 1 to 6, we must multiply the value
returned by the RND function by 6.

x 6
0 < R N D (1) < 1 * 0 < 6 - X R N D (1) < 6

Then we must use the INT function to convert the value obtained to an integer.

I N T (6 X R N D (1)) ->Os 1 , 2s 3 , 4s 5

The result will be an integer between 0 and 5; now 1 is added to obtain the numbers
which correspond to the number of dots on each of the 6 sides of a die.

I N T (6 X R N D (1)) + 1 —1 s 2s 3s 4s 5s 6

This sequence is performed a specified number of times for each die thrown. Now
let's incorporate the sequence into a program and check the results.

1 0 P R I N T " E N T E R N O . O F
T I M E S D I E T H R O W N " ;

2 0 I N P U T N
3 0 F O R J = 1 T O N
4 0 R = l N T (6 X R N D (1)) + 1
5 0 I F R = 1 T H E N N 1 = N 1 + 1
6 0 I F R = 2 T H E N N 2 = N 2 + 1
7 0 I F R = 3 T H E N N 3 = N 3 + 1
8 0 I F R = 4 T H E N N 4 = N 4 + 1
9 0 I F R = 5 T H E N N 5 = N 5 + 1
1 0 0 I F R = 6 T H E N N 6 = N 6 + 1 or S)
1 1 0 N E X T U
1 2 0 P 1 = N 1 / N : P 2 = N 2 / N : P 3 = N 3 / N
1 3 0 P 4 = N 4 / N : P 5 = N 5 0 N : P 6 = N 6 0 N
1 4 0 P R I N T P 1 , P 2 , P 3 . P 4 , P 5 , P 6
1 5 0 E N D

How about it? If the die is thrown enough times, the percentage of the time each
number appears should be about the same. Mathematically speaking, each number
should occur an average of once in six throws, or about 16.7% of the time. This
mathematical ideal is approached more closely as the number of throws is increased.

The R N D ____
function generates numbers in
the range f rom 0.0000001 to
0.99999999.

DKl^seTOEXtDjK®
= / S Ft7 (5)

73-

74

Example Now let's try using the RND function in a program which tests your ability to solve
for the area of a triangle of random size. Here, the RND function is used to deter-
mine the length of each of the three sides of the triangle, then you compute the area
of the triangle yourself and submit your answer to the computer for checking.

1 0
20
3 0
4 0
5 0
60
7 0
8 0
9 0
1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0

1 7 0

1 8 0
1 9 0
200

21 0

220

2 3 0
2 4 0
2 5 0
2 6 0
2 7 0
2 8 0
2 9 0

3 0 0

3 1 0
3 2 0
3 3 0
3 4 0
3 5 0
3 6 0

4 0
4 0
4 0

D I M A (3) , L $ (4)
F O R J - 1 T O 4
R E A D L $ CJ) : N E X T J
F O R J = 1 T O 3
A (J) - : N T (2 0 * R N D (1)) + 1
N E X T J
I F A (1) > = A (2) + A (3) G O T O
I F A (2) > = A (1) + A (3) G O T O
I F A (3) > = A (1) + A (2) G O T O
W = (A (1) + A (2) + A (3)) 0 2
T = W : F O R J = 1 T O 3
T = T * (W - A (J)) : N E X T J
S S = S Q R (T) : S = I N T CSS)
I F S S - S > 0 . 5 T H E N S = S + 1

P R I N T SEH9E1E3
P R I N T " S O L V E F O R T H E
F O L L O W I N G T R I A N G L E "
P R I N T " R O U N D Y O U R A N S W E R
N E A R E S T W H O L E N U M B E R "
P R I N T

A R E A O F T H E

T O T H E

PR I N T
P R I N T
; A (1)
P R I N T
; A (2)

P R I N T
; A (3)

P R I N T
P R I N T
P R I N T
P R I N T
P R I N T
I N P U T
I F Y = S

4 0
I F Y < S
: G O T O

P R I N T
P R I N T

T A B (8)
T A B (8)

T A B (7)

T A B (6)

T A B (5)
T A B (3)
T A B (4)

• • •

T A B (3)
Y

T H E N

A "
0 S "

0 H

0

0
B 0

H

T A B (1 5) ; L S (1)

T A B (1 5) ; L S (2)

; T A B (1 5) ; L S (3)

H
S O

• n n n n n n n n n

L S (4)

P R I N T O K ! ! " : G O T O

T H E N P R I N T "
3 2 0

T O O L A R G E !
H O " ;

T O O S M A L L !

P R I N T T A B (2 4)
G O T O 2 7 0
D A T A L E N G T H S
D A T A L E N G T H S
G L E A B C I S

S P C (2 5) : P R I N T I

D E A B = , L E N G T H S
D E C A = , A R E A S O F

D E
T R

B C :

A N

Note Note than specifying a value for X which is less than or equal to 0 will always result
in the same number for a given value of X. The reason for this is that specifying 0 or
a negative number reinitializes the pseudo-random number generator to the beginn-
ing of the random number series.

5 String Function
>.1 LEN

Format

Function

Example

LEN (XS)
X$. . . String expression
This funcion returns the number of characters included in the string expression
represented by X$. This value includes spaces which are not displayed on the screen
and any control characters in the string, as well as letters, numefals, and symbols.
(Example 1)
1 0 A $ = 11 A B C D E F G "
2 0 P R I N T L E N (A $ >

R U N
7

(Example 2) The following program uses the LEN funcition to draw squares on the
screen.

1 0 9 " E " : 9 " E N T E R 3 0 R M O R E A S T E R I S K S "
2 0 I N P U T A S
3 0 F O R I = 1 T O L E N (A S) - 2
4 0 P R I N T T A B (2) ; " * " ; S P C (L E N (A S) - 2) ; " ' * "
5 0 N E X T I
6 0 P R I N T T A B (2) ; A S : G O T O 2 0

(Example 3) The LEN function can also be used to produce a "parade" of charac-
ters as shown below.

1 0 S $ = " S H A R P B A S I C "
2 0 F O R 1 = 1 T O L E N (S S)
3 0 9 R I G H T S (S S , I)
4 0 N E X T I
5 0 E N D
R U N
C
I C

S I C

S H A R P B A S I C

(Example 4)
P R I N T L E N (S T R S (P A I (1))) J

9

PAI (1), the function which returns the value of the ratio of the circumference of a
circle to its diameter, contains the 8-digit constant 3.1415927 (approximately the
value of PI). When the length of the character string produced by converting this
constant with the STR$ function is evaluated with the LEN function, a total string
length of 9 is returned.

2.5.2 LEFT$, MID$, and RIGHT$
The LEFTS, MID$, and RIGHTS functions are used to extract character strings from the left end, right

end, or middle of a character expression.

Format
X$: String expression
m and n: Numeric expressions

Function Example
(when AS = "ABCDEFG") Remarks

LEFTS (XS, n)

Returns the character
string consisting of the n
characters making up the
left of string expression
x s .

B$= LEFTS (AS, 2)

B $ " A B C D E F G

Substitutes 2 characters from
the left end of string variable
AS into string varible BS.
Thus, BS = AB1 .

0 < n ^ 255

MIDS (XS, m, n)

Returns the character
string consisting of the n
characters making up the
n characters starting with
the mth character in string
expression X$.

B$=MID$ (AS, 3, 3) 1 < m ^ 255
0 < n < 255

MIDS (XS, m, n)

Returns the character
string consisting of the n
characters making up the
n characters starting with
the mth character in string
expression X$.

B $ « - I A B C D E F G

1 < m ^ 255
0 < n < 255

MIDS (XS, m, n)

Returns the character
string consisting of the n
characters making up the
n characters starting with
the mth character in string
expression X$.

Substitutes the 3 characters
starting at the 3rd character
in string variable AS into
string variable B$.

1 < m ^ 255
0 < n < 255

Returns the character
string consisting of the n
characters making up the
n characters starting with
the mth character in string
expression X$.

Substitutes the 3 characters
starting at the 3rd character
in string variable AS into
string variable B$.

RIGHTS (XS, n)

Returns the character
string consisting of the n
characters making up the
right end of string ex-
pression X$.

BS = RIGHTS (AS, 2

B S — | A B O D E

)
F G

n ^ 255

RIGHTS (XS, n)

Returns the character
string consisting of the n
characters making up the
right end of string ex-
pression X$. Substitutes 2 characters

from the right end of string
variable AS into string
varible BS.
Thus, BS = "FG".

n ^ 255

2.5.3 ASC and CHR$
Format Function Example

ASC (x$)
x$: String expression

Returns the ASCII code for the first
character in string expression x$.

X=ASC (" A 11)
Substitutes 65 (the ASCII code for the
letter A) into variable X.

Y = A S C C 11 S H A R P ")

Substitutes 83 (the ASCII code for S,
the first letter in the string "SHARP")
into variable X.

CHRS (x)
x: Numeric expression

Returns the letter whose ASCII code
corresponds to the value of numeric
expression X. (No character is
returned if the value specified for x is
less then 33; therefore, PRINT 11 _ "
or PRINT SPC (1) should be used to
obtain spaces, rather than CHR$ (32)).

A$=CHR$ (65)
Assigns A, the letter corresponding to
ASCII code 65, to string variable A$.
This function can be used to display
characters which cannot be entered
from the keyboard as follows.
PRINT CHR$ (107) J
This displays the graphic character EB.

Note: ASCII code is a standard code system which is frequently used with computers. This code uses
8 bit numbers to represent the letters of the alphabet, numerals, and symbols such as the dollar
sign and question mark. The full code set is presented in the table on page 154.

78-

2.5.4 VAL and STR$
Format Function Example

STRS (x)
x: Numeric expression

Returns a string of ASCII characters
representing the value of numeric
expression X.

A$=STR$ (- 1 2)
Substitutes the character string " —12 "
into string variable AS.
B$=STR$ (70 X 33)
Substitutes the character string
" 2310 " into string variable BS.
C$=STR$ (1200000 * 5000)
Substitutes the character string " 6E +
09" into string variable CS.

Note: Positive numeric values axe displayed with a
leading space to indicate that the plus sign
(+) has been omitted. However, this space
is not included in the character sting re-
turned by the STR$ function.

VAL (x$)
x$: String expression

Converts an ASCII character repre-
sentation of a numeric value into a
numeric value. This is the comple-
ment of the STRS function.

A=VAL ("123")
Converts the character string " 123 1

into the number 123 and assigns it to
numeric variable A.

The following sample program illustrates use of some of the functions discussed above to display
numeric values in tabular format (with the decimal points aligned).

1 . 2 3 4 5 6
1 2 . 3 4 5 6
1 0
1
1 2 3 4

If the values read from DATA statements were displayed using only the PRINT statement, the result
would appear as shown below.

1 0 F O R X = 1 T O 5
2 0 R E A D A
3 0 L = 5 - L E N (S T R S (! N T (A)))
4 0 P R I N T T A B CL) ; A
5 0 N E X T : E N D
6 0 D A T A 1 . 2 3 4 5 6 , 1 2 . 3 4 5 6
7 0 D A T A 1 2 3 . 4 5 6 , 1 2 3 4 . 5 6
8 0 D A T A 1 2 3 4 5 . 6

1
1 2

1 2 3
1 2 3 4

1 2 3 4 5

Format

Function

2.6 Color display statement
One of the greatest features of the MZ-700 is that it allows characters and graphics to be displayed using
any of up to 8 colors.

2.6.1 COLOR (Abbreviated format: COL.)
COLOR x, y, c <, b >
x X coordinate (0 to 39)
y Y coordinate (0 to 24)
c Character color specification (0 to 7).
b Background color specification (0 to 7).
This statement is used to set the foreground and background colors for the character
at a specific position on the screen. Any of up to 8 different colors can be specified
for the character foreground (c) or background (b) as shown in the table below.

Color No. Color

0 Black
1 Blue
2 Red
3 Purple
4 Green
5 Light blue
6 Yellow
7 White

Example (1) Changing the background color of the entire screen
C O L O R , , , 2 (Changes the background color used

for display of characters to red.)
(2) Changing the foreground color of the entire screen (the color used for display

of all characters)
C O L O R , , 3 (Changes the color used for display of

all characters to purple.)
(3) Changing both the background and foreground colors for the entire screen

C O L O R , , 1 , 0 (Changes the color used for display of
all characters to blue and changes the
background used for display of chara-
cters to black.)

(4) Changing the background color at a specific screen location
C O L O R 2 , 2 , , 4 (Changes the background color at

coordinates 2, 2 to green.)
(5) Changing the foreground color at a specific screen location

C O L O R 3 , 2 , 7 (Changes the foreground color at
coordinates 3, 2 to white.)

(6) Changing both the foreground and background color at a specific screen location
C O L O R 4 , 2 , 4 , 2 (Changes the foreground color at

coordinates 4, 2 to green and changes
the background color at that location
to red.)

80-

2.6.2 Adding color specifications to the PRINT statement
j PRINT | [f , b] | variable
i ? I constant

Format

Function

Example

< 1 (variable
C t , I j constant

expression J 1 expression

= 1

or
f PRINT
1 9

[f , b] USING "format string" ; variable <
I ,

variable)

f Foreground (character color) specification (a number from 0 to 7)
b Background color specification (a number from 0 to 7)

Adding the color specifications to the PRINT and PRINT USING statements des-
cribed on pages 37 and 38 makes it possible to display characters in a variety of
colors. In the format above, f indicates the character foreground color, and b indi-
cates the character background color. If only the foreground color is specified, the
current background color is used for display of characters; this is done by specify-
ing the foreground color, followed by a comma.
If only the background color is specified, the current foreground color is used for
display of characters; in this case, a comma must precede the background color
specification.

(Example 1)
P R I N T (6 , 5] A B O D E

P R | N T C, 4) " F G H I J

P R ! N T (7 ,) " V W X Y Z

. . . . Displays the letters "ABCDE" in
yellow against a background of light
blue.
Displays the letters "FGHIJ" in yellow
against a background of green.
Displays the letter "VWXYZ" in green
against a background of white.

(Example 2) Let's try adding color to the automobile race program shown on page
46.

P R I N T C, 1 3 " H "
Q = I N T (5 X R N D (1)) + 2 : X = 3 3 X R N D (1)
F O R A = 1 T O 5
R E A D M $

; " • " ; T A B (X) ;
M $;
T A B (3 7) ; " • "

1 0
20
3 0
4 0
5 0
60
7 0
80
9 0
1 00
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0

P R I N T T A B (0)
P R I N T CO. 1)
P R I N T (7 , 1)
N E X T A
Y = 1 0 X R N D (1)

F O R A = 1 T O Y
P R I N T T A B (0) ; " • " ;
P R I N T T A B (3 7) ; " • " :
R E S T O R E : G O T O 2 0
D A T A " a D B " .
D A T A " 6SBSSS " , " f f l B B S f f l "
D A T A " M E "

N E X T

With ordinary PRINT statements (those without color specifications), the fore-
ground and background colors used for character display are those which have been
specified with the latest COLOR statement.

-81

2.7 Color Plotter-Printer Commands
The color plotter-printer commands described below can be used with the MZ-731 or, when the MZ1P01

color-plotter printer is connected, with the MZ-711, or MZ-721. The color plotter-printer can be
used in either of two modes: The text mode (for printout of program lists, results of calculations, or
other character data), or the graphic mode (for drawing figures and graphs).

Further, any of four colors (black, blue, green, or red) can be used for printout of characters and
graphics. This capability is particularly useful when using the printer in the graphic mode.

2.7.1 General information about the color plotter-printer
(1) The color plotter-printer operates in either of two modes: The text mode (for printout of the results

of calculations, program lists, and other character data) and the graphic mode (used for drawing
figures and graphs). The printer will only operate in one mode at a time. (Graphic printer commands
are ignored while the printer is in the text mode, and vice versa.)

(2) Printer parameters are reset when the printer is switched from the graphics mode to the text mode.
(In other words, the pens' X and Y coordinate settings are reinitialized.)

(3) The printer runs on power supplied from the main unit of the MZ-700, and is not equipped with a
separate power switch.

(4) The following switches are used to control operation of the printer.
a. Feed switch Advances the paper.
b. Reset switch Resets (reinitializes) the printer.
c. Pen change switch Used when replacing the printer's pens.

(5) There are four pen colors: Black, blue, green, and red.
(6) When the printer is used in the text mode, any of three different sizes of characters can be printed.

The largest size permits a maximum of 26 characters to be printed on one line, medium size permits a
maximum of 40 characters to be printed on one line, and the smallest size allows up to 80 characters
to be printed on one line.
Characters which can be printed when using the printer in the text mode are as shown below. No other
letters, symbols, or graphic characters can be output while the printer is in this mode.
In most cases, hexadecimal ASCII
codes will be printed in a different 5 C D / 0 1 2 3 4 5 6 7 8 9 : ; <=> ?@ABCDEFGH
color if an at tempt is made to print IJKLHN0PQRSTUUWXY2OTH t g h b x d r p c q
graphic characters with the PRINT/- ozwsu i Ok f ^ u £ j n urn" I Aoa y< =Xo ->ffl[H
P statement or LIST/P command. SB00£4=S C D * + / 0 1 2 3 4 5 6 7 8 9 : ; <=>

B C D E F G H I J K L U N O P Q R S T U U U I X Y Z [\] T<- t g h

b x d r p c q a z u j s u I o k f ^ u B j n um' > A o l Aoa y<
XD 2 ' C D*+, / 0 1 2 3 4 5 6 7 8 9 :
; <=>

2.7.2 Initial Printer Settings
The initial printer settings made when the BASIC interpreter 1Z-013B is started up are as follows.

(1) Pen color: Black
(2) Pen position: Left side of the carriage, (top line of 1 page.)
(3) Mode: Text mode
(4) Print size: 40 characters/line (standard size)

66 lines/page

82-

2.7.3 Mode Specification Commands
These commands are used to place the printer in the text mode for printout of letters and numerics. This
is the mode which is effective when the power is turned on; the initial character size is 40 characters/line.
(1) MODE TN . (abbreviated format: M. TN)

This command returns the printer to the text mode from the graphic mode and sets the character size
to 40 characters/line.

(2) MODETL (abbreviated format: M. TL)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 26 characters/line.

(3) MODE TS (abbreviated format: M. TS)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 80 characters/line.

* * * C H A R A C T E R MODE * * *

80 character mode
ABCDEFGHJ.JKLMNOPQRSTUUIJXY?

40 character mode

A B C D E F G H I J K L N N - 0 P Q R S T U U W X Y 2

26 character mode

A B C D E F G H I J K L M N 0 P Q R S T U U W X Y 2

(4) MODE GR (abreviated format: M. GR)
The MODE GR command is used to switch the printer from the text mode to the graphics mode for

printout of charts and graphs. When switching to this mode, it is necessary for the BASIC program being
executed to make a note of the character size being used immediately before the mode change is made.
The reason for this is in order to return to the text mode when the BREAK key is pressed or a STOP
command is encountered.

Note: Executing MODE command, every state returns to initial state excluding pen color and print size.

2.7.4 Pen color selection commands

PCOLOR n

n : 0 black
n : 1 blue
n : 2 green
n : 3 red

(abbreviated format: PC.)

This command specifies the color to be used for printout of characters or graphics, n is a number from
0 to 3, with 0 corresponding to black, 1 to blue, 2 to green, and 3 to red.
In text mode, executing PCOLOR in text mode every state is on initial state excluding pen color.
To keep current state execute PRINT/P CHR$(29) next color.

This command can be entered in either the text mode or graphics mode.

83-

2.7.5 Text mode commands

2.7.5.1 TEST (abbreviated format: TE.)
TEST
This command causes the printer to print squares in each of the four different colors
to check the color specification, quantity of pen ink, and so forth. (Only usable in
the text mode.)

0 1 2 3
(Black) (Blue) (Green) (Red)

Value of n in PCOLOR n

2.7.5.2 SKIP
Format

Function

SKIP n
n. . . A number in the range from —20 to 20
This command is used to feed the paper. Paper is fed n lines in the forward direction
when the value for n is positive; if the value specified for n is negative, the paper is
fed n lines in the reverse direction. Note that PRINTER MODE ERROR will occur
if this command is executed while the printer is in the graphics mode.

2.7.5.3 PAGE
Format

Function

PAGE n
n. . . A n integer in the range 1 n"S 72
This command specifies the number of lines per page. (Executable only in the text
mode.)

2.7.5.4 LIST/P
Format

Function

(abbreviated format: L./P)
LIST/P or LIST/P < L S - L e >
Ls Starting line number
Le Ending line number
This command lists all or part of the program lines in memory on the printer. See
the explanation of the LIST command on page 32 for an explanation of procedures
for specifying the range of lines to be printed. Note that, when graphic characters
are included in the program list, most of them will be printed in a different color as
hexadecimal ASCII codes. See page 154 for the printer ASCII codes.
This command can only be executed in the text mode.

2.7.5.5 PRINT/P
Format

Function

(abbreviated format: ? /P)
PRINT/P < I 1 ; d j , I 2 , d 2 In, dn >
In Output list (numeric or string expressions)
dn Delimiter
This command outputs the data in the output list to the printer. For details on using
this command, see the description of the PRINT command on page 37. See pages
82 for printout of graphic characters.

2.7.5.6. PRINT/P USING (abbreviated format: ? / P USI.)
Except that output is directed to the printer, this is the same as the PRINT USING statement described

on page 38.

2.7.6 Graphic mode statements
The graphic mode statements become effective after the MODE GR statement has been executed. When

this statement is executed, the current pen location is set to the origin (X = 0, Y = 0). However, the origin
can be set to any location. Be careful not to specify a location which is out of the print area, as this may
damage the pen or cause other problems.

Max. Y=999
+ Y

Max. Y = 999
+ Y

Current
pen location (0,0) (480,0)

•o
•o

<u a.

- Y
Min. Y = —999

X - Y coordinates after MODE GR has
been executed. The allowable range of
X is 0 to 480 and the allowable range
of Y is - 9 9 9 to 999.

Note: See page 88 for the HSET statement.

•o
•o QJ OJ

- Y
Min. Y = - 9 9 9

X - Y coordinates after the origin has
been moved to the center of paper.
(MOVE 240, - 2 4 0 : HSET)

2.7.6.1 LINE
Format

Function

Example

LINE Xj, yx < , x 2 , y 2 , . . . , xi, y i> or
LINE %n, Xj, y

1
 < , x 2 , y 2 , . . . , xi, y i>

n Integer from 1 to 16
xi Number indicating the X coordinate (xi = —480 to 480; the limit varies

depending on the current, pen location.)
yi Number indicating the Y coordinate (yi = —999 to 999)
This statement draws a line from the current pen location to location (x l 5 yx) , then
draws a line from (x j , y j) to (x2 , y2) , and so on. n specifies the type of line drawn
as shown below,
n = 1: solid line
n = 2 to 16: dotted line
If % is omitted, the previous value of n is assumed. The initial value of n is 1 (solid
line).
(Example 1) The following program draws a square with a side length of 240 units.

GR
2 4 0 , 0

•Switches to the graphic mode.
• Draws a line from the origin to the center
of paper.

1 0
20

3 0
4 0
5 0
60
(Example 2) The following program draws the same square as the example above.
1 0 M O D E GR
2 0 L I N E 2 4 0 , 0 , 2 4 0 , - 2 4 0 , 0 , - 2 4 0 , 0 , 0
3 0 M O D E T N

M O D E
L I N E

L I N E
L I N E
L I N E
M O D E

2 4 0 , - 2 4 0
0 , - 2 4 0
0, 0
T N

• Draws a line to the origin.
• Returns to the text mode.

(Example 3) The following program draws a rectangle with aside length of 240 units.
1 0 M O D E G R
2 0 S Q = I N T (1 2 0 X S Q R (3))
3 0 L I N E 962 , 2 4 0 , 0 , 1 2 0 , - S Q , 0 , 0
4 0 M O D E T N

The lines indicated with n are as follows.
*## LINE I - 1 6 * * *

_N= 1
N--2
_N=3
N=4

_N=5
_N=6
N=7
N = 8

_N=9
_N= 1 0
N=1 1

_N= 1 2
1 3

_N= 1 4
_N= 1 5
N=16

2.7.6.2 RLINE (abbreviated format: RL.)
RLINE Format Xi, yi < , x 2 , y 2 , . . . xi, y i . . . >

y 2 , . . . , xi, yi . . . >

Function

RLINE %n, Xj , y l 3 < , x 2 ,
n Integer from 1 to 16
xi Number indicating the X coordinate (—480 to 480)
yi Number indicating the Y coordinate (—999 to 999)
This statement draws a line from the current pen location to the location indicated
by relative coordinates x 1 ; y l 5 then draws a line from that point to the location
indicated by relative coordinates x 2 , y 2 , and so on. n is the same as for the LINE
statement.
This program draws the same rectangle as example 3 above.
1 0 M O D E G R
2 0 S Q = I N T (1 2 0 X S Q R (3))
3 0 R L I N E 961 , 2 4 0 , 0 , - 1 2 0 , - S O , - 1 2 0 , S Q
4 0 M O D E T N

Initial pen location Initial pen location

240/ (240,0)

Example

(0,0)

1 2 0 / 3

Figure drawn , '240,0} ,CI20,—SQ; 0,0
by LINE

(1 2 0 , - 1 2 0 / 3) I
I -

Figure drawn ,'240.0'; (- 1 2 0 , - S Q ") . ' - 1 2 0 , S C f ;
by RLINE "* "" - - - ' ' ' '

2.7.6.3 MOVE

Format

Function
Example

2.7.6.4 RMOVE
Format

Function

Example

MOVE x, y
x Integer indicating the X coordinate (—480 to 480)
y Integer indicating the Y coordinate (—999 to 999)
This statement lifts the pen and moves it to the specified location (x, y).
The following program draws a cross with a side length of 480 units.
1 0 M O D E GR
2 0 L I N E 4 8 0 , 0
3 0 M O V E 2 4 0 , 2 4 0 Lifts the pen at (480, 0) and moves it to

240, 240).
4 0 L I N E 2 4 0 , - 2 4 0
5 0 M O D E T N
Be sure to advance the paper before executing this program.

(abbreviated formed: RM.)
RMOVE x, y
x Integer indicating relative X coordinate (—480 to 480)
y Integer indicating relative Y coordinate (—999 to 999)
This statement lifts the pen and moves it to the location indicated by relative
coordinates (A x, A y)
The following program draws the same cross as the example for the MOVE state-
ment.
1 0 M O D E GR
2 0 L I N E 4 8 0 , 0
3 0 R M O V E - 2 4 0 , 2 4 0 Lifts the pen at (480, 0), then moves it

—240 units in the X direction and 240
units in the Y direction.

L I N E
M O D E

2 4 0 , - 2 4 0
T N

2.7.6.5 PHOME

4 0
5 0
Be sure to advance the paper before executing this program.

(abbreviated format: PH.)
PHOME
This statement returns the pen to the origin.
The following example draws the same cross in red as the example for the MOVE
statement.
1 0 M O D E GR
2 0 L I N E 4 8 0 , 0 : M O V E
3 0 L I N E 2 4 0 , - 2 4 0

2 4 0 , 2 4 0
L I N E 2 4 0 ,

4 0 P H O M E
5 0 P C O L O R 3
6 0 L I N E 0 , 2 4 0 ,

0
7 0 M O D E T N

• Returns the pen to the origin.

4 8 0 , 2 4 0 , 4 8 0 , - 2 4 0 , 0 , - 2 4 0 , 0 ,

87

2.7.6.6 HSET
Format

Function

Example
20
3 0
4 0
5 0
60
7 0
80

2.7.6.7 GPRINT
Format

Function

Example

(abbreviated format: H.)
HSET
This statement sets the current pen location as the new origin. With this feature, the
origin can be set to the location which is most appropriate for drawing figures. A
MOVE statement is frequently executed before executing this command.
1 0 M O D E G R

M O V E 2 4 0 , - 2 4 0
H S E T Sets the new origin.
F O R 1 = 1 T O 3 6 0 S T E P 3 0
L I N E 2 4 0 X C O S CPAIC1) * l / 1 8 0) . 2 4 0 * SIN (PAIC1) X I / 1 8 0)
P H O M E
N E X T
M O D E T N

(abbreviated format: GP.)
GPRINT [n, @] , x$
GPRINT x$
n Integer indicating the character size (0 ~ 63)
@ Integer indicating the direction in which lines of characters are printed.

(@ = 0 ~ 3)
x$ Character
This statement prints the specified character using the specified size and direction.
80 characters can be printed on each line when n = 0; 40 characters can be printed
on each line when n = 1; and 26 characters can be printed on each line when n = 2.
When n and @ are omitted, the previous settings are assumed. Their initial values are
n = 1 and @ = 0.
1 0 M O D E G R
2 0 G P R I N T " A " Prints " A " in the graphic mode.
3 0 G P R I N T (2 , 23 , " A " --Prints an upside down " A " in the 26

characters/line mode.
The following figures show various examples of printout.

N=0 N=3
A

>=0

» - 3
N= I N=4

A A
\ / @ = 2

N=2 N=5
A A

88-

2.7.6.8 AXIS
Format

Function

Example

. . (abbreviated format: AX.)
AXIS x, p, r
x Integer specifying the axis drawn (0 or 1)
p Integer specifying the scale pitch (—999 to 999)
r Integer specifying the number of repetitions (1 to 255)
This statement draws the X-axis when x = 0 and the Y-axis when x = 1. The number
of scale marks specified in r are drawn with a pitch of p.
The following example draws the X and Y axes with scale marks from —240 to 240
at 10 unit intervals.

1 0 M O D E G R Switches the printer to the graphic
mode.

2 0 M O V E 2 4 0 , 5
3 0 G P R I N T [1 , 0] , " A "
4 0 M O V E 2 4 0 , 0 Lifts the pen and moves it to position

A (240, 0).
5 0 A X I S 0 , - 1 0 , 4 8 Draws the Y-axis from position A to

position B with scale marks included
at 10-unit interval.

6 0 M O V E 2 4 0 , - 5 0 0
7 0 G P R I N T [1 , 0] , " B "
8 0 M O V E 0 , — 2 4 0 Lifts the pen and moves it to position

C (0, - 2 4 0) .
9 0 G P R I N T [1 , 0] , " C "
1 0 0 M O V E 0 , - 2 4 0
1 1 0 A X I S 1 , 1 0 , 4 8 Draws the X-axis from position C to

position D with scale marks included
at 10-unit intervals.

1 2 0 M O V E 4 7 0 , - 2 4 0
1 3 0 G P R I N T [1 , 0] , " D "
1 4 0 M O D E T N

The coordinates can be used in the same manner as ordinary Cartesian coordinates
after setting the point of intersection of the X and Y axes as the new origin. (X =
- 2 4 0 to 240, Y = - 2 4 0 to 240)

-89

2.7.6.9 CIRCLE
Format

Function

Example

(abbreviated format: CI.)
CIRCLE x, y, r, s, e, d
x, y Location of the center (- 9 9 9 to 999)
r Radius (0 to 999)
s Starting angle (in degree)
e Ending angle (in degree)
d Step angle (in degree)
This statement draws a circle or arc with a radius of r and a step of d at location
(x, y), starting at angle S and ending at angle e. A complete circle is drawn when
s = 0, e = 360 and d = 0.2.
Actually this statement draws a polygon; therefore, d must be as small as possible in
order to draw a smooth figure.
s must be smaller than e. When d = 0, lines connecting the center and the starting
point and the center and the ending point are drawn.

1 0 M O D E G R
2 0 L I N E 4 8 0 , 0 , 4 8 0 , - 4 8 0 , 0 , - 4 8 0 , 0 , 0

M O V E 2 4 0 , - 2 4 0
H S E T

0 , 0 , 2 4 0 , 0 , 3 6 0 , 0 . 2
2 4 0 , 0 , 2 4 0 , 9 0 , 2 7 0 , 0 . 2
0 , 2 4 0 , 2 4 0 , 1 8 0 , 3 6 0 , 0 . 2
- 2 4 0 , 0 , 2 4 0 , 2 7 0 , 4 5 0 , 0 . 2
0 , - 2 4 0 , 2 4 0 , 0 , 1 8 0 , 0 . 2

T N

3 0
4 0
5 0
60
7 0
80
9 0

C
C
C
C
C

R O L E
R O L E
R O L E
R O L E
R O L E

1 0 0 M O D E

90-

2.8 Machine Language Program Control
Statements

Several machine language program control statements are suported by the MZ-700 BASIC interpreter.
With these statements, machine language programs can be linked with a BASIC program.
Computer programming languages form a hierarchical structure as shown below. High level languages such
as BASIC automatically performs work required when lower level languages such as assembly language are
used. Although high level languages are convenient and easy to use, they cannot control the CPU directly.

The lowest level language (machine language) directly controls the CPU and provides high processing
speed, but considerable skill is required for coding long programs.
Machine language program control statements enable sophisticated programming techiques which make it
possible to utilize the advantages of both BASIC and machine language.
Machine language programs can be generated and loaded into the machine language program area (reserved
with the BASIC LIMIT statement) using the monitor or assembler and loader. Such machine language
programs can be called by BASIC programs with the USR () function. Machine language programs
can also be loaded into memory using a BASIC program which uses the POKE statement to write each
step in machine code. The resultant machine language program can then be called by BASIC programs
with the USR () function.

The memory map at bot tom right outlines the concept of data access with POKE and PEEK, and of
calling machine language programs with USR ().

91-

2.8.1 LIMIT (Abbreviated format: LIM.)
Format

Function

Example

LIMIT ad
ad Address; either a decimal number from 0 to 65279 or a 4-digit hexa-

decimal number from $0000 to $FEFF.
This statement limits the memory area which can be used by the BASIC interpreter,
ad indicates the upper limit of the BASIC area, and the area from the following
address (ad + 1) to $FEFF (65279) can be used for machine language programs or
special data.
LIMIT $AFFF
Limits the BASIC program area to $AFFF.
Note The area from $FF00 to $FFFF is used by the monitor as a work area, so it

cannot be used as the user area. The LIMIT statement must be used at the
beginning of a BASIC program.

$ BOOO
S F E F F

Monitor

BASIC interpreter

BASIC
program area

User area
• L I M I T $ A F F F

Use LIMIT MAX to cancel the limit set by LIMIT ad.

2.8.2 POKE
Format

Function

Example

POKE ad, d
POKE@ ad, d
ad Address: either a decimal number from 0 to 65535 or a hexadecimal num-

ber from $0000 to $FFFF.
d Data to be written: a decimal number (0 to 255) or hexadecimal number

($00 to $FF)
This statement writes data byte d to address ad.
The POKE statement can write data to any memory location, regardless of the limit
setting by the LIMIT statement. Therefore, careless use of this statement can
destroy the monitor or BASIC interpreter.
The POKE@ format is used to write data to an address in the user RAM area follow-
ing 53248 ($D000). (See page 125.)
P O K E S D 0 0 0 , S 5 F
P O K E 5 3 2 4 8 . 9 5
The two statements above perform the same funcition.
Note A POKE statement specifying an address after $D000 writes data into the

video RAM area.

92-

2.8.3 PEEK
Format

Function

Example

PEEK (ad)
PEEK@ (ad)
ad Address in decimal or hexadecimal notation (0 to 65535 or $0000 to

$FFFF)
This function returns the contents of the specified address as a decimal number from
0 to 255. Use the PEEK@ format to PEEK a user RAM area following 53248
($D000).
The following program displays data stored in the area from 40960 ($A000) to
40975 ($A00F).

1 0 F O R A D = 4 0 9 6 0 T O 4 0 9 7 5
2 0 9 P E E K (A D)
3 0 N E X T A D

2 . 8 . 4 U S R (Abbreviated format: U.)

Format

Function

USR (ad)
USR (ad, x$)
ad Address (decimal or 4-digit hexadecimal)
x$ String data
This is a special function which transfers control to a machine language program
which starts at the specified address. As with CALL ad, so control is returned to the
statement following the USR function if the machine language program includes a
return instruction (RET or RET^cc) .
When x$ is specified, the starting address of the memory area containing x$ is
loaded into the DE register, then the length of x$ is loaded into the B register before
the machine language program is called. This makes it possible for a BASIC program
to pass string data to a machine language program.

93-

2.8.5 Preparing machine language programs
A m a c h i n e language p rogram which fills t h e en t i re display screen wi th the charac te rs s u p p o r t e d by the

M Z - 7 0 0 is p r e sen t ed in th is sec t ion as an example .

T h e fo l lowing BASIC p rogram loads such a m a c h i n e p rogram in to m e m o r y and calls it.

10 L I M I T $BFFF
20 GOSUB 50
30 USRC$C0003
40 END
5 0 FOR I = 4 9 1 5 2 TO 4 9 1 8 !
60 READ M
70 POKE I , M
80 NEXT I
90 RETURN

Limits the BASIC area to $BFFF.

•Calls the machine language program.

DATA 197:REM PUSH BC
1 10 DATA 2 1 3 : REM PUSH DE
120 DATA 2 2 9 :REI1 PUSH HL
130 DATA 2 2 , 0 : R E M LO D, 0
1 40 DATA 3 3 , 0 , 2 0 8 :REf1 LD H L , D 0 0 0 H
150 DATA 1 , 2 3 2 , 3 • REM LD B C , 1 0 0 0
1 6 0 DATA 2 4 3 : R E M DJ
1 70 DATA 21 1 , 2 2 7 : R E M OUT C E 3 H T A
1 80 DATA 114^ REM ST0 :LD CHL3 ,D :

190 DATA 35 :REM INC HL !
2 0 0 DATA 20 :REM INC D
2 1 0 DATA 11 :REn DEC BC
2 2 0 DATA 120 : REM LD A , B
2 3 0 DATA 177 :REM OR C
2 4 0 DATA 194 , 14 , 192 • REM JP N 2 , S T O
2 5 0 DATA 2 1 1 , 2 2 5 : REM OUT C E 1 H] , A
2 6 0 DATA 2 5 1 : R E M E I
2 7 0 DATA 2 2 5 :REt1 POP HL
2 8 0 DATA 2 0 9 • R E M POP DE
2 9 0 DATA 193 :REM POP BC
3 0 0 DATA 2 0 1 : R E M RET

Reads data for the machine language program from DATA
statements and writes it into the machine language area.

Beginning of data for the machine language program.

Switches the memory block to video RAM. (See page
155).

Sets a display code to video RAM.

Switches the memory block to RAM. (See page 127.)

Returns to the BASIC program.

If t he m a c h i n e language p rogram has been genera ted w i th the m o n i t o r and saved on casset te t ape u n d e r

t h e file n a m e D I S P L A Y C O D E , use the fo l lowing p rog ram t o call t he m a c h i n e language p rog ram.

1 1 0 L I M I T S B F F F
1 1 0 L O A D " D I S P L A Y C O D E "
1 2 0 U S R C S C 0 0 0)

94-

2.9 I/O Statements
All external devices (including floppy disk drives) are connected to the MZ-700 through an optional

interface board. The optional universal interface board makes it possible for the user to connect external
devices such as an X-Y plotter, paper tape punch, and music synthesizer to the MZ-700.
A port address selection switch is provided on the universal interface card to allow any port address from
0 to 239 (00H to EFH) can be assigned to any devices. Addresses 240 to 255 are reserved for optional
peripheral devices supplied by Sharp.

The INP and OUT statements allow the user to transfer data f rom/to external devices through the
optional universal I/O card. The format of these statements is as follows.

INP #P, D Reads 8-bit data from port P, converts it into a decimal number and assigns
it to variable D.

OUT #P, D Converts a decimal number in variable D to binary format and outputs it to
port D.

These statements greatly extend the range of applications of the MZ-700 series computers.

95-

2.10 Other Statements

Function

2.10.1 ON ERROR GOTO (Abbreviated format: ON ERR. G.)
I Format] ON ERROR GOTO Lr

Lr Destination line number (entry point of an error processing routine)
This statements causes execution to branch to line number Lr if an error occurs.
The IF ERN and IF ERL statement can be used in a trap routine starting at that line
to control subsequent processing according to the type of error and the line number
in which it occurred. Including a RESUME statement at the end of the error pro-
cessing routine makes it possible to return execution to the line at which the error
occurred. Executing an ON ERROR GOTO statement cancels the error trap line
number definied by the previous ON ERROR GOTO statement. The error trap line
number definition is also cancelled by executing a CLR statement.

2.10.2 IF ERN
Format

Function

Example

IF relational expression using ERN THEN Lr
IF relational expression using ERN THEN statement
IF relational expression using ERN GOTO Lr

Lr Destination line number
This statement branches execution to the error processing (trap) routine starting at
line Lr or executes the statement following THEN when the result of <relational
expression using E R N > is true.
ERN is a special function which returns a number corresponding to the type of error
occurring. See page 159 for the error numbers.
The following shows an error processing routine beginning on line 1000 which causes
execution to branch to line 1200 if the error number is 5.
1 0 O N E R R O R G O T O 1 0 0 0 Declares the line number of the

error processing routine.

1 0 0 0 I F E R N = 5 T H E N 1 2 0 0 Branches to 1200 if a string
overflow error has occurred.

96-

2.10.3 IFERL
Format

Function

Example

IF relational expression using ERL THEN Lr
IF relational expression using ERL THEN statement
IF relational expression using ERL GOTO Lr

Lr Destination line number
This statement branches execution to the routine starting at line Lr or executes the
statement following THEN when the result of Crelational expression using ERL>
is true.
ERL is a special function which returns the line number at which an error occurred.
The following statement causes execution to branch to line 1300 if an error has
occurred on line 250.
1010 IF ERL = 250 THEN 1300
The following statement returns control to line 520 in the main routine if the error
number is 43 and the error line number is other then 450.
1020 IF (ERN = 43) X (ERL < > 4 5 0) THEN RESUME 520

2.10.4 RESUME (Abbreviated format: RESU.)
RESUME <NEXT>
RESUME Lr

Lr Line number or 0
This statement returns control to the main routine from an error processing routine.
The system holds the number of the line on which the error occurred in memory
and returns program execution to that line or to another specified line after the
error is corrected.

The RESUME statement may be used in any of the following four forms:

R E S U M E Returns to the error line.
R E S U M E N E X T Returns to the line following the error line.
R E S U M E L r Returns to line Lr.
R E S U M E 0 Returns to the beginning of the main routine.

If the RESUME is encountered when no error has occurred, error 21 (RESUME
ERROR) occurs.
If the RESUME cannot be executed, error 20 (CAN'T RESUME ERROR) occurs.

2.10.5 SIZE
PRINT SIZE
This is a special function which returns the number of bytes in memory which can
be used for storage of BASIC programs.
For example, PRINT SIZE displays the number of free bytes of memory area.

Format
Function

97-

Function

Example
Note

2.10.6 PLOT ON (Abbreviated format: PL. ON)
| Format | PLOT ON

This statement makes it possible to use the color plotter-printer as a display unit.
Thus, the MZ-700 can be used without an external display screen.
This statement is effective only when the color plotter-printer is installed and the
MODE TN statement has been previously executed.
PLOT ON
A period " . " is printed to represent any characters which are not stored in the
color plotter-printer's character generator (see page 156). The I INST 1 , | DEL | and
" Q " keys are disabled by executing this statement. 1 CTRL | + [g] can be used to
change the pen.

2.10.7 PLOT OFF (Abbreviated format: PL. OFF)
I Format | PLOT OFF

This statement cancels PLOT ON made of plotter-printer operation.
PLOT OFF

Function
Example

Example

Function

2.10.8 CONSOLE (Abbreviated format: CONS.)
I Format [CONSOLE < I s , I n< ,Cs, Cn »

Is : Starting line of the scroll area
In : Number of lines within the scroll area
Cs : Starting column of the scroll area
Cn: Number of columns in the scroll area i

C O N S O L E 0 . 2 5 . 0 , 4 0
C O N S O L E 5 , 1 5
C O N S O L E 0 , 2 5 , 5 , 3 0
C O N S O L E 0 , 1 0 , 0 , 1 0
C O N S O L E
This statement specifies the size of the scroll area; i. e., the area which is cleared by
PRINT " E ".
The first example specifies the entire screen as the scroll area. The second specifies
the area between lines 5 and 15 as the scroll area. The third specifies the area bet-
ween columns 5 and 30 as the scroll area. The fourth specifies the 1 0 x 1 0 positions
at the upper left corner of the screen as the scroll area.
This statement is useful for excluding the left and/or right edges of the image from
the display area. When they are hidden behind the edges of the screen.
The last example does not specify the scroll area. When the scroll area is not speci-
fied, it is possible to scroll the screen up or down.
However, this makes it harder to perform screen editing because the values of Cn
and In become smaller.

98-

2.11 Monitor Function
The IOCS section of the BASIC Interpreter includes a monitor program to make it easy to enter

machine language programs. This monitor program uses the area from FFOOH to FFFFH as a stack area.
This monitor program includes the screen editor similar to that of BASIC which makes it possible to

change the contents of any address within the 64K RAM area as described below.

2.11.1 Editing format
: address = data data data

: (colon) . . . Indicates that the line following can be edited.
address . . . Indicates the starting address of the memory area whose contents can be changed.

(4 hexadecimal digits)
. . . Separates data from the address,

data . . . 2-digit hexadecimal number or a semicolon " ; " plus the character which is written in
the specified address. A blank is used to separate adjacent data items.

2.11.2 Printer switching command (p command)
Format ~| X P

This command switches data output with the D or F command between the printer and display. If the
printer is not connected to the computer, the message "ERR? " is displayed and the monitor stands by
for input of another command. Check the printer connection or execute the P command again to switch
the output device to the display.

2.11.3 Dump command (D command)

| Format | X D < start address < ,__, end address »

This command dumps the contents of memory from the starting address to the end address. If the end
address is omitted, the contents of the 128-byte block starting at the specified address are dumped. If
both addresses are omitted, it dumps the contents of the 128-byte block following memory block previously
dumped. The format in which data is dumped is as follows.

: H H H H = H H ^ H H ^ H H H H H H H H H H H H / A B O D E . G.
T ' » ' '

Starting adress 8 bytes (Hexadecimal code) 8 bytes (Characters)

The contents of any location can be changed by moving the cursor to the corresponding byte, entering
the new data, and pressing the |CR| key.
Note Control codes are displayed as a period (.) in the character data field. Pressing the I BREAKl key

stops dump output, and pressing the I SHIFT ~| and | BREAKl keys simultaneously returns the
monitor to the command input mode.

99-

2.11.4 Memory set command (M command)

Format ~| * M [starting address]

This command is used to change the contents of memory. If the starting address is omitted, the address
currently indicated by the program counter is assumed. Press the | SHIFT | and I BREAK] keys together
to terminate this command.

When this command is entered, the starting address of the memory block and its contents are dispalyed
in the editing format described previously and the cursor is moved to the data to be changed. Enter the
new data and press the |CR| key; the following address and its contents are then displayed.

2.11.5 Fin command (F command)

Format ~ | * F [starting adress] ^ [end adress] [data] [data]

This command searches for the specified data string in the memory area from the starting address to
the end address. When found, the address of the string and its contents are dumped to the screen. This
command js terminated by simultaneously pressing the I SHIFT 1 and | BREAK] keys.

2.11.6 Subroutine call (G command)

Format | * G [call address]

This command calls the subroutine starting at the specified address. The stack pointer is located at
FFEEH.

2.11.7 Transfer command (T command)

Format * T [starting address] [end address] [destination adress]

This address transfers the contents of memory between the starting address and the end address to the
memory area starting at the destination address.

2.11.8 Save command (s command)

Format * S[starting address]^ [end adress][execution adress] : [file name]

This command saves the contents of the memory between the. starting address and the end address to
cassette tape under the specified file name.

00-

2.11.9 Load command (L command)

I Format | X L < load address > < : file name >

This command loads the specified file into memory, starting at the load address. If the load address is
omitted, the execution address contained in the file is assumed as the load address. If the file name is
omitted, the first file encountered on the tape is loaded. The message "ERR?" is displayed if a check sum
error is detected or the | BREAK~| key is pressed during execution, then the monitor returns to the
command wait state input mode. The command input mode wait state is entered when execution is
wait state is entered when execution is completed.

2.11.10 Verify command (v command)

| Format | X V < file name >

This command reads the specified file from cassette tape and compares it with the contents of memory.
This makes it possible to confirm that a program has been properly recorded with the SAVE command.
If any difference is found between data read from the tape and that contained in memory, the message
"Err ? " is displayed.

2.11.11 Return command (R command)
Format X R

This command returns control to the system program which called the monitor program and restores
the SP (stack pointer) and HL register to the values which they contained when the monitor program was
called. Execution resumes with the command following BYE is executed.

This command cannot return control if the monitor has been called by a system program whose stack
pointer is between FFOOH to FFFFH, or if the stack pointer does not contain a return address. In such
cases, use the G command to call the warm start entry point.

101-

(bfir.^ffiOO JJ • temtr.tmc a m J i Mr

< atasn ^iri ; > < smfeb* I M > I *

. I oe -t i c o e w n n , " -' . l io i l imjo gnhub a / s i V3S-: -;di i»a js>.&. : 0 m

sd! r$ sraoc Jer ;,>r; sv-sJ sift mat ! bsai s lsb u s ? * ; jd brj-o'} n ft>l "is .;

jmo&SK £ -v.'"; lOKno-r; b-il-.; sMw rasigcnq fnaJa1/? 05 :• - r - u m hi. •• .

-

Operating the MZ-700
Chapter 3

3.1 Appearance of the MZ-700 Series Personal
Computers

3.1.1 MZ-731

• Front view

Definable
function keys

B/W-color switch

Channel volume

RF signal
output jack

Composite signal C o | o r p | o t t e r . p r i n te r
output jack

Data recorder
RGB signal
output connector

Power cable connector

Reset switch

Volume control External device connector Cassette tape recorder jacks 1 , , Power switch

Joy stick connectors External printer Frame ground terminal
connector

Color plotter-printer

Insert and
delete keys

• Rear yiew

Data recorder

Cursor
control keys

Typewrite keyboard

04-

3.1.2 MZ-721

• Front view

Color plotter-printer
compartment cover

Data recorder

Insert and
delete keys

Cursor
control keys

Keyboard

Definable
function keys

3.1.3 MZ-711

• Front view

Definable
function keys

Color plotter-printer
compartment cover

Data recorder
compartment cover

Keyboard

Insert and
delete keys

Cursor
control keys

3.2 Connection to Display Unit
Be sure to turn off both the computer and display unit before connecting them.

3.2.1 Connecting a TV set to the MZ-700
Disconnect the antenna feeder from the UHF antenna terminals of the TV set. Plug the connection

cable provided into the RF signal output jack on the rear panel of the computer and connect the pin plugs
on the cable's other end to the 75-ohm UHF antenna terminals on the TV set.

Back view of MZ-700 Back view of Home TV

Set the channel selection switch to the 36 ± 3 ch position, depending on which is not used in your area.

Note the following when using an ordinary TV set as a display unit.

• Adjust controls (fine tuning, color control, etc.) of the TV set to optimum conditions before con-
necting it to the computer.

• Note that color and quality of displayed images will be poorer with a TV set than when a special
color monitor unit is used. Further, note that images may be painted with the wrong colors or may
not be colored if the TV set is not properly adjusted.

• Part of the screen may be omitted if vertical and horizontal scanning frequencies of the TV set do
not match those of the computer. This is not a problem with the computer; contact your TV dealer.

• Part of the screen may not be visible if the image is not centered.
• Be sure to remove the antenna feeder from the TV set before connecting it to the computer; other-

wise, the signal from the computer will radiate from the TV antenna, possibly interfering with other
TV sets.

• Be sure to connect the computer to the 75-ohm antenna terminals of the TV set. If the cable pro-
vided cannot be used, be sure to use a 75-ohm coaxial cable.

• Characters may be hard to read with certain combinations of foreground and background colors.
In such cases, switch the B/W-color switch to the B/W position to obtain higher contrast. The best
combination of the foreground and background colors is white for the foreground and black or
blue for the background.

• No audio signal is included in the RF signal fed to the TV set, so sound cannot be output from the
speaker of the TV set.

06-

3.2.2 Connecting the MZ-1D0412-inch green display
to the computer

Use the cable included with the MZ-1D04 green display to connect it to the computer. Plug the cable
into the composite signal jack on the computer's rear panel, then set the B/W-COLOR switch to the B/W
position.

fttiiiiutmiimiiiiitittttttti
i i i i i i i i i m i i i i i i i i n i n m u n

Rear panel of the MZ-700 series computer Rear panel of the MZ-1 D04

3.2.3 Connecting the MZ-1 D0514-inch color display
to the computer

Use the cable included with the MZ-1D05 color display to connect it to the computer. Plug the cable's
DIN connector into the RGB signal output connector on the MZ-700.

Rear panel of the MZ-700 series computer R e a r P a n e l o f t h e MZ-1 D05

Pin assignments of the RGB signal output connector of the MZ-700 are as shown below.

GREEN BLUE

c s Y N c H f e £ V 5 C i m ~ c VIDEO

GND

RGB signal ou tpu t DIN connector
(viewed f rom the rear side)

VSYNC HSYNC

3.3 Data Recorder
• Data recorder built into the MZ-731 and MZ-721

The built-in data recorder can be operated in the same manner as an ordinary cassette tape recorder.
Press this key to record programs and data.
Press this key to load programs and data.
Press this key to rewind the tape.
Press this key to fast-forward the tape.
Press this key to stop the tape, to release other keys when the tape stops after
loading or recording programs or data, or to eject the tape.

RECORD

PLAY

REWIND ~

FFWD

STOP/EJECT

• MZ-1T01
The MZ-1T01 data recorder unit can be installed in the MZ-711 (MZ-710). Installation procedures are
as follows.
1. Turn off the computer's power switch and unplug the power cable from the AC outlet.
2. Remove the two screws located on the left side of the rear panel to remove the data recorder com-

partment cover.

Polarity switch

Joint connector

3. Remove the joint connector cover.
4. Plug the connector of the MZ-1T01 onto the 9-pin connector located at the left rear of the recorder

compartment of the MZ-711.
5. Position the data recorder in the recorder compartment and fasten it in place with the two screws.

When doing this, be careful to avoid catching the connector cable between the data recorder and
the computer, (otherwise, the screws cannot be tightened).

108-

Ordinary cassette tape recorder

Using commercially available audio cables with 3.5 mm mini-plugs, connect the WRITE jack of the
computer to the MIC jack of the cassette tape recorder and connect the computer's READ jack to the
EXT SP or EAR jack of the cassette tape recorder.

Take note of the following when using an ordinary cassette tape recorder.

(1) The message " i . R E C O R D . P L A Y " does not appear when a SAVE command is entered.
Be sure to press the RECORD key On the recorder before entering this command. Press the STOP
key to stop the recorder after the message " READY " is displayed. Without depressing the STOP key,
the recorder is not stopped.

MIC

EAR

READ WRITE

(2) The message ± P L A Y 1 does not appear when a LOAD command is entered. Be sure to start
playing the tape after entering the command. The message "READY" is displayed when loading is
completed.

(3) The level and tone controls of the cassette tape reocrder must be adjusted to appropriate levels. Some
cassette recorders (e.g. those with the automatic level control) may not be usable. In such cases,
please purchase the MZ-1T01.

(4) The polarity of the head can make it impossible to load programs provided with the computer. Try
switching the head polarity if programs cannot be loaded.

(5) For any transfer or collation, use the tape recorder that was used for recording. If the tape recorder
for transfer or collation is different from that used for recording, no transfer nor collation may be
possible.

(6) Data written using an ordinary cassette recorder may not be readable with the data recorder. There-
fore, use of the MZ-1T01 is recommended.

109-

3.4 Color Plotter-Printer

Reset switch Pen change switch Paper feed key

Plotter-printer (viewed from the top)

Paper holder (left) Paper shaft Paper holder (right)

Printer cover
Paper guide

Paper cutter

Paper inlet

Plotter-printer (viewed f rom the rear side)

110-

• Loading roll paper
1. Remove the printer cover.
2. Cut the end of roll paper straight across and insert the end into the paper inlet. (Be careful to avoid

folding or wrinkling the end of the paper when doing this.)
3. Turn on MZ-731's power switch and press the El (paper feed) key to feed paper until the top of

paper is 3 to 5 cm above the outlet.
4. Insert the paper shaft into the roll and mount it to the paper holders.
5. Set the printer cover so that the end of paper comes out through the paper cutter.

• To remove the roll from the printer for replacement, cut straight across the paper at the paper
inlet and press the paper feed key.

• Roll paper for the MZ-700 series computers is available at any Sharp dealer. Do not use paper other
than that specified.

The length of the paper is 23 to 25 meters, and the maximum roll diameter which can be loaded
is 50 mm. Paper will not feed properly if a roll with a greater diameter is used, resulting in poor
print quality.

Procedures for loading roll paper

(A) Insert paper into the paper inlet.

(C) Replace the printer cover.

(B) Press the paper feed key to feed paper.

111-

Installing/replacing pens

1. Remove the printer cover and press the PEN CHANGE switch with a ball pen or the like; this causes
the pen holder to move to the right side of the printer for pen replacement.

2. Depress the pen eject lever to eject the pen which is at the top of the holder. When doing this, rest
your finger lightly on top of the pen while pushing the eject lever to prevent it from falling inside
the printer.

3. Insert a new pen.
4. Press the PEN CHANGE switch again to bring another pen to the top of the holder.
5. Replace all four pens (black, blue, green and red) in the same manner. When finished, press the

RESET switch to ready the printer for printing with the black pen.
Execute the BASIC TEST command to confirm that all colors are printed correctly.

lever

Replacements for the printer pens (ballpoint pens) can be purchased at the dealer where the printer
was purchased.

Black

Pen holder

Green

Pen position
detection magnet

• EA-850B (black; 4 pens)
• EA-850C (black, blue, green, red; 4 pens, 1 of each color)

• MZ-1P01

Installation of the MZ-1P01 color plotter printer (for models other than the MZ-731)
1. Turn off the computer's power switch and unplug the power cable.
2. Remove the two screws located at the center of the rear panel to remove the printer compartment

cover.
3. Confirm that the printer switch on the printed circuit board is set to the INT position.
4. Plug the printer connector into the matching connector on the printed circuit board, then position

the printer in the printer compartment and fasten it in place with the two screws. When doing this,
be careful to avoid catching the connector cable between the data recorder and the computer (other-
wise, the screws cannot be tightened).

Printer connector
Printer switch

Power connector

Connection of color plotter-printer to the MZ-700

• Connecting an external printer (MZ-80P5(K))

The MZ-80P5(K) printer for the MZ-80K series computers can be connected to the MZ-700's external
printer connector (see page 104) without any special interface card. Use an optional connection cable
for making the connection.

When using an external printer, the printer switch on the printed circuit board must be set to the
external printer position. Therefore, the color plotter-printer and the external printer cannot be used
simultaneously.

Note that if a program including color plotter-printer control statements is run with an external printer,
meaningless characters (control codes for the plotter-printer) will be printed.

3.5 Key Operation

GRAPH
n
2

s
4

/ g g f c B w.

% 5

m i
)
9

/ H \
JE | 0

TIB1 / S a W n s W
ALPHA

i/pg\i
w

/ BB
R

• • /DO COD /DP DP
I

l/aa\l
CTRL A

•T\| | / lB\| | /a
J I K L

a^ | /Da\ | | / a^ | / sB\ | | /DB\ | | /
+

HQ

*

/ 5 5 W a n 111/.
C R

SHIFT 2 1 X I c V
\

B | N I M <)
>

/
7 T l / 0 S \ /KO\ /i / • a \ / a n \ /K0\ / / a m /

SHIFT 3
(SPACE)

I INST | 'I DEL |
/ CLR \ / HOME \

—
/ \ / \

T

i
/ \

3.5.1 Typewriter keyboard
Except for the special control keys, several characters are assigned to each key on the keyboard. The

character entered when a key is pressed depends on the input mode selected by the special keys.
The input modes are as follows.

(1) Normal mode This mode is automatically entered when the BASIC interpreter is loaded.
In this mode, the ASCII character (uppercase or lowercase) shown on top
of each key is entered when that key is pressed.

(2) Graphic mode This mode is entered when the I GRAPH 1 key is pressed. In this mode,
the graphic pattern shown on the left front of each key is entered when
that key is pressed. The graphic pattern shown on the right f ront of each
key is entered by pressing that key together with the shift key. Pressing the
I ALPHA ~| key returns input to the normal mode.

Pressing the space bar enters a space regardless of the input mode.

14-

For example characters entered by the C key in different input modes are as follows.

Normal mode: Uppercase C

r S H I F T I+151 Lowercase c

Graphic mode •
I S H I F T 1+ (CL •

The special keys are explained below.
SHIFT | Pressing this key allows shift position characters to be entered.

For alphabetic keys, the shift position characters are lowercase letters; for keys
other than alphabetic keys, the shift position characters are those shown on the
upper side of the key tops. In the GRAPH mode, the graphic pattern shown on the
right front of each key is entered.

I C R | Pressing this key enters a |CR| (carriage return) code, terminating the line and moving
the cursor to the beginning of the next line.

| BREAK | Pressing this key enters a BREAK code. Pressing it together with the | SHIFT ~] key
stops execution of a program or operation of the data recorder.

| GRAPH | Pressing this key changes the input mode from normal to graphic for input of
the graphic patterns shown on the left front of keys.
Pressing this key changes the input mode from graphic to normal. A L P H A

The cursor symbol is 85 in the normal mode and Hf in the graphic mode.

115-

(1) Normal mode (alphanumeric mode)
Character entered by each key in the normal mode are as indicated by the screened areas in the figure
below.

F ^ F ^ F ^ F ^ F ^
GRAPH

1/—M / b b \ /aoB a s /fflM
o

• •
BREAK

ALPHA j Q l r w]
\ aa\ BB B B o n \ / • D / I D

j j
CD CD

P
SB

CTRL H
• •

J
\ | | / b b

0

3t

K
SB

SHIFT

/ a s
x

/ OB
N M

/ b b \

L
^||/DB\||/aB\||yHB\||/aa\||/

/BP
/

I L L

7

• a
SHIFT

(SPACE)

C R

INST
CLR I DEL

HOME

L 3
< -

/ \ / \

I)i

When with the I SHIFT | key is pressed together with other keys, lowercase letters (or other symbols
indicated by the screen areas in the figure below) are entered.

F F F ^ F ^ F ^ F 1 ^

M
_ j H

l/onW
3

• H
$
4 _ .

\|[/ca^[/BH\||/ai\|l/
5.

HB
«
6.

BOOB
I
7

0 0 / E B M

K
0

an
BREAK

ALPHA
/ • B

W
BB • •

Y
/ •D\] | /pid mil

i
• •Ml/pg]

CTRL

w

A
VT

s
\H±

SHIFT
0ISI

D

m m h

G
•¥\|l/aa\J|/

/ q g

H J K
/aDWHB\||/D W

+
HQ

*

M s W a a W
C R

B
5 a

N M
/BH /as

>
WQD

/
Wl / •H

SHIFT

J INST I 1 DEL |
/ CLR \ / HOME \

t
r

/ \ / \
1

/ \
(SPACE)

116-

(2) Graphic mode
Pressing the | GRAPH] key places the computer in the graphic input mode. Characters entered by
each key in the graphic mode are as indicated by the screened areas in the figure below. In this mode,
pressing any of the cursor control keys, the INST/CLR key or the DEL/HOME key enters the symbols
E 3 , Q , Q , E 3 , [S , o r C] , respectively.

GRAPH

w

I
1

ca\

s
- - 4

/ a n W a u \ | | / p a \
%
5 . .

/BHWfflffl WBB
ALPHA

/ •Q
W
o e /SB • • / •O /DID ma l/aa\l

\||/5a\||/Ba\jl/aa\j|/BB\ll/ \
BREAK

_0
DB\ M

CTRL A
i l l / ^ l

D

MLfciW
G

Ml/aaW
H

••A /bbAII/
K

HH w
L

D E /aB\||/aE\| |/a5\| |/
SHIFT

/ B 3 \ / q q
N

ESQ l/SDW
/

/ a m
SHIFT

(SPACE)

CR

I INST | DEL |

/ CLR \ / HOME \

i u

V M

I]l

When with the I SHIFT l key is pressed together with other keys, symbols indicated by the screen
areas in the figure below are entered.

I INST I 1 DEL I
/ CLR \ / HOME \

T
r \

—
/ \ / \

\
/ \

The cursor symbol is HH in the graphic mode. To return the mode to normal, press thel ALPHA |key.

117-

3.5.2 Definable function keys

I r i n . •... n 1 L
I F 1 F 2 F 3

pajWErrra '•-Wgggê iWWu-iftttMgfcgriF-'"! SfMRHBlM ^ g B B B ^ ^ i l
F 4 F 5 1

Definable funct ion keys

The five blue keys marked F1 to F5 above the typewriter keyboard are referred to as definable function
keys.

Certain character strings are automatically assigned to these keys as follows when the BASIC interpreter
is activated.

F1
F2
F3
F4
F5
SHIFT + F1
SHIFT + F2
SHIFT + F3
SHIFT + F4
SHIFT + F5

RUN " + CHR$ (13)
LIST
AUTO1

RENUM"
COLOR"

CHR$ ("
DEF KEY (
CONT
SAVE1

LOAD"

When one of these keys is pressed, the character string assigned to that key is entered; thus, statements
which are frequently used can be entered just by pressing one key. The character string assigned to any
of the definable function keys can be changed by the DEF KEY statement. (See page 57, DEF KEY
statement.)

• Definable function key label

Labels indicating the character strings assigned to definable function keys can be placed under the
transparent cover located above these keys. The transparent sheet can easily be removed as shown below.

118-

3.5.3 Cursor control keys and insert and delete keys

Cursor control keys and insert and delete keys

The cursor control keys are the four yellow keys at the right of the keyboard which are marked with
arrows.

Pressing these keys moves the cursor one position in the direction indicated by the arrow. These keys
are used when editing programs.

key have the following functions. The INST
CLR and DEL

HOME
INST
CLR

DEL
HOME

SHIFT

SHIFT

INST
CLR

DEL
HOME

Inserts a space at the position of the cursor and shifts all following characters
one position to the right. INST: insert.
Erases the character to the left of the cursor and shifts all following charac-
ters one position to the left. DEL: delete.
Clears the entire screen and returns the cursor to the screen's upper left
corner. Pressing this key does not affect the program in memory. CLR: clear.
Returns the cursor to the upper left corner of the screen (does not affect
any characters displayed).

See pages 18 and 19.

119-

.••• s b hm m e n ?

iy«ji sralsb bns mam one ays)! hjitnoa torsi 1

Kl- ; . ~: . • - : • . - lit fli OOIikoq 3HO lOilii.. -I'd; •-.:••- .

.r«oifc>mrt girrwoSol sriJ svs i -laA

gtaJosisili faiwolfdi Bt rflfrfg bus io? t io sdi 1o noilkoq srfJ t s sssqz s altsgnl
. h & a i :T3HI .trfgh aitt ol nor leoa s n o

•

f t a ' i 3?® 08 treuro art* -mir ts i bn& nsaiog s^iij® s r : a t t s O
m a b : a J D .TTom&m « nyfeigo^i srfr Josrts ton saob ahfc 8flfe?9t*i pantos

.(.bsvElq?.! b r <•• f ir • v •

•

Hardware

Notice: The contents of this chapter are for reference only, and Sharp cannot
assume responsibility for answering any questions about its contents.

4.1 MZ-700 System Diagram
The figure below shows the system configuration of the MZ-700 series computers.

F.G. Power
swi tch 240 /220V

CRT

ITT

Power
un i t

Reset
swi tch

5V

Reset
c i rcu i t

Z 8 0 A
CPU

M O N I T O R
ROM

7V

Address bus

Memory cont ro l ler
(CRTC)

TV

Video R A M

Main
memory
6 4 K bytes

TV

H
Character
generator

Color
encoder

Data

c Contro l

bus

f > i t i t m
bus

7V

8253

CO C1 C2

u u
1 s 12h

Aud io ampl i f ier Tempo/cursor
osci l lator

E
M l

5Z
Address decoder h

7*>

V <> i t

8255

z y

Keyboard

H
Cassette
controller

7 T

TV

Tempo
contro l ler

V V
Joyst ick
c i rcu i t

i z
Printer
cont ro l ler

H

7 V

sz.
~| Printer bus

Printer

(Cassette (Joystick

terminal J \ terminal J

\ Z
o o
Cassette
tape deck

R.G.B.

RF

V I D E O

I

-A 1

A

122-

4.2 Memory configuration
4.2.1 Memory map at power-on (80k mode)

soooo

$ 1 ooo
$ 1 2 0 0

S D O O O

S D 8 0 0

$ EOOO

S F O O O

MOM I T O R
(R O M)

M O N I T O R W O R K

S Y S T E M
and

T E X T A R E A
<D—RAM)

V-RAM<CHARACTER)
<S—RAM)

V—RAM<COLOR DATA)
CS-RAM)

KEY and T I MER PORT

soooo

$ 1 OOO

SYSTEM and TEXT AREA
D - R A M

S D O O O

S Y S T E M and
T E X T A R E A
D - R A M

Enable Disable

• The memory map is as shown above immediately after the power has been turned on. (The contents
of the V-RAM area from $D000 to $DFFF are not the same as those of MZ-80K.)

• The entry point of the monitor ROM is the same as that of the MZ-80K.

123-

4.2.2 Memory map while loading system program (BASIC)

SOOOO

S1 o o o

S D O O O

S E O O O

S F O O O

M O N I T O R (R O M)

S Y S T E M

B O O T P R O G R A M

V - R A M

V - R A M

KEY and T I M E R PORT

s o o o o

L O A D

S D O O O

S Y S T E M

E nable Disable

• When the moni tor LOAD command is entered, the bootstrap loader is loaded into the system RAM
area f rom ROM and control is transferred to that program.

• BOOT COMMAND : L

124-

4.2.3 Memory map after the BASIC interpreter has been loaded
(MZ-700 mode)

s o o o o

$1 o o o

MON I TOR
(ROM)

SOOOO

$ 1 OOO

S D O O O

S E O O O

S F O O O

V - R A M

V - R A M
KEY and T I MER PORT

S D O O O

S Y S T E M

B A S I C

Disable Enable

• The memory map is as shown above after the BASIC interpreter has been loaded.
• Bank switching is performed to access V-RAM or the KEY and TIMER PORT area.

4.2.4 Memory map after manual reset
The memory map is as shown below after the reset switch on the rear panel has been pressed.

SOOOO

$1 OOO

S D O O O

S E O O O

S F O O O

M O N I T O R
(R O M)

S Y S T E M

V - R A M

V - R A M

KEY and T I MER PORT

SOOOO

$1 OOO

S D O O O

S Y S T E M

S Y S T E M

Enable Disable

After pressing the reset switch together with the | CTRL | key, the memory map is as shown below.

SOOOO

$ 1 - 0 0 0

S D O O O

S E O O O

S F O O O

M O N I T O R
CROM)

S Y S T E M

V - R A M

V - R A M

KEY and T I MER PORT

Disable Enable

126-

• When the reset switch is pressed together with the 1 CTRL 1 key, addresses $0000 to $0FFF and
from SDOOO to $FFFF are assigned to RAM.

• When the # command is entered after the reset switch has been pressed, the computer operates in
the same manner as after the reset switch has been pressed together with the I CTRL | key.

4.2.5 Bank switching
a) Memory blocks can be selected by outputting data to I/O ports as shown below.

SWITCHING

I/O PORT

$ E0

$0000~$0FFF

SYSTEM AREA (D-RAM)

$D000~$FFFF

S E l

S E 2 MONITOR (ROM)

SYSTEM AREA (D-RAM)

S E 3 ^ ^ V-RAM, KEY, TIMER

S E 4 MONITOR (ROM) V-RAM, KEY, TIMER

S E 5 _ _ Inhibit

S E 6
Return to the front of
condition, where being
inhibitted by $ E5.

Note: Outputting data to I/O port $E4 performs the same function as pressing the reset switch.

b) Examples:
OUT ($E0), A

Assigns addresses $0000 to $0FFF to RAM, but does not change execution address. The contents
of variable A do not affect the result.

OUT ($E4), A
Initializes memory to the state immediately after the power has been turned on.

Note: Since the program counter is not moved by the OUT statement, care must be taken when switch-
ing memory blocks if the program counter is located in the area from $0000 to $0FFF or from
SDOOO to$FFFF.

127-

4.2.6 Memory map when V-RAM is accessed
i) V-RAM (Video RAM) memory map

S D O O O

S D 8 0 0

S D O O O

S D 8 0 0

C H A R A C T E R V - R A M
(2 Pages, 5 0 Lines)

S D O O O

S D 8 0 0

C O L O R D A T A V - R A M

S E O O O S E O O O
K E Y and T I M E R P O R T

S E O O O

ii) Correspondence between V-RAM address
and location on the screen.
The MZ-700 has a 2K byte V-RAM area,
but only IK byte of that area can be dis-
played on the screen at one time. The area
displayed can be changed by scrolling
the screen.
a) Area displayed immediately after reset

(or power-on):

2 5

D O O O
1

Address
Byte No.

1 2 3 3 9 4 0

DOOO*
1

D 0 0 1
2

D 0 0 2
3

D 0 2 6
3 9

D 0 2 7
4 0

D 0 2 8
41

D 0 2 9
4 2

D02A
4 3

D 0 4 E
7 9

D 0 4 F
8 0

D3C0
9 6 1

D3C1
9 6 2

D3C2
9 6 3

D 3 E 6
9 9 9

D 3 E 7
1 0 0 0

(^Column

• Line

128-

b) Area displayed after the screen has been scrolled up one line f rom the end of V-RAM:

1 2 3 3 9 4 0

1 d000
1 0 4 1

D 0 0 1
1 0 4 2

D 0 0 2
1 0 4 3

D 0 2 6
1 0 7 9

D 0 2 7
1 0 8 0

2 D 0 2 8
1 0 8 1

D 0 2 9
1 0 8 2

D 0 2 A
1 0 8 3

D 0 4 E
1 1 1 9

D 0 4 F
1 1 2 0

•

2 4 D 3 9 8
1 9 6 1

D 3 9 9
1 9 6 2

D 3 9 A
1 9 6 3

D3BE
1 9 9 9

D 3 B F
2 0 0 0

2 5 D 3 C 0
1

D3C1
2

D 3 C 2
3

D 3 E 6
3 9

D 3 E 7
4 0

Note: The line consisting of bytes 1 to 40 is wrapped around to that consisting of bytes 1961 to 2000
as shown above.

iii) Scroll-up and scroll-down
a) The screen is scrolled up by pressing the | SHIFT and Q] keys together, and is scrolled down

by pressing the | SHIFT and Q] keys together.

b) Scroll-up and scroll-down

A: Area which is displayed
on the screen (1K bytes)

3: V-RAM (2K bytes)

• During scrolling, the area which is displayed on the screen moves through the 2K byte V-
RAM area as shown above.

• The end of the V-RAM area is warpped around to the beginning of V-RAM as shown above.
• The cursor does not move on the screen during scrolling.

129-

4.3 Memory Mapped I/O ($E000-$E008)
Addresses SEOOO to SE008 are assigned to the 8255 programmable peripheral interface, 8253 pro-

grammable interval timer and other I/O control ICs so that various I/O devices (including music funct ions
using counter # 0 of the 8253) can be accessed in the same manner as memory. The memory mapped I/O
chart is shown below.

CPU memory address Controller Operation

SEOOO
SEOOl
SE002
SE003

8255

PA: Output
PB : Input
Pc: Input and output control by bit setting
Mode control

SE004
SE005
SE006
SE007

8253

C0: Mode 3 (square wave rate generator)
Cj : Mode 2 (rate generator)
C2: Mode 0 (terminal counter)
Mode control

SE008 LS367, etc. Tempo, joystick and HBLNK input

30-

4.3.1 Signal system of the 8255
The 8255 outputs keyboard scan signals, input key data, and controls the cassette tape deck and cursor

blink timing.

8 2 5 5

Port Terminal I/O Active state Description of control Name of signal

PA
(SEOOO)

PA0
PA,
PA2
PA3
PA7

OUT

H
H
H
H
L

Keyboard scan signals

Resets the cursor blink timer. 556 RST

PB
(SEOOl)

PB0
PBI
PB2
PB3
PB4
PBS

PB6
PB7

IN

L
L
L
L
L
L
L
L

Key scanning data input signals

PC*
(SE002)

PC,
PC2
PC3
PC4
PCs
PC6
PC7

OUT
OUT
OUT
IN
IN
IN
IN

I i-l dj K

1
1 1

Cassette tape write data
Inhibits clock interrupts.
Motor drive signal
Indicates that the motor is on.
Cassette tape read data
Cursor blink timer input signal
Vertical blanking signal

WDATA
INTMSK
M - O N

MOTOR
RDATA

556 OUT
VBLK

* Each output data bit can be independently set or reset.

131-

4.3.2 Signal system of the 8253
The 8253 includes three counters # 0, # 1 and # 2. Counter # 0 is used for sound generation, and

counter # 1 and # 2 are used for the built-in clock.

Counter # 0 is used as a square wave rate generator (MODE 3) and counter # 1 is used as a rate genera-
tor (MODE 2). Counter # 2 is used for the interrupt on terminal count (MODE 0).

A 895 kHz pulse signal is applied to counter # 0, which devides the frequency to the specified value
according to the note information. This divided signal is output to the sound generator.

Counter # 1 counts a 15.7 kHz pulse signal and outputs a pulse to OUT1 every 1 second. Counter
2 counts the output signal from counter # 1 and outputs a high level pulse to OUT2 every 12 hours.
Since OUT2 is connected to the interrupt terminal of the CPU, the CPU processes the interrupt every
12 hours.

8 2 5 3

O U T 2

C L K 2

D 7 O U T 1

D o C L K 1

I N T "MS K
^ y I N T 1

O U T 2

C L K 2

D 7 O U T 1

D o C L K 1 « B L N K (1 5 . 6 1 1 KHz)

O U T O

C L K O

D>AMP. ^ d S P

- 8 9 5 K H z

32-

4.4 Signal System of Color V-RAM
Color information of the MZ-700 is controlled in character units; that is, a 1-byte color information

table is assigned to each character displayed on the screen.
A color information table is shown in the figure below.

D;

De

DE

D<

D:

ds

D-

Dc

Not used.

CHARACTER R

B

Not used.

BACK R

B

G : Green

R : Red

B : Blue

Color information tables are accessed as follows.

C H A R A C T E R B A C K

SOOO

S 7 F F

SDOOO

$ D 7 F F

8-bit shift register

C. G
Alphanumerics

V - R A M
S D 8 0 0

S D F F F

Color
matrix

Sync
signal"

Blanking-
signal

D 6 - D 4
D 2 - D O

C O L O R
V - R A M

-o o

o o

- R . G . B .

- V I D E O

- R F

Color subcarrier (3.54MHz)

Display address Display address

Characters displayed are stored at addresses SDOOO to SD7FF of V-RAM, and color information tables
are stored at addresses SD800 to SDFFF of V-RAM.

133-

4.5 MZ-700 Circuit Diagrams
[CPU board circuit (1)]

134-

[CPU board circuit (2)]

135

[CPU board circuit (2)]

136

[CPU board circuit (4)]

iHL "Htm •IK.

iifi s6 6 6

Qs r

i Q 5 Q i Q s Q i§/

137-

[CPU board circuit (5)]

r - W r - i

g o - i - W t r - i - W r - t

o o

H

A A A A
Q Q Q O Q O O O

ILJ t It.

I* IK lo IS
U. < > <0 < w
lit te ifl l o o o ' o

O

x j

Q. Q. Q. Q. A Q. CL a. Q. a.

138-

+ B O

VSQ

H S O -

Fsc O

5.6
~8.2K

100)1 /10V
I

IJ/I0V

- © 02
+ 2

IOO)i/IOV

osc
BOX o o

3 ®

I5P
07

5
470|1/6.3V

-^H VW O video OUT

-i 22 5 ~3.9K > 39
S~K

-JVW-

-Ognd

-O " F OUT

i ,

-w*

01 ,02 2SCI675L or EQUIVALENT

03, Q5 2SC945 or EQUIVALENT

0 4 2SA733 or EQUIVALENT

D I -D6 ISSII9 or EQUIVALENT

D7, D8 ISSI74 or EQUIVALENT

IC 1 HD7404P or EQUIVALENT

IC2 HD7486P or EQUIVALENT

IC 3 HD7474P or EQUIVALENT

IC 4 HDI4066BP

IC5. IC6)JPCI037H

n
o
o" -I ffi 3 o o a a> •i o
s? o c

GO
C O

[Power unit]

(do

f

CM \

U

<Mro
ccm

wfef-to CM

—VW
qc

io

"O

- I I

o
o o o

t - t

— I to into
CM O O o

CM N
(CM

— v w - 4
o

o i l
I-

0 i n
Q-o

Q.

fWMWRTi f M M M M M m ^
i i l r : . 2 i t

140-

o
mark

1 ARDP

2 ARDl

3 AR02

4 ARD3

5 ARD4

6 ARDs

7 ARD6

8 ARD7

9 ARDe

10 A IRT

1 1 GND

12 ARDA

13 GND

14 ASTA

15 ALPS

>
mark

r

1 + 5 V

2 + 5 V

3 GND

4 GND

t >
mark

1 RDP 2 GND

3 RD l 4 GND

5 RD2 6 GND

7 RD3 8 GND

9 RD< 10 GND

1 1 RDs 12 GND

13 RD6 14 GND

1 5 RD / 16 GND

17 RDe 18 GND

19 IRT 2 0 GND

2 1 RDA 2 2 GND

2 3 STA 2 4 GND

2 5 FG 2 6 FG

p - n

49 Al5 N M i 50

4 7 A 14 EXINT 48

45 A 13 GND 4 6

43 A 12 MREQ 4 4

4 1 A l l GND 4 2

3 9 A io I 0R0 4 0

3 7 A 9 GND 38

35 A s RD 36

3 3 A7 GND 34

3 1 A 6 WR 32

2 9 A 5 EXWAIT 3 0

2 7 A 4 Ml 2 8

2 5 A 3 GND 26

2 3 A 2 HALT 2 4

2 1 A l EXRESET 2 2

1 9 A o RESET 2 0

1 7 BUS 0 GND 18

1 5 D 7 GND 16

1 3 0 6 GND 14

1 1 D 5 GND 12

9 D4 GND 10

7 0 3 GND 8

5 D 2 GND 6

3 D 1 GND 4

1 Do GND 2

O
IS
d
cr
o
B a

1 5 V

2 VBLK

3 JA 1

4 JA 2

5 GND

1 5 V

2 VBLK

3 JB 1

4 JB 2

5 GND

P - 9

1 o GND

2 o C SYNC

3 o C VIDEO

4 o H SYNC

5 o V SYNC

6 o GND

7 o + 5 V

8 o G

9 o B

10 o R

11 o COLR

12 o GND

5'
M
o
o 3 C1
oo' 3
o 3

[Keyboard matrix circuit]

8255 outputs keyboard scan signals from port PA to the keyboard and reads key data from port PB.
The figure below snows the key matrix.

Keyboard connector L E D

@ © (3) @ (5) (6) © (§) (9) (g) @ @ (g) © © (g) © (§) © @

GND

142-

o
03

» o o
3-m 1-1
o
er a c

MOTOR

00

[Color plotter-printer circuit]

Monitor Commands and
Subroutines

5.1 Monitor Commands
The monitor program starts immediately after the power is turned on and awaits input of a monitor

command. The monitor commands are listed below. In this chapter, |CR| indicates that the carriage return
key is to be pressed.

L command Loads cassette tape files into memory.
P command Outputs the specified character string to the printer. (Print)
M command Changes the contents of memory. (Memory correction)
J command Transfers control to the specified address. (Jump)
S command Saves the contents of the specified memory block to cassette tape. (Save)
V command Compares the contents of cassette tape with the contents of memory.
command Transfers control to the RAM area.
B command Makes the bell sound every time a key is pressed. Executing this command

again stops the bell.

• Configuration of the monitor work area

The configuration of the monitor work area from $ 1000 to $ 11FF is shown below.

$ 0 0 0 0

$ 1 000

$ 1 O F O

$ 1 1 7 0

$ 1 1 A 3

$1 2 0 0

Monitor

Stack area

Cassette tape
header area

Variable area

Key input data area

Free area

146-

Note: The R O M monitor described in this chapter is not the same as the monitor function of the BASIC
interpreter.

5.2 Functions and Use of Monitor Commands
This section describes the functions and use of the eight monitor commands.

• Commands are executed when the |CR| key is pressed. Characters must be entered in the correct order.
If illegal characters (such as spaces) are included in a command string, the monitor rejects the command.

• All numeric data must be entered in hexadecimal form at, and all data is displayed in hexadecimal form
at. Therefore, 1-byte data is represented with two hexadecimal digits and 2-byte data is represented
with a four hexadecimal .digits. For example, the decimal number 21 is displayed as 15 and the decimal
number 10 must be typed in as OA. The upper digit " 0" cannot be omitted.

• If the number of characters typed as an operand exceeds the specified number, excess characters are
discarded.

• Each command can access any location of memory. Therefore, the monitor program may be changed
if the commands are used carelessly. Since this can result in loss of control over the system, be careful
to avoid changing the contents of the monitor program.

5.2.1 L command
L
This command loads the first machine language file encountered on the cassette
tape into memory. After the L command is entered, the display changes as follows.

X L j

± P L A Y

Press the j PLAY [key of the data recorder. When a machine language program is
found, the message "LOADING program-name" is displayed. For example, the
following message is displayed during loading of the BASIC interpreter.

L O A D I N G B A S I C

i Format
Function

147-

5.2.2 P command (P : Printer)
| Function | This command is used as follows to control the plotter printer:

X P A B C j
Prints the letters "ABC".

X P & T J
Prints the test pattern.

X P & S J
Sets the line width (character size) to 80 characters/line.

X P & L J
Sets the line width (character size) to 40 characters/line.

I P & G J
Switches the printer to the graphic mode.

)K P & C ^
Changes the pen color.

5.2.3 M command (M : Memory modification)
Format M h h h h

h h h h starting address

Function This command is used to change the contents of memory a byte at a time, starting
at the specified address.

x m c 0 0 0 j

c 0 0 0 0 0

C 0 0 1 0 0

C 0 0 2 0 0
C 0 0 3 0 0
C 0 0 4 0 0
X M C 0 1 0 j
C 0 1 0 0 0
C 0 1 1 0 0

C 0 1 2 0 0
C 0 1 3 0 0
c 0 1 4 0 0

x

F F
F F
F F
F F

S H I F T l + l B R E A K]

88

I S H I F T l + l BREAK"]

To terminate the M command, simultaneously press the! SHIFT [andTBREAK [keys.

148-

5.2.4 J command (J : Jump)
Format 1 J h h h h

h h h h destination address
Function This command transfers control to the specified address; i.e., it sets the specified

address in the program counter.

X J 1 2 0 0 J Jumps to address $1200.

5.2.5 S command (S : Save)
Format

Function

S h h h h h' h' h' h' h " h " h " h "
h h h h starting address
h ' h ' h ' h'----end address
h " h " h " h " ••• execution address

Upon execution, this command prompts for entry of a file name, then saves the
contents of memory from h h h h to h' h' h' h' on cassette tape under the specified
file name. Assume that a machine language program in the area from $6000 to
$60A3 whose execution address is at $6050 is to be saved under file name " MFILE";
the command is then entered as follows.

x eimoiisiEiisEaiasii iBaEE] j
F I L E N A M E ? EJEff lOEJ
± R E C O R D • P L A Y

Confirm that a blank cassette tape is loaded in the data recorder and press the
| RECORD 1 key.
If the write protect tab of the cassette tape is removed, the [RECORD-) key cannot
be pressed. Replace it with another cassette.
This command can only be used to save machine language programs.

W R I T I N G M F I L E
O K !

Note: To abort recording, hold down both the
until the prompt " X " appeas.

SHIFT and | BREAK | keys

149-

5.2.6 V command (V : Verify)
v
Compares a machine language cassette file saved using the S command with the
original program in memory.

| Format |
Function

xv j

± P L A Y
O K

Press the PLAY key to read the cassette tape file when the prompt "_±_ P L A Y "
is displayed. The message 11 OK11 is displayed when the contents of the cassette
file matches that of the original program; otherwise, the message "CHECK SUM
ER." is displayed.
It is recommended to that this command be executed immediately after recording
a program with the S command.

5.2.7 # command

After pressing the RESET switch, executing this command produces the same effect
as simultaneoulsy pressing the RESET switch and the [CTRL | key.
x# j

5.2.8 B command (B : Bell)
Format

Function

B
X B j

Executing this command once causes the bell to ring each time a key is pressed.
Executing it again disables the bell.

50-

5.3 Monitor Subroutines
The following subroutines are provided for Monitor 1Z-013A. Each subroutine name symbolically

represents the function of the corresponding subroutine. These subroutines can be called from user
programs.

Registers saved are those whose contents are restored when control is returned to the calling program.
The contents of other registers are changed by execution of the subroutine.

Name and entry point (hex.) Function Register
saved

CALL LETNL
(0006) Moves the cursor to the beginning of the next line. Other

than AF

CALL PRINTS
(000C)

Other
than AF

CALL PRINTS
(000C) Displays a space at the cursor position. Other

than AF

CALL PRINTS
(0012)

Displays the character corresponding to the ASCII code stored
in ACC at the cursor position. See Appendix A. 1 for the
ASCII codes. No character is displayed when code 0D (carriage
return) or 11 to 16 (the cursor control codes) is entered, but
the corresponding function is performed (a carriage return for
0D and cursor movement for 11 to 16).

Other
than AF

CALL MSG
(0015)

Displays a message, starting at the position of the cursor. The
starting address of the area in which the message is stored must
be set in the DE register before calling this subroutine, and the
message must end with a carriage return code (OD).
The carriage return is not executed.
The cursor is moved if any cursor control codes (11 to 16) are
included in the message.

All
registers

CALL BELL
(003E) Briefly sounds high A (about 880 Hz). Other

AF

CALL MELDY
(0030)

Plays music according to music data stored in the memory area
starting at the address indicated in the DE register. The music
data must be in the same format as that for the MUSIC state-
ment of the BASIC, and must end with 0D or C8.
When play is completed, control is returned to the calling pro-
gram with the C flag set to 0; when play is interrupted with
the | BREAK | kev. control is returned with the C flag set
to 1.

Other
than AF

CALL XTEMP
(0041)

Sets the musical tempo according to the tempo data stored in
the accumulator (ACC).

ACC <-01 Slowest speed
ACC 04 Middle speed
ACC 07 Highest speed

Note that the data in the accumulator is not the ASCII code
corresponding to 1 to 7 but the binary code.

All
registers

CALL MSTA
(0044)

Generates a continuous sound of the specified frequency.
The frequency is given by the following equation,
freq. = 895 kHz/nn'.
Here, nn' is a 2-byte number stored in addresses 11A1 and
11A2 (n in 11A2 and n' in 11A1).

BC and
DE

Generates a continuous sound of the specified frequency.
The frequency is given by the following equation,
freq. = 895 kHz/nn'.
Here, nn' is a 2-byte number stored in addresses 11A1 and
11A2 (n in 11A2 and n' in 11A1).

151-

Name and entry point (hex.) Function Register
saved

CALL MSTP
(0047) Stops the sound generated with the CALL MSTA subroutine. Other

than AF

CALL TIMST
(0033)

Sets and starts the built-in clock. Registers must be set as
follows before this routine is called.

ACC <- 0 (AM), ACC «- 1 (PM)
DE 4-digit hexadecimal number representing the time in

seconds.

Other
than AF

CALL TIMRD
(003B)

Reads the built-in clock and returns the time as follows.
ACC 0 (AM), ACC «- 1 (PM)
DE 4-digit hexadecimal number representing the time in

seconds.

Other
than AF
and DE

CALL BRKEY
(001E)

Checks whether the I SHIFT | and [BREAK [keys are both
being pressed. The Z flag is set when they are being pressed
simultaneoulsy; otherwise, it is reset.

Other
than AF

CALL GETL
(0003)

Reads one line of data from the keyboard and stores it in the
memory area starting at the address indicated in the DE
register. This routine stops reading data when the RETURN
key is pressed, then appends a carriage return code (0D) to
the end of the data read.
A maximum of 80 characters (including the carriage return
code) can be entered in one line.
Characters keyed in are echoed back to the display, and cursor
control codes can be included in the line.
When the 1 SHIFT ~] and 1 BREAK] keys are pressed
simultaneously, BREAK code is stored in the address indicated
in the DE register and a carriage return code is stored in the
subsequent address.

All
registers

CALL GETKY
(001B)

Special key read
with GETKY

Reads a character code (ASCII) from the keyboard. Other
If no key is pressed, control is returned to the calling program than AF
with 00 set in ACC.
No provision is made to avoid data read errors due to key
chatter, and characters entered are not echoed back to
the display.
When any of the special keys (such as | DEL [or |CR[) are pressed, this
subroutine returns a code to ACC which is different from the correspond-
ing ASCII code as shown below. Here, display codes are used to address
characters stored in the cahracter generator, and are different from the
ASCII codes.

Special key

DEL
INST

ALPHA
BREAK

CR •

SI
D
B

I HOME 1
I CLR I

Code set in ACC

60
61
62
64
66
11
12
13
14
15
16

Display code

C7
C8
C9
CB
CD
CI
C2
C3
C4
C5
C6

Name and entry point (hex.) Function
Register

saved

CALL ASC
(03DA)

Sets the ASCII character corresponding to the hexadecimal
number represented by the lower 4 bits of data in ACC.

Other
than AF

CALL HEX
(03F9)

Converts the 8 data bits stored in ACC into a hexadecimal
number (assuming that the data is an ASCII character), then
sets the hexadecimal number in the lower 4 bits of ACC.
The C flag is set to 0 when a hexadecimal number is set in
ACC; otherwise, it is set to 1.

Other
than AF

CALL HLHEX
(0410)

Converts a string of 4 ASCII characters into a hexadecimal
number and sets it in the HL register. The call and return
conditions are as follows.

DE Starting adress of the memory area which contains
the ASCII character string

(e.g., "3" "1" "A" 115")
C A L L H L H E X T _ D E
CF = 0 HL hexadecimal number (e.g., HL = 31 A5H)
CF = 1 The contents of HL are not assured.

Other
than AF
and H L

CALL 2HEX
(041F)

Converts a string of 2 ASCII characters into a hexadecimal
number and sets it in ACC. The call and return conditions
are as follows.

DE Starting adress of the memory area which contains
the ASCII character string, (e.g., "3" "A")

C A L L 2 H E X L D E
CF = 0 ACC •«- hexadecimal number (e.g., ACC = 3AH)
CF = 1 The contents of the ACC are not assured.

Other
than AF
and DE

CALL ??KEY
(09B3)

Blinks the cursor to prompt for key input. When a key is
pressed, the corresponding display code is set in ACC and
control is returned to the calling program.

Other
than AF

CALL ?ADCN
(0BB9)

Converts ASCII codes into display codes. The call and return
conditions are as follows.

ACC «- ASCII code
CALL ? ADCN
ACC Display code

Other
than AF

CALL ?DACN
(OBCE)

Converts display codes into ASCII codes. The call and return
conditions are as follows.

ACC Display code
CALL ? DACN
ACC ASCII code

Other
than AF

CALL ?BLNK
(0DA6)

Detects the vertical blanking period. Control is returned to the
calling program when the vertical blanking period is entered.

All
registers

CALL ?DPCT
(ODDC)

Controls display as follows.

All
registers

CALL ?DPCT
(ODDC)

ACC Control ACC Control All
registers

CALL ?DPCT
(ODDC) C O H

C I H

C 2 H

C 3 H

C 4 H

C 5 H

Scrolling
Same as the D key.
Same as the Q key.
Same as the Q key.
Same as the Q key.
Same as the | HOME | key.

C 6 H
C 7 H
C 8 H
C 9 H
C D H

Same as the | CLR j key.
Same as the ! DEL | key.
Same as the 1 INST [key.
Same as the | ALPHA | key.
Same as the |CR| key.

All
registers

CALL ?PONT
(0FB1)

Sets the current cursor location in the f
conditions are as follows.

CALL ? PONT
HL •«- Cursor location (binary)

L register. The return Other
than AF
and HL

153-

— —

i knd - - i ksa i vdi ot •gtibrntpsmoo istesisfb I I38A sift |
1A a£fti \ y ^ t ib etsii l o £ iswof s/fl yd bsjfiagoT^s? isdmai; V

•

•

.--V !iol 2S 65S f no;;ibo

gnhte isioarmrib I I 0 2 A sriJ

f f t - H i ;-3.s> 'is&tmm temiaabsxsri J H 0 ~ TO
mx 7: a sua j h ,o gla^sioo ttrfi' i ~ -ho

X3HH 1 j a '
(« A t - >OA <4.9} ladrnwi ismi:»bsxs£i 0 0 A 0 = 1 3

.bmuszs i o n SIB D D A SRFJ LO I 35 TO

mm oa nl jsg si sfeoa yelqaib gnibnocpstioa $ii3 .bassziq
.minaoiq gnilteo aril oJ b a m u m z i k f t i n m

•u :. hr 1 . . - i c \ >g/ rr ; <•
.awolfoi 2B aWs anotJfhmrj-

sbou 1102A. - ') /

•

-zwoOol as ste znoiJifeaoa
sbo-j vfiio^iQ }'.)/•

sbos TD2A -- OOA

bciaJna>.i ?>e;.4i-'.c TpU/rsM.ii: . :; , ••• arfj nariw ras-tosq anHur*

SMFÎ SRT A ; ! ! .TSLAIGSI I I ! S I sof tsaoi IOSIIJO J n snua

(vtsriM} nailBOOi lOaieO J H

A. 1 Code Tables
• ASCII code table

MSD is an abbreviation for most significant digit, and represents the upper 4 bits of each code; LSD
is an abbreviation for least significant digit, and represents the lower 4 bits of each code. Codes 11H to
1 6H are cursor control codes. For example, executing CALL PRNT (a monitor subroutine) with 1 5H set
in ACC returns the cursor to the home position. (1 ffl is not displayed.)

MSD 0 1 2 3 4 5 6 7 8 9 A B c D E F

LSD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 0 0 0 0 | S P | l o j 1 1 1 P B m l "•*••• | a [H I 1 • B n

1 0 0 0 1 • m m E Q H [B B B a f a ; • L I H * m
2 0 0 1 0 • 0 m | B] R X K • e u H B m u

3 0 0 1 1 • m l c | I s j a B 0
\

w m • Hi B

4 0 10 0 • $ 4 m S m H Q • • • B •
5 0 10 1

S I M 5 0 • m u 0 • E • a

6 0 1 1 0 H 1 * 1 [6 . F V ¥ H • F t l m 0 B K l

7 0 1 1 1 • m G w 9 H n
g | g 0 • • • m

8 10 0 0 m ® [H J | x © 1 h r s i I I • B • +
9 10 0 1 L i l m m |y taj E • i k i | a E u i k J •
A 10 10 m m a | z a • • b f 0 • • • •

B 10 11 a m m L m • 0 1 s V a m • • E

C 1 1 0 0 • s 0 \ ® m Q [d l m • • • • 4.

D 1 1 0 1 |CR | B B m H B • • r | u y a H S m

E 1 1 1 0 • 0 m H J m 0 • P | E I I • • 0 H

F 1 1 1 1 17] m 0 a 3 1 0 0 L U 0 • S • B

154-

• Display code table

The display codes are used to address character patterns stored in the character generator. These codes
must be transfeited to video-RAM to display characters.

Monitor subroutines PRNT (0012h) and MSG (0015h) convert ASCII codes into display codes and
transfer them to the V-RAM location indicated for the cursor.

Codes C1H to C6H are for controlling the cursor.

MSD 0 1 2 3 4 5 6 7 8 9 A B c D E F
LSD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 0 0 0 0 rspi [Pi |0 • } a m n I! [Pi • • ffi ft • SP|
1 000 1 A 11 D ffl R] 11

1 ° • a Ii g 0 • LB • •
2 00 10 B m |2 • H c 1 1 • bl 0 w • 0J • •
3 00 11 c s 3 • • # n c| s H • • H N n
4 0 10 0 D T 4 B • D $ B dl s h • a H •
5 0 10 1 E u 5 m m % E e| 0 l-l Q El H n
6 0 11 0 F V 6 n * B & 0 f V a H •

•

7 0 111 G w 7 • • L>J 1 K w • • H M- • |

8 1000 [HJ X 8 B Ol E (B h X 0 a H 0 -M •
9 100 1 m Y| |9 • ? e \l 1) [D i |y 8 • I M K N
A 10 10 [Jl z\ — • H • + H j 1 1 z 6 u W • B • •

B 10 11 |K [£] a • s * G kl L?J ii 0 B • B H
C 1100 |L a e

> • • a H • 1 • 0 LU a m SB a
D 1 1 0 1 |M E / • k] B Kl • m n fol ffl H • a &
E 1 1 1 0 |N \E • • a BO • a n • [A] 01 IB 0 H • •

F 1 1 1 1 |0 ffl » • •
• B • 0 a EI y s W

155-

The character patterns on the former page are contained in the 2K bytes which make up the first
half of CG-ROM. Character patterns for the second half of CG-ROM are shown on the latter page.
However, character patterns in the second 2K bytes of the CG-ROM are not supported by BASIC, and
cannot be entered directly from the keyboard. Although they can be displayed using the POKE
statement as shown in the example below, they cannot be output to any printer (either the built-in
printer or an external printer).

< Examples >
(1) The following program example displays character patterns from the second half of CG-ROM

on the CRT screen.

1 0 C O L O R , , 7 , 0
20 P R I N T " B " ;
30 F O R J = 5 5 2 9 6 T O 5 6 2 9 6 55296 = $D800
40 P O K E J, 2 40 > Specifies the second 2K-byte
50 N E X T J ' half of CG-ROM. 240 = $F0
60 A = 5 3 2 4 8 : I = 6 : H = 0 > 53248 = $D000
70 P O K E A , I
80 A = A + 2
90 1 = 1 + 1 : I F 1 = 2 5 6 T H E N G O T O 1 2 0
100 H = H + 1 : I F H = 20 T H E N A = A+40: H = 0
110 GOTO 70
1 20 GOTO 1 20

(2) The example below illustrates using machine language to display character patterns from the
second half of CG-ROM on the CRT screen.

L D H L , D 0 0 0 H D I S P : X O R A
C A L L D I S P L D B, 0 0 H
L D H L , D 2 0 8 H D I S P 2 : L D CHL) , A
C A L L D I S P I NO H L
L D A , F 1 H I N C A
L D H L , D A 0 8 H D E C B
L D D E , D A 0 9 H J P N Z . D I S P 2
L D B C , 0 0 F F H R E T
L D CHL) , A
L D I R
E N D

1 5 5 - 1

• MZ-700 Display code table (second 2K-byte half)

MSD

LSD
0

0000
1

0 0 0 1

2
0010

3

0011

4

0100

5

0101

6
0110

7
0111 1 0 0 0

9

1 0 0 1

A
1010

B
1011

c
1100

D
1101

E
1110

F
1111

0

1

2

3

4

5

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

m SE
a
m

M m a

a

S
m m

m

m

H m

a
m
a
E

H
C
a

[J
IS

0 s

H •
H

0
B
a
e

B
t ,

B
a

a
ci

B
•
E

•

m

7

8

9

A

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

10 10

B

M

m

S0

m

m

OB
e

M

m

El
m

si

s

• B

m

a
e

E

B
E
0

S
[8
ffi

0
s

Q
e
B

•
B

c

D

E

F

10 11

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

IS
IB

• B
I§ fnri

m

m m

•
E
S3S

a
H
B
E

CS
£

•

a
a
s
n

m

s •

•
n
m

155-155

• ASCII code table for color plotter-printer

Graphic characters other than those shown above cannot be printed, but the corresponding hexadecimal
code is printed in a different pen color.

yen 0 1 2 3 4 5 6 7 8 9 A B c D E F
0 3 D > q n 0 SP 0 3 q n

1 A 0 / A (2 a
2 T 11 2 B R e z u
3 -> # 3 3 S \ UJ m
4 $ D /v s
5 E X 5 — u
6 c a< 6 — i J I

I
1

7 / 7 G I A 9 o i—i
8 c 8 — X h 0 !
9] .3 N r < A
A % a • J 2 b f o
B + • 9 < p X u a OV

/
C ? <x \ d
D —

—
V r u y

E • > \ p J3 {
F / 9 i 3 <r c J i—i JC

156-

A. 2 MZ-700 Series Computer Specifications
A.2.1 MZ-700

CPU:
Clock:
Memory:

Video output :

Screen size:

Colors:

Music funct ion:
Clock:
Keys:

Editing function:

Temperature:

Humidity:

Dimensions:

Weight:

Accessories:

SHARP LH0080A (Z80A)
3.5 MHz
ROM 4K bytes (ROM)

2K bytes (character generator)
RAM 64K bytes (program area)

4K bytes (video RAM)
PAL system
RGB signal
Composite signal (B/W)
RF signal (UHF 36 ± 3 CH, B/W)
40 characters x 25 lines
8 x 8 dot character matrix
8 colors for characters
8 colors for background
Built in (500 mW max. output)
Built in (24 hour clock, no backup)
69 keys

ASCII standard
Definable function keys, cursor control keys
Screen editor
(cursor control, home, clear, insert, and delete)
Operating; 0 ~ 35°C
Storage; - 2 0 ~ 60°C
Operating; 85% or less
Storage; 85% or less
MZ-731; 400 (W) x 305 (D) x 102 (H) mm
MZ-721; 440 (W) x 305 (D) x 86 (H) mm
MZ-711; 440 (W) x 305 (D) x 86 (H) mm
MZ-731; 4.6 kg
MZ-721; 4.0 kg
MZ-711; 3.6 kg
Cassette tape (BASIC (side A) Application programs (side B))
Owners manual, function labels, power cable, TV connection cable
Attachments for the color plotter-printer are listed later.

A.2.2 CPU board specifications
CPU: LH0080A (Z80A) 1
PPI: 8255 1
PIT: 8253 1
Memory controller
(CRTC): M60719 1
ROM: Monitor 4K byte ROM 1

Character generator 2K byte ROM 1
RAM: 64K bits D-RAM 8

2 K b y t e S-RAM 2
I/O bus: Expansion I/O bus 1

Printer I/O bus 2 (Cannot be used at the same time)
Cassette READ/WRITE terminals 2
Joystick terminal 2

A.2.3 Color plotter-printer specifications
Printing system: 4 selectable colors using ball point pens
Colors: 1. Black, 2. Blue, 3. Green, 4. Red
Printing speed: Average 10 characters/second when printing with the smallest size characters.
Line width: 80 columns, 40 columns, or 26 columns (selected by software)
Number of
characters: 115 (including ASCII characters)
Resolution: 0.2 mm
Accessories: Roll paper (1), Ball pens (black, blue, green red) Paper holders (left and right)

Roll shaft (1), Paper guide (1)

A.2.4 Data recorder specifications
Type: IEC standard compact cassette mechanism
Recording/
playback system: 2 track, 1 channel monophonic
Rated speed: 4.8 cm/s ±3.5%
Type of control
switches: Piano type
Control switches: PLAY, FF, REW, STOP/EJECT, and REC keys and counter reset but ton
Data transfer
method: Sharp PWM method
Data transfer
rate: 1200 bps (typ.)
Tape: Ordinary audio cassette tape

A.2.5 Power supply specifications
(Supplies power to the color plotter-printer and data recorder, as well as to the main unit.)
Input: 240/220 V ±10%, 50/60 Hz, 20 W
Output: 5 V

158-

A. 3 BASIC Error Message List
The BASIC interpreter displays an error message in one of the following formats when an error occurs

during operation.

1. < error type > error (Direct mode error)
2. < error type > error in line number (Run mode error)

Error messages in format 1 are issued when an error is detected during execution of a direct command
or entry of a program. Error messages in format 2 are issued when an error is detected during program
execution.

Error messages which may be displayed are shown below.

SYNTAX

Error No. Message displayed Description

1 Syntax error Syntax error
2 Over flow error Numeric data used is out of the specified range, or

an overflow occurred.
3 Illegal data error Illegal constant or variable was used.
5 String length error String length exceeded 255 characters.
6 Memory capacity error Memory capacity is insufficient.
7 Array def. error An attempt was made to redefine an array to a

size greater than that defined previously.
8 Linelength error The length of a line was too long.

10 GOSUB nesting error The number of levels of GOSUB nesting exceeded
the limit determined by the usable memory space.

11 FOR~NEXT error The number of levels of FOR~NEXT loops exceed-
ed the limit determined by the usable memory area.

12 DEF FN nesting error The number of levels of DEF FN nesting exceeded
the limit.

13 NEXT error NEXT was used without a corresponding FOR.
14 RETURN error RETURN was used without a corresponding GOSUB.
15 Un def. function error An undefined function was called.
16 Un def. line num. error An unused line number was referenced.
17 Can't continue CONT command cannot be executed.
18 Memory protection An attempt was made to write data to the BASIC

control area.
19 Instruction error Direct mode commands and statements are mixed

together.
20 Can't RESUME error RESUME cannot be executed.
21 RESUME error An attempt was made to execute RESUME when no

error had occurred.
24 R F A D error READ was used without a corresponding DATA

statement.
24 l\JL/iVJL/ vl 1 W1 READ was used without a corresponding DATA

statement.
43 Already open error An OPEN statement was issued to a file which was

already open.
63 Out of file error Out of file during file read.
65 Printer is not ready Printer is not connected.
68 Printer mode error Color plotter-printer mode error.
70 Check sum error Check sum error (during tape read).

159-

A. 4 Z80A Instruction Set
A summary of the Z80A instructions are given below for reference.

Mnemonic Symbolic
operation Op-code Mnemonic Symbolic

operation Op-code

8 -b i t load group LD HL, (nn) H<—(nn + 1) 00 101 010
L<—(nn) n L<—(nn) n *

LD r, r' r— r' 01 r P' ^ n LD r, r' r— r' 01 r n
LD r, n r«— n 00 r 110 LD dd, (nn) ddH—(nn + 1) 11 101 101

— n -4. ddi.<—(nn) 01 dd1 011
LD r, (HL) r<—(HL) 01 r 110 — n —
LD r, (IX + d) r—(IX + d) 11 011 101 — n —

01 r 110 LD IX, (nn) IXH—(nn + 1) 11 011 101
— a — • IXL<—(nn) 00 101 010

LD r. (lY + d) r—(lY + d) 11
01

111
r

101
110 , n

n f

— d —• LD IY, (nn) IYH«—(nn + 1) 11 111 101
LD (HL), r (HL)—r 01 110 r IYL<—(nn) 00 101 010
LD (IX + d), r (IX + d)—r 11 011 101 < — n — »

01 110 r — n
— d — LD (nn), HL (nn +1)<—H 00 100 010

LD (lY+d) , r (I Y + d) — r 11
01

111
110

101
r

(n n) ^ L
4

n
n

—

— d — > LD (nn), dd (nn + 1)<-ddH 11 101 101
LD (HL), n (HL)—n 00 110 110 (nn)<—ddL 01 ddO 011

— n — » — n — >

LD (IX + d), n (IX + d)—n 11 011 101 — n —
00 110 110 LD (nn), IX (nn +1)<—IXH 11 011 101
— d (nn)<—IXL 00 100 010
— n — > — n —

LD (lY + d), n (lY + d)—n 11 111 101 — n —
00 110

d
110 LD (nn), IY (nn + 1)<—IYH

(nn)<—IYL

11
00

111
100

101
010

— n — » — n — »

LD A, (BC) A—(BC) 00 001 010 — n —
LD A, (DE) A<—(DE) 00 011 010 LD SP, HL SP->—HL 11 111 001
LD A, (nn) A—(nn) 00 111

n
010 LD SP, IX SP^IX 11

11
011
111

101
001

— n —«• LD SP. IY SP<—IY 11 111 101
LD (BC), A (B C) — A 00 000 010 11 111 001
LD (DE), A (DE)—A 00 010 010 PUSH qq (SP —2)<—qqL 11 qqO 101
LD (nn), A (nn)—A 00 110 010 (SP —1)<—qq H

<— n — > PUSH IX C S P - 2) — I X L 11 011 101
— n - > C S P - 1) — I X H 11 100 101

LD A, I A—I 11 101 101 PUSH IY (SP —2)<—IYl 11 111 101
01 010 111 (S P - D ^ I Y h 11 100 101

LD A, R A—R 11 101 101 POP qq qqH<—(SP + 1) 11 qqO 001
01 011 111 qqL <—(SP)

LD I, A I—A 11 101 101 POP IX IXH«-(SP + 1) 11 011 101
01 000 111 IXL—(SP) 11 100 001

LD R, A R—A 11 101 101 POP IY IYh^-(SP + 1) 11 111 101
01 001 111 IYL*—(SP) 11 100 001

1 6 -b i t load group Exchange group and block transfer and search group

LD dd, nn dd—nn 00 ddO 001 EX DE, HL D E « H L 11 101 011
— n — EX AF, AF' AF->AF' 00 001 000
— n —>• EXX (B C) - (B C ') 11 011 001

LD IX, nn IX—nn 11
00

011
100

101
001

(D E) — (D E O
(HL)—(HL')

— n - » EX (SP), HL H — (S P + 1) 11 100 011
— n — • L — (S P)

LD IY, nn IY—nn 11 111 101 EX (SP), IX IXH—(SP + 1) 11 011 101
00 100 001 IXL<->(SP) 11 100 011
— n — EX (SP), IY IYH—(SP+1) 11 111 101
— n —• IYL—(SP) 11 100 011

160-

Mnemonic Symbolic
operation Op-code

LDI (DE)—(HL) 11 101 101
DE—DE + 1 10 100 000
HL—HL + 1
B C — B C - 1

LDIR (DE)—(HL) 11 101 101
DE—DE + 1 10 110 000
HL—HL + 1
BC—BC — 1
Repeat until BC=0

LDD (DE)—(HL) 11 101 101
D E — D E - 1 10 101 000
H L - H L —1
BC—BC — 1

LDDR (DE)—(HL) 11 101 101
DE<—DE —1 10 111 000
HL« -HL - 1
B C — B C - 1
Repeat until BC=0

CPI A —(HL) 11 101 101
HL*—HL + 1 10 100 001
BC"—BC —1

CPIR A —(HL) 11 101 101
HL— HL+1 10 110 001
BC—BC —1
Repeat until A =
(HL) or BC = 0

CPD A — (HL) 11 101 101
HL—HL —1 10 101 001
BC<—BC —1

CPDR A— (HL) 11 101 001
HL<—HL —1 10 111 001
B C — B C - 1
Repeat until A =
(HL) or BC = 0

Mnemonic Symbolic
operation Op-code

8-bit arithmetic and logical group

ADD A, r
AD A, n

ADD A, (HL)
ADD A, (IX + d)

ADD A, (lY + d)

ADC A, s
SUB s
SBC A, S

AND S

OR S

XOR S

CP S
INC r
INC (HL)
INC ClX + d)

INC ClY + d)

A—A + r
A—A + n

A—A + (HL)
A—A, (IX + d)

A—A + (IY + d)

A—A + s + CY
A—A — S
A — A - S - C Y
A = AAs
A—AVs
A — A © S

A - S

r—r +1
(HL)—(HL) +1
(IX + d)
—(ix + d) + l

(lY + d)
—(lY + d) +1

10 [OOOj r
11 [ooo! 110
— n —»
10 f000| 110
11 011 101
10 [pool 110
— d -»
11 rri 101
10 I oooj
— d

110

001
0101

011
100
110
101
111

00 r
00 110[
11 011 101
oo nopTool
— d -»
11 111 101
00 110[

d
DEC m m«— m — 1 |ToT!

General purpose arithmetic and control group

DAA Decimal adjustment 00 100 111
upon contents of A
after add or subtract

CPL A <—A 00 101 111
NEG A<—A +1 11 101 101

01 000 100
CCF cy<-cy 00 11V 111
SCF CY*—1 00 110 111
NOP No operation, but 00 000 000

PC is incremented.
HALT CPU halted 01 110 110
Dl IFF—0 11 110 011
El IFF—1 11 111 011
IM0 Set interrupt 11 101 101

mode 0 01 000 110
IM1 Set interrupt 11 101 101

mode 1 01 010 110
IM2 Set Interrupt 11 101 101

mode-2 01 011 110

RLCA

RLA

RRCA

RRA

RLC r

RLC (HL)

1 6-bit arithmetic group

ADD HL, S S HL—HL + ss 00 SS1 001
ADC HL, ss HL—HL + S S + CY 11 101 101

01 SS1 010
SBC HL, S S H L — H L - S S - C Y 11 101 101

01 ssO 010
ADD IX, pp IX—IX + pp 11 011 101

00 pp1 001
ADD IY, rr IY— lY + rr 11 111 101

00 rr1 001
INC ss S S — S S + 1 00 ssO 011
INC IX IX—IX+1 11 011 101

00 100 011
INC IY IY—IY + 1 11 111 101

00 100 011
DEC ss SS—SS —1 00 ss1 011
DEC IX IX— IX-1 11 011 101

00 101 011
DEC IY IY— IY —1 11 111 101

00 101 011

Rotate and shift group

| C Y | I H ^ O [J

CYHH 7<—O
L-1 7-"oTLfCYl

l | 7—*0 |—fcvi 1

00 000 111

00 010 111

00 001 111

00 011 111

11 001 011
00 [000] r
11 001 011
00 foool 110

161-

Mnemonic
Symbolic
operation Op-code

RLC (IX + d)

RLC (lY + d)

RL m

RRC m

RR m

SLA. m

SRA m

SRL m

RLD

RRD

LfcVT—TT^oVI

L| 7-0 [ifCY|

l-h 7~~*o i—tcyi—i
m

I c vh—| 7—0 ho
m

p T p f H g Z]

oH 7-0 T—H c y 1

A I
| 7 4|3 0| 17 4|3 0|

(H L)

A , f | 7 4|3 0| | 7 4|3 0|
(H L)

11 011 101
11 001 011
— _ d —
00 [000] 110
11 111 011
11 001 011
— d —
00 [000] 110

pfTTj

11 101 101
01 101 111

11 101 101
01 100 111

Bit set, reset and test group

BIT b, r z — F b 11 001 011
01 b r

BIT b, (HL) Z —(HL)b 11 011 011
01 b 110

BIT b, (IX + d) Z—(IX + d)b 11 011 101
11 001 011
— d — >

01 b 110
BIT b, (lY + d) Z—(IY + d)b 11 111 101

11 001 011
— d — •

01 b 110
SET b, r rb—1 11 001 011

El b r
SET b, (HL) (H L) b - 1 11 001 011

b 110
SET b, (IX + d) (IX + d)b—1 11 001 101

11 001 011

H3
d
b 110

SET b, (lY + d) (lY + d)b—1 11 111 101
11 001 011
< — d — •

b 110
RES b, m mb—0 ' m

Mnemonic Symbolic
operation Op-code

Jump group

JP nn

JP cc, nn

JR e

JR C, e

JR Z, e

JR NC, e

JR NZ, e

JP (HL)
JP (IX)

JP (IY)

DJNZ e

CALL nn

CALL cc, nn

RET

RET cc

RETI

RETN

RST p

PC—nn

If condition cc is
true, P C < —nn;
otherwise, continue
PC—PC + e

If 0 = 0, continue.
If C = 1,
PC—PC + e

If Z = 0, continue.
If C = 1,
P C — P C + e

If 0 = 1, continue.
If C=0 ,
PC—PC + e

If Z = 1, continue.
If Z=0,
PC—PC + e

PC—HL
PC—IX

PC—IY

B—B —1
If B = 0, continue;
otherwise,
PC—PC + e

Call and return group

(S P - 1) — P C H 11 001 101
(SP — 2)—PCL — n
PC—nn — n —
If condition cc is 11 cc 100
false, continue; — n —
otherwise same — n —
as CALL nn.
PCL—(SP) 11 001 001
PC H —(SP+1)
If condition cc is 11 cc 000
false, continue;
otherwise same
as RET.
Return from 11 101 101
interrupt 01 001 101
Return from NMI. 11 101 101

01 000 101
(S P - 1) — P C H 11 t 111
(S P - 2) — PCL
P C H — 0

P C L — P

11 000 011
— n — >

— n — »

11 cc 010
— n - >

— n — •

00 011 000
— e-2 - >

00 111 000
< e-2 —*•

00 101 000
— e-2 — *

00 110 000
— e-2 — »

00 100 000
— e-2 — "

11 101 001
11 011 101
11 101 001
11 111 101
11 101 001
00 010 000
<— e-2 — >

162-

Mnemonic Symbolic
operation Op-code

Input and output group

IN A, (n)

IN r, (C)

INI

INIR

IND

INDR

A—(n)

r—(C)

(HL)—(C)
B—B — 1
HL—HL + 1
(HL)—(C)
B—B —1
HL—HL + 1
Repeat until B = 0
(HL)—(C)
B—B — 1
HL—HL — 1
(HL)—(C)
B — B - 1
HL—HL —1
Repeat until B = 0

11 011 011
— n — •

11 101 101
01 r 000
11 101 101
10 100 010

11 101 101
10 110 010

11 101 101
10 101 010

11 101 101
10 111 010

Mnemonic Symbolic
operation Op-code

OUT (n), A

OUT (C), r

OUTI

OTIR

OUTD

OTDR

(n)—A

CC)—r

(C) - (H L)
B — B - 1
HL—HL+1
(C)—(HL)
B — B - 1
HL—HL + 1
Repeat until B=0
CC)—(HL)
B — B - 1
H L — H L - 1
(C)—(HL)
B — B - 1
H L — H L - 1
Repeat until B = 0

11 010 011
— n —<•
11 101 101
01 r 001
11 101 101
10 100 011

11 101 101
10 110 011

11 101 101
10 101 011

11 101 101
10 111 011

(Note) The meanings of symbols used in the above table are as follows.
r, r' Register dd, ss Register pair dd Register pair PP Register
000 B 00 B C 00 B C 00 B C
001 C 01 D E 01 D E 01 D E
010 D 10 H L 10 H L 10 I X
011 E 11 S P 11 A F 11 S P
100 H
101 L
111 A

rr Register pair b Bit set cc Condition t p
00 B C 000 0 000 N Z non zero 000 00 H
01 D E 001 1 001 z zero 001 08 H
10 I Y 010 2 010 N C non carry 010 10 H
11 S P 011 3 011 C carry 011 18 H

100 4 100 P O parity odd 100 20 H
A : AND operation 101 5 101 P E parity even 101 28 H
V : OR operation 110 6 110 P sign positive 110 30 H
© : Exclusive OR operation 111 7 111 M sign negative 111 38 H

s: r, n, (HL), (IX + d), (IY + d) m : r, (HL), (IX + d), (IY + d)
CY: Carry flip-flop mb : Bit b or location m
(register pair)H: Upper 8 bits of register pair (register pair)i_: Lower 8 bits of register pair

For op-codes ADC, SUB, SBC, AND, OR, XOR and CP, the bits in | | replace | | in the ADD set.
For op-code DEC, | I replaces | | in the INC set.
Similar operations apply to op-codes of the rotate and shift group and bit set, reset and test group.

163-

A. 5 Monitor Program Assembly List
An assembly listing of the MONITOR 1Z-013A is provided on the following pages.
This assembly list was produced with the Z80 assembler contained in the floppy DOS. The meanings of

symbols in the list are as follows.

Relative address Assembler message

Label
Relocatable
object code

l

2U 02A .• 13

Mnemonic (op-code)

Operand Comment

INC DE
21 02A8 13 INC DE

02 A 9 13 INC DE
02AA C9 RET

24 02AB «l
2 5 02AB
26 02AB 3
2 7 02 A B 5 ORG 0 2 ABH 5 MLDST
2S 02 AB
' V! Q 02 A B ; MEL ODY S TART iv STOP
3 0 02 AB »1
31 0 2 AB MLDSTs ENT

02 A B 2AA111 LD HL,<RATIO)
3 3 02AE 7C LD A, H
3 4 02AF B7 OF: A
3 5 02 BO 2S0C JR Z,MLDSP
3 6 02 B 2 D5 F'lJSH DE
3 7 02B3 EB EX DE, HL
3 a 02B4 2 1 0 4 E 0 L.D HL,CONTO
3 9 02B7 771 LD (H L) , E
4 0 02 B a 7 2 LD (H L) , D
41 0 2 B 9 3E01 LD A, 1
4 2 02 BB D1 POP DE
4 3 02BC 1806 JR MLDS1
4 4 02 BE
4 5 02BE MLDSPs ENT
4 6 02 BE 3E36 LD A, 36H
4 7 0 2 CO 3 2 0 7 E 0 LD (CONTF >,A
4 a 02C3 AF XOR A
4 9 02C4 3 2 0 8 E 0 MLDS1s LD (SUNDS),A
5 0 02C 7 C9 RET

MODE SET (8 2 5 3 CO)
E007H

E008H
TEHRO RESET

Since the starting address of Monitor 1Z-013A is set to $0000, relocatable addresses and object codes
in the assembly list can be assumed as absolute addresses and object code, respectively.

This assembly list is provided for reference, only and the Sharp Corporation can assume no responsi-
bility for answering any question about it.

Note that this monitor differs f rom the monitor program included in the BASIC interpreter.

164-

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 01 04.07.S3

0 1 0 0 0 0 ;
0 2 0 0 0 0 >
0 3 0 0 0 0 ; MONITOR PROGRAM 1 Z - 0 1 3A
0 4 0 0 0 0 ;
0 5 0 0 0 0 ; (M Z - 7 0 0) FOR PAL
0 6 0 0 0 0 ;
0 7 0 0 0 0 ; REV. 8 3 . 4 7
OB 0 0 0 0 ;
0 9 0 0 0 0 ;
10 0 0 0 0 M O N I T : ENT
11 0 0 0 0 C 3 4 A 0 0 J P START
12 0 0 0 3 G E T L : ENT
1 3 0 0 0 3 C 3 E 6 0 7 J P ?GETL
14 0 0 0 6 L E T N L : ENT
15 0 0 0 6 C 3 0 E 0 9 J P ? L T N L
16 0 0 0 9 N L : ENT
17 0 0 0 9 C 3 1 8 0 9 J P ? N L
I S 0 0 0 c PRNTS: ENT
19 o o o c C 3 2 0 0 9 J P 7PRTS
2 0 0 0 0 F PRNTTs ENT
2 1 0 0 OF C 3 2 4 0 9 J P 7PRTT
2 2 0 0 1 2 PRNT: ENT
2 3 0 0 1 2 C 3 3 5 0 9 J P 7PRNT
2 4 0 0 1 5 MSG: ENT
2 5 0 0 1 5 C 3 9 3 0 8 J P ?MSG

2 6 0 0 1 8 MSGX: ENT
27 0 0 1 8 C 3 A 1 0 B J P 7MSGX
2S 0 0 I B GETKY: ENT
2 9 0 0 1 B C 3 B D 0 8 J P ?GET
3 0 0 0 I E BRKEYS ENT
3 1 0 0 I E C 3 3 2 0 A J P ?BRK
3 2 0 0 2 1 W R I N F ! ENT
3 3 0 0 2 1 C 3 3 6 0 4 J P 7WRI
3 4 0 0 2 4 WRDAT: ENT
3 5 0 0 2 4 C 3 7 5 0 4 J P ?WRD
3 6 0 0 2 7 R D I N F : ENT
3 7 0 0 2 7 C 3 D 8 0 4 J P ? R D I
3 8 0 0 2 A RDDAT: ENT
3 9 0 0 2 A C 3 F 8 0 4 J P ?RDD
4 0 0 0 2 D V E R F Y : ENT
4 1 0 0 2 D C 3 B 8 0 5 J P 7VRFY
4 2 0 0 3 0 MELDY: ENT
4 3 0 0 3 0 C 3 C 7 0 1 J P ?MLDY
4 4 0 0 3 3 T I M S T : ENT
4 5 0 0 3 3 C 3 0 8 0 3 J P 7TMST
4 6 0 0 3 6 0 0 NOP
4 7 0 0 3 7 0 0 NOP
4 8 0 0 3 8 C 3 3 S 1 0 J P 1 0 3 8 H
4 9 0 0 3 B T I M R D : ENT
5 0 0 0 3 B C 3 5 8 0 3 J P ?TMRD
5 1 0 0 3 E B E L L : ENT
5 2 0 0 3 E C 3 7 7 0 5 J P ?BEL
5 3 0 0 4 1 XTEMP: ENT
5 4 0 0 4 1 C 3 E 5 0 2 J P 7TEMP
5 5 0 0 4 4 MSTA: ENT
5 6 0 0 4 4 C 3 A B 0 2 J P MLDST
5 7 0 0 4 7 MSTP: ENT
5 8 0 0 4 7 C 3 B E 0 2 J P MLDSP
5 9 0 0 4 A s
6 0 0 0 4 A ;

i MONITOR ON

5 GET L I N E (E N D ' C R ")

5 NEW L I N E

; P R I N T SPACE

5 P R I N T TAB

1 CHARACTER P R I N T

1 L I N E P R I N T (E N D ' 0 1

RST 3

BET KEY

GET BREAK

5 WRITE INFORMATION

; WRITE DATA

; READ INFORMATION

; READ DATA

; V E R I F I N G CMT

; RST 6

; T I M E SET

; INTERRUPT ROUTINE

5 T I M E READ

i B E L L ON

; TEMPO SET (1 - } /)

S MELODY START

; MELODY STOP

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 02 04.07.S3

0 1 0 0 4 A ;
0 2 0 0 4 A S T A R T : ENT
0 3 0 0 4 A 3 1 F 0 1 0 LD S P , SP ! STACK SET (1 0 F 0 H)
0 4 0 0 4 D ED56 IM 1 i I M 1 SET
0 5 0 0 4 F C D 3 E 0 7 CALL 7M0DE ! 8 2 5 5 , 8 2 5 3 MODE SET
0 6 0 0 5 2 C D 3 2 0 A CALL ?BRK ; CTRL 7
0 7 0 0 5 5 3 0 1 9 JR NC j STO
OB 0 0 5 7 F E 2 0 CP 2 0 H : KEY I S CTRL KEY
0 9 0 0 5 9 2 0 1 5 JR N Z , S T O
1 0 0 0 5 B CMYO: ENT
11 0 0 5 B D 3 E 1 OUT < E 1 H) , A 5 DOOOH-FFFFH I S DRAM
1 2 0 0 5 D 11FOFF LD D E , F F F O H ! TRANS. ADR.
1 3 0 0 6 0 2 1 6 B 0 0 LD H L , $ M C P ; MEMORY CHANG PROGRAM
14 0 0 6 3 0 1 0 5 0 0 LD B C , 0 5 ; BYTE S I Z E
15 0 0 6 6 EDBO L D I R
16 0 0 6 8 C 3 F 0 F F J P FFFOH ; JUMP $ F F F O
17 0 0 6 B 5
18 0 0 6 B $MCP: ENT 5 OOOOH—OFFFH I S DRAM
19 0 0 6 B D3E0 DEFW E0D3H ; OUT (E O H) , A
2 0 0 0 6 D C 3 0 0 DEFW 0 0 C 3 H 5 J P OOOOH
2 1 0 0 6 F 0 0 DEFB OOH
2 2 0 0 7 0 ;
2 3 0 0 7 0 STO: ENT
2 4 0 0 7 0 0 6 F F LD B , F F H \ BUFFER CLEAR
2 5 0 0 7 2 2 1 F 1 1 0 LD H L , N A M E i 1 0 F 1 H - 1 1 F 0 H CLEAR
2 6 0 0 7 5 CDD80F CALL 7CLER
2 7 0 0 7 8 3 E 1 6 LD A , 16H ; LASTER C L R .
2 8 0 0 7 A C D 1 2 0 0 CALL F'RNT
2 9 0 0 7 D 3 E 7 1 LD A , 7 1 H 5 B A C K : B L U E C H A . : W R I T E
3 0 0 0 7 F 2 1 0 0 D 8 LD HL ,DBOOH ; COLOR ADDRESS
3 1 0 0 8 2 CDD509 CALL # C L R 8
3 2 0 0 8 5 2 1 B D 0 3 LD H L , T I M I N i INTERRUPT JUMP R O U T I N E
3 3 0 0 8 8 3EC3 LD A , C3H ;
3 4 0 0 8 A 3 2 3 8 1 0 LD (1 0 3 8 H) , A
3 5 0 0 8 D 2 2 3 9 1 0 LD (1 0 3 9 H) , H L
3 6 0 0 9 0 3 E 0 4 LD A , 0 4 S NORMAL TEMPO
3 7 0 0 9 2 3 2 9 E 1 1 LD (TEMPW) , A
3 8 0 0 9 5 CDBE02 CALL MLDSF' i MELODY STOP
3 9 0 0 9 B C D 0 9 0 0 C A L L NL
4 0 0 0 9 B 1 1 E 7 0 6 LD D E , M S G 7 3 \ * * MONITOR 1 Z - 0 1 3 A * *
4 1 0 0 9 E DF RST 3 ; CALL MGX
4 2 0 0 9 F C D 7 7 0 5 CALL 7 B E L
4 3 0 0 A 2 SS: ENT
4 4 0 0 A 2 3 E 0 1 LD A , 0 1 H
4 5 0 0 A 4 3 2 9 D 1 1 LD (SWRK) , A 5 KEY I N S I L E N T
4 6 0 0 A 7 2 1 0 0 E 8 LD H L , E 8 0 0 H ! USR ROM 7
4 7 0 0 A A 7 7 LD (H L) , A ; ROM CHECK
4 8 OOAB 1 S 5 5 JR F D 2
4 9 0 0 AD S T l : ENT
5 0 0 0 AD C D 0 9 0 0 CALL NL
5 1 0 0 BO 3 E 2 A LD A , 2 A H ; ' * ' P R I N T
5*? 0 0 B 2 C D 1 2 0 0 CALL F'RNT
5 3 0 0 B 5 1 1 A 3 1 1 LD D E , B U F E R i GET L I N E WORK (1 1 A 3 H)
5 4 OOB8 C D 0 3 0 0 CALL GETL
5 5 OOBB 1A S T 2 : LD A , (D E)
5 6 0 0 BC 13 I N C DE
5 7 OOBD FEOD CP ODH
5 8 0 0 BF 28EC JR Z , S T l
5 9 0 0 C 1 FE4A CP J ' ; JUMP
6 0 0 0 C 3 2 8 2 E JR Z,GOTO

* * ZaO ASSEMBLER SB—7201 < I Z - O I 3 A : < PAGE 0 3 0 4 . 0 7 . a s

0 1 0 0 C 5 FE4C CP ' L ' ; LOAD PROGRAM
0 2 0 0 C 7 2 8 4 8 JR Z , L O A D
0 3 0 0 C 9 F E 4 6 CP T ' i FLOPPY ACCESS
0 4 OOCB 2 8 3 2 JR Z , F D
0 5 OOCD F E 4 2 CP "B •' ; KEY I N BELL
0 6 OOCF 2 8 2 6 JR Z , SG
0 7 0 0 D 1 F E 2 3 CP i CHANG MEMORY
0 8 0 0 D 3 2 8 8 6 JR Z,CMYO
0 9 0 0 D 5 F E 5 0 CP ,p , i P R I N T E R TEST
1 0 0 0 D 7 2 8 7 C JR Z , P T E S T
1 1 0 0 D 9 FE4D CP ii MEMORY CORRECTION
12 0 0 DB C A A 8 0 7 J P Z,MCDR
13 OODE F E 5 3 CP ' S ' ! SAVED DATA
14 0 0 EO C A 5 E 0 F J P Z , S A V E
15 0 0 E 3 F E 5 6 CP ' V •' 5 V E R I F Y I N G DATA
16 0 0 E 5 CACBOF J P Z , V R F Y
17 OOEB F E 4 4 CP •' D ' S DUMP DATA
I S OOEA C A 2 9 0 D J P Z,DUMP
1 9 0 0 ED ;
2 0 0 0 ED ;
2 1 OOED DEFS + 4
2 2 OOF 1
2 3 OOF 1 18C8 JR ST2 5 NOT COMMAND
2 4 OOFS i
2 5 0 0 F 3 5 JUMP COMMAND
2 6 OOF 3 5
2 7 OOFS CD3D01 GOTO I: CALL H E X I Y
2 8 0 0 F 6 E9 J P (H L)
2 9 OOF7 ;
3 0 0 0 F 7 ji KEY SOUND ON OFF
3 1 0 0 F 7 ;
3 2 0 0 F 7 3 A 9 D 1 1 SQ: LD A , (S W R K) ; DO = SOUND WORK
3 3 OOF A I F RRA
3 4 0 0 FB 3 F CCF S CHENGE MODE
3 5 OOFC 17 RLA
3 6 OOFD 1 8 A 5 JR SS+2
3 7 OOFF ;
3 8 OOFF ; FLOPPY
3 9 OOFF ;
4 0 OOFF 2 1 0 0 F 0 F D : LD HL,FOOOH S FLOPPY I / O CHECK
4 1 0 1 0 2 7E F D 2 : LD A , (H L)
4 2 0 1 0 3 B7 OR A
4 3 0 1 0 4 2 0 A 7 JR N Z , S T 1
4 4 0 1 0 6 E9 F D 1 : J P (H L)
4 5 0 1 0 7 ;
4 6 0 1 0 7 5
4 7 6 1 0 7 ; ERROR (L O A D I N G)
4 8 0 1 0 7 ;
4 9 0 1 0 7 7 E R : ENT ;
5 0 0 1 0 7 F E 0 2 CP 0 2 H 5 A = 0 2 H : BREAK I N
5 1 0 1 0 9 2 S A 2 JR Z , S T 1 ;
5 2 0 1 OB 1 1 4 7 0 1 LD D E . M S B E l i CHECK SUM ERROR
5 3 01OE DF RST 3 ; CALL MSGX
5 4 0 1 OF 189C JR ST 1
5 5 0 1 1 1 s
5 6 0 1 1 1 !
5 7 0 1 1 1 ; LOAD COMMAND
5 8 0 1 1 1 ;
5 9 0 1 1 1 CDD804 LOAD : CALL ? R D I
6 0 0 1 1 4 3 8 F 1 JR C , ?ER

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 04 04.07.S3

0 1 0 1 1 6 C D 0 9 0 0 LOAO! C A L L NL
0 2 0 1 1 9 1 1 A 0 0 9 LD D E , M S G ? 2 5 L O A D I N S
0 3 o n e DF RST 3 ; CALL MSGX
0 4 0 1 I D 1 1 F 1 1 0 LD DE, NAME ; F I L E NAME
0 5 0 1 2 0 DF RST 3 5 CALL MSGX
0 6 0 1 2 1 C D F 8 0 4 CALL ?RDD
0 7 0 1 2 4 3 B E 1 JR C , ? E R
OS 0 1 2 6 2 A 0 6 1 1 LD H L , (E X A D R) ; EXECUTE ADDRESS
0 9 0 1 2 9 7C LD A , H
10 0 1 2 A F E 1 2 CP 12H ; EXECUTE CHECK
1 1 0 1 2 C 3 8 E 1 JR C,LOAD—2
12 0 1 2 E E9 J P (HL)
1 3 0 1 2 F
14 0 1 2 F
15 0 1 2 F
16 0 1 2 F 6 E T L I N E AND BREAK I N CHECK
17 0 1 2 F
I S 0 1 2 F E X I T BREAK I N THEN JUMP (S T 1)
19 0 1 2 F ACC= TOP OF L I N E DATA
2 0 0 1 2 F
2 1 0 1 2 F B 6 E T L : ENT
"72 0 1 2 F E3 EX (S P) , H L
2 3 0 1 3 0 C I POP BC ; STACK LOAD
2 4 0 1 3 1 1 1 A 3 1 1 LD DE ,BUFER ; MONITOR S E T L I N E

0 1 3 4 C D 0 3 0 0 CALL BETL
2 6 0 1 3 7 1A LD A , (D E)
2 7 0 1 3 8 F E 1 B CP 1BH 5 BREAK CODE
2 8 0 1 3 A 2 8 D 3 JR Z,LOAD—2 ; J P Z , S T 1
2 9 0 1 3 C E9 J P (H L)
3 0 0 1 3 D
3 1 0 1 3 D A S C I I TO HEX CONVERT
3 2 0 1 3 D INPUT (D E) = A S C I I
3 3 0 1 3 D CY=1 THEN JUMP (S T 1)
3 4 0 1 3 D
3 5 0 1 3 D H E X I Y : ENT
3 6 0 1 3 D FDE3 EX (S P) , I Y
3 7 0 1 3 F F 1 POP AF
3 8 0 1 4 0 C D 1 0 0 4 CALL HLHEX
3 9 0 1 4 3 38CA JR C,LOAD—2 ; J P C , S T 1
4 0 0 1 4 5 FDE9 J P (I Y)
4 1 0 1 4 7
4 2 0 1 4 7
4 3 0 1 4 7
4 4 0 1 4 7 M S G E l : ENT
4 5 0 1 4 7 4 3 4 8 4 5 4 3 DEFM -CHECK SUM ER. '
4 6 0 1 4B 4 B 2 0 5 3 5 5
4 7 0 1 4 F 4 D 2 0 4 5 5 2
4 8 0 1 5 3 2E
4 9 0 1 5 4 OD DEFB ODH
5 0 0 1 5 5
5 1 0 1 5 5
5 2 0 1 5 5 PLOTTER P R I N T E R TEST COMMAND
5 3 0 1 5 5 (D P B 2 3)
5 4 0 1 5 5 &=CONTROL COMMANDS SROUF'
5 5 0 1 5 5 C =F'EN CHENGE
5 6 0 1 5 5 G =GRAFH MODE
5 7 0 1 5 5 S = 8 0 CHA. I N 1 L I N E
5 8 0 1 5 5 L = 4 0 CHA. I N 1 L I N E
5 9 0 1 5 5 T =F'LOTTER TEST
6 0 0 1 5 5 I N (D E) = P R I N T DATA

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 05 04.07.S3

0 1 0 1 5 5
0 2 0 1 5 5 P T E S T : ENT
0 3 0 1 5 5 1A LD A , (D E)
0 4 0 1 5 6 F E 2 6 CP
0 5 0 1 5 8 2 0 1 6 JR N Z , P T S T 1
0 6 0 1 5 A 1 3 F'TSTO: INC DE
0 7 0 1 5 B 1A LD A , (D E)
OS 0 1 5 C FE4C CP ' L * i 8 0 I N 1 L I N E
0 9 0 1 5 E 2 8 1 6 JR Z , . L P T
1 0 0 1 6 0 F E 5 3 CP ' S ' 5 8 0 I N 1 L I N E
11 0 1 6 2 2 0 1 7 JR Z , . . L P T
1 2 0 1 6 4 F E 4 3 CP ' C ' 5 PEN CHENGE
1 3 0 1 6 6 2 8 2 3 JR Z * PEN
14 0 1 6 8 F E 4 7 CP ' G ' ; GRAPH MODE
1 5 0 1 6 A 2 8 1 8 JR Z , P L O T
16 0 1 6 C F E 5 4 CP T 5 TEST
17 0 1 6 E 2 8 1 0 JR Z . P T R N
18 0 1 7 0
19 0 1 7 0 C D A 5 0 1 F'TST 1 CALL PMSG ! PLOT MESSAGE
2 0 0 1 7 3 C 3 A D 0 0 J P S T l
2 1 0 1 7 6
2 2 0 1 7 6 1 1 7 0 0 4 L P T : LD D E , L L P T 5 0 1 - 0 9 - 0 9 - 0 B - 0 D
2 3 0 1 7 9 1 8 F 5 JR PTST1
2 4 0 1 7 B
2 5 0 1 7 B 1 1 D 5 0 3 • L P T : LD D E , S L P T ! 01—09—09—09—OD
2 6 0 1 7 E 1 8 F 0 JR PTST1
2 7 0 1 SO
2 8 0 1 8 0 3 E 0 4 PTRN: LD A , 0 4 H ; TEST PATTERN
2 9 0 1 8 2 1 8 0 2 JR P L O T + 2
3 0 0 1 8 4
3 1 0 1 8 4 3 E 0 2 P L O T : LD A , 0 2 H ; GRAPH CODE
3 2 0 1 8 6 C D 8 F 0 1 CALL LPRNT
3 3 0 1 8 9 18CF JR PTSTO
3 4 0 1 SB
3 5 0 1 8 B 3 E 1 D PEN: LD A , 1DH ! 1 CHENGE CODE (T E X T
DE)
3 6 0 1 8 D 1 8 F 7 JR P L O T + 2
3 7 0 1 B F
3 8 0 1 S F
3 9 0 1 S F 1CHA. P R I N T TO * L P T
4 0 0 1 S F
4 1 0 1 8 F I N : ACC P R I N T DATA
4 2 0 1 S F
4 3 0 1 B F
4 4 0 1 S F OEOO L P R N T : LD C , 0 S RDA T E S T
4 5 0 1 9 1 4 7 LD B , A i P R I N T DATA STORE
4 6 0 1 9 2 C D B 6 0 1 CALL RDA
4 7 0 1 9 5 7 8 LD A , B
4 8 0 1 9 6 D 3 F F OUT (F F H) , A 5 DATA OUT
4 9 0 1 9 8 3 E 8 0 LD A , BOH 5 RDP H I G H
5 0 0 1 9 A D3FE OUT (F E H) , A
5 1 0 1 9 C 0 E 0 1 LD C , 0 1 H i RDA TEST
5 2 0 1 9 E C D B 6 0 1 CALL RDA
5 3 0 1 A 1 AF XOR A i RDP LOW
5 4 0 1 A 2 D3FE OUT (F E H) , A
5 5 0 1 A 4 C9 RET
5 6 0 1 A 5
5 7 0 1 A 5 $ L P T MSG
5 8 0 1 A 5 I N : DE DATA LOW ADR.
5 9 0 1 A 5 ODH MSG. END
6 0 0 1 A 5

* * Z 8 0 ASSEMBLER SB—7201 < 1 Z - 0 1 3 A > PAGE 0 6 0 4 . 0 7 . 8 3

01 0 1 A 5 D5 F'MSG: PUSH DE
02 0 1 A 6 C5 PUSH BC
0 3 0 1 A 7 F 5 PUSH AF
04 0 1 AS in P M S Q l : LD A , < DE) i ACC=DATA
0 5 0 1 A 9 C D 8 F 0 1 C A L L LPRNT
0 6 0 1 AC 1A LD A , (D E)
0 7 0 1 AD 1 3 I N C DE
0 8 0 1 A E FEOD CP ODH i END ?
0 9 0 1 BO 2 0 F 6 JR N Z . P M S G l
10 0 1 B 2 F 1 POP AF
11 0 1 B 3 C I POP BC
1 2 0 1 B 4 D1 POP DE
1 3 0 1 B 5 C9 RET
1 4 0 1 B 6 5
15 0 1 B 6 5 RDA CHECK
16 0 1 B 6 ;
17 0 1 B 6 ; BRKEY I N TO MONITOR RETURN
18 0 1 B 6 ! I N : C RDA CODE
19 0 1 B 6 5
2 0 0 1 B 6 DBFE RDA: I N A , (F E)
2 1 0 1 B S E 6 0 D AND ODH
2 2 0 1 B A B9 CP C
2 3 0 1 BB C8 RET Z
2 4 0 1 BC C D 1 E 0 0 CALL BRKEY
2 5 0 1 B F 2 0 F 5 JR NZ j RDA
2 6 0 1 C 1 3 1 F 0 1 0 LD S P , S P
2 7 0 1 C 4 C 3 A D 0 0 J P S T 1
2 8 0 1 C 7
2 9 0 1 C 7
3 0 0 1 C 7 5 ORG 0 1 C 7 H
3 1 0 1 C 7
3 2 0 1 C 7 5 MELODY
3 3 0 1 C 7
3 4 0 1 C 7 j DE=DATA LOW ADR.
3 5 0 1 C 7 i E X I T C F = 1 BREAK
3 6 0 1 C 7 ; C F = 0 OK
3 7 0 1 C 7 5
3 8 0 1 C 7 ?MLDY: ENT
3 9 0 1 C 7 C5 PUSH BC
4 0 0 1 C S D5 PUSH DE
4 1 0 1 C 9 E5 PUSH HL
4 2 01CA 3 E 0 2 L D A , 0 2 H
4 3 01CC 3 2 A 0 1 1 LD (QCTV) , A
4 4 0 1 C F 0 6 0 1 LD B , 0 1
4 5 0 1 D 1 1A M L D l : LD A , (D E)
4 6 0 1 D 2 FEOD CP ODH ; CR
4 7 0 1 D 4 2 8 3 B JR Z , M L D 4
4 8 0 1 D 6 FEC8 CP C8H ; END MARK
4 9 0 1 D 8 2 8 3 7 J R Z . M L D 4
5 0 01DA FECF CP CFH ! UNDER OCTAVE
5 1 0 1 DC 2 8 2 7 JR Z , M L D 2
5 2 0 1 D E FE2D CP 2DH ; '
5 3 0 1 E 0 2 8 2 3 JR Z , M L D 2
5 4 01E2 F E 2 B CP 2BH ; '+ '
5 5 0 1 E 4 2 8 2 7 J R Z , M L D 3
5 6 0 1 E 6 FED7 CP D7H ; UPPER OCTAVE
5 7 0 1 E 8 2 8 2 3 JR Z , M L D 3
5 8 0 1 E A F E 2 3 CP 2 3 H 5 " # " HANON
5 9 0 1 EC 2 1 6 C 0 2 LD H L , M T B L
6 0 0 1 E F 2 0 0 4 JR N Z , + 6

00

* * Z80 ASSEMBLER SB—7201 < 1 Z — 0 1 3 A > F'ASE 0 7

0 1 0 1 F 1 2 1 B 4 0 2 LD H L , M # T B L
0 2 0 1 F 4 13 INC DE
0 3 0 1 F 5 CD1C02 CALL ONPU
0 4 0 1 F 8 3BD7 JR C , M L D 1
0 5 0 1 FA CDCB02 CALL RYTHM
0 6 0 1 F D 3 8 1 5 JR C , M L D 5
0 7 0 1 F F CDAB02 CALL MLDST
OB 0 2 0 2 4 1 LD B , C
0 9 0 2 0 3 1BCC JR MLD1
10 0 2 0 5 3 E 0 3 MLD2 : LD A , + 3
11 0 2 0 7 3 2 A O 1 1 LD (O C T V) , A
12 0 2 0 A 13 INC DE
13 0 2 0 B 18C4 JR MLD1
14 0 2 0 D 3 E 0 1 MLD3 : LD A , 1
15 0 2 0 F 1BF6 JR MLD2+2
16 0 2 1 1 CDC802 MLD4 : CALL RYTHM
17 0 2 1 4 F 5 MLD5 : PUSH AF
I B 0 2 1 5 CDBE02 CALL MLDSP
19 0 2 I B F 1 POP AF
2 0 0 2 1 9 C 3 9 B 0 6 J P RETS
2 1 0 2 1 C ;
2 2 0 2 1 C ; ONF'U TO R A T I O CONV
2 3 0 2 1 C ;
2 4 0 2 1 C ; E X I T (R A T I O) = R A T I 0 VALUE
2 5 0 2 1 C C=0NTY0*TEMF '0
2 6 0 2 1 C ;
2 7 0 2 1 C ONF'U : ENT
2 8 0 2 1 C C5 PUSH BC
2 9 0 2 I D 0 6 0 8 LD B , B
3 0 0 2 I F 1A 0NP1 : LD A , (D E)
3 1 0 2 2 0 BE CP (H L)
3 2 0 2 2 1 2 8 0 9 JR Z . 0 N P 2
3 3 0 2 2 3 2 3 INC HL
3 4 0 2 2 4 2 3 INC HL
3 5 0 2 2 5 2 3 INC HL
3 6 0 2 2 6 10FS DJNZ - 6
3 7 0 2 2 8 3 7 SCF
3B 0 2 2 9 13 INC DE
3 9 0 2 2 A C I POP BC
4 0 0 2 2 B C9 RET
4 1 0 2 2 C 2 3 0 N P 2 : INC HL
4 2 0 2 2 D D5 PUSH DE
4 3 0 2 2 E 5E LD E , (H L)
4 4 0 2 2 F 2 3 INC HL
4 5 0 2 3 0 5 6 LD D , (H L)
4 6 0 2 3 1 EB EX DE, HL
4 7 0 2 3 2 7C LD A , H
4 8 0 2 3 3 B7 OR A
4 9 0 2 3 4 2 8 0 9 JR Z , + l l
5 0 0 2 3 6 3AAO11 LD A , (O C T V)
5 1 0 2 3 9 3D DEC A
5 2 0 2 3 A 2 8 0 3 JR Z , + 5
5 3 0 2 3 C 2 9 ADD H L , HL
5 4 0 2 3 D 18FA JR - 4
5 5 0 2 3 F 2 2 A 1 1 1 LD (R A T I O) , H L
5 6 0 2 4 2 2 1 A O 1 1 LD H L , O C T V
5 7 0 2 4 5 3 6 0 2 LD (H L) , 2
5 8 0 2 4 7 2B DEC HL
5 9 0 2 4 8 D1 POP DE
6 0 0 2 4 9 13 INC DE

i 0NTY0 SET

MELODY START

1 1 A 0 H OCTAVE WORK

11A1H ONF'U R A T I O

** Z80 ASSEMBLER SB -7201 <1Z-013A> PAGE OB 0 4 . 0 7 . 8 3

0 1 0 2 4 A ,1A L D A , (D E)
0 2 0 2 4 B 4 7 LD B , A
0 3 0 2 4 C E 6 F 0 AND FOH ; ONTYO ?
0 4 0 2 4 E F E 3 0 CP 3 0 H
0 5 0 2 5 0 2 8 0 3 J R Z , + 5
0 6 0 2 5 2 7 E LD A , (H L) 5 HL=ONTYO
0 7 0 2 5 3 1 8 0 5 J R + 7
0 8 0 2 5 5 1 3 I N C DE
0 9 0 2 5 6 7 8 LD A , B
1 0 0 2 5 7 E 6 0 F AND OFH
1 1 0 2 5 9 7 7 L D (H L) , A ! HL=ONTYO
1 2 0 2 5 A 2 1 9 C 0 2 L D H L , O P T B L
1 3 0 2 5 D 8 5 ADD A , L
1 4 0 2 5 E 6 F LD L , A
1 5 0 2 5 F 4 E LD C , (H L)
1 6 0 2 6 0 3 A 9 E 1 1 LD A , (T E M P W)
1 7 0 2 6 3 4 7 LD B , A
1 8 0 2 6 4 AF XQR A
1 9 0 2 6 5 8 1 0 N P 3 : ADD A , C
2 0 0 2 6 6 10FD DJNZ - 1
2 1 0 2 6 B C I POP BC
^ 2 0 2 6 9 4 F LD C , A
2 3 0 2 6 A AF XOR A
2 4 0 2 6 B C9 RET
2 5 0 2 6 C ;
2 6 0 2 6 C 5
2 7 0 2 6 C M T B L ! ENT
2 8 0 2 6 C 4 3 DEFB 4 3 H ; c
2 9 0 2 6 D 4 6 0 8 DEFW 0 B 4 6 H
3 0 0 2 6 F 4 4 DEFB 4 4 H 5 D
3 1 0 2 7 0 5 F 0 7 DEFW 0 7 5 F H
3 2 0 2 7 2 4 5 DEFB 4 5 H ; E
3 3 0 2 7 3 9 1 0 6 DEFW 0 6 9 1 H
3 4 0 2 7 5 4 6 DEFB 4 6 H ; F
3 5 0 2 7 6 3 3 0 6 DEFW 0 6 3 3 H
3 6 0 2 7 8 47 DEFB 4 7 H ; G
3 7 0 2 7 9 8 6 0 5 DEFW 0586H
3 8 0 2 7 B 4 1 DEFB 41H ! A
3 9 027C E C 0 4 DEFW 0 4 E C H
4 0 027E 4 2 DEFB 4 2 H 5 B
4 1 0 2 7 F 6 4 0 4 DEFW 0 4 6 4 H
4 2 0 2 8 1 5 2 DEFB 5 2 H 5 R
4 3 0 2 8 2 0000 DEFW 0
4 4 0 2 8 4 M # T B L ! ENT
4 5 02B4 4 3 DEFB 4 3 H 5 #C
4 6 0 2 8 5 C F 0 7 DEFW 0 7 C F H
4 7 0 2 8 7 4 4 DEFB 4 4 H ii # D
48 0 2 8 8 F 5 0 6 DEFW 0 6 F 5 H
4 9 0 2 8 A 4 5 DEFB 45H ; #E
5 0 028B 3 3 0 6 DEFW 0 6 3 3 H
5 1 028D 46 DEFB 4 6 H 5 # F
5 2 02BE D A 0 5 DEFW 0 5 D A H
53 0 2 9 0 4 7 DEFB 4 7 H ; #G
5 4 0291 3 7 0 5 DEFW 0 5 3 7 H
5 5 0 2 9 3 4 1 DEFB 41H ; #A
5 6 0294 A504 DEFW 04A5H
57 0296 42 DEFB 4 2 H ; # B
58 0297 2304 DEFW 0 4 2 3 H
5 9 0 2 9 9 DEFB 5 2 H ! #R
6 0 029A

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 09 04.07.S3

01 029A 0000 DEFW 0
02 029C OPTBL: ENT
03 029C 01 DEFB 1
04 029D 02 DEFB 2
05 029E 03 DEFB 3
06 029F 04 DEFB 4
07 02A0 06 DEFB 6
08 02 A1 08 DEFB 8
09 02A2 OC DEFB OCH
10 02A3 10 DEFB 10H
11 02A4 IB DEFB 1SH
12 02A5 20 DEFB 20H
13 02A6
14 02A6
15 02A6
16 02A6 INCREMENT DE REG.
17 02A6
18 02A6 4DE: ENT
19 02A6 13 INC DE
20 02A7 13 INC DE
21 02A8 13 INC DE
22 02A9 13 INC DE
23 02AA C9 RET
24 02AB
25 02AB
26 02AB
27 02AB ORG 02ABH 5 MLDST
28 02AB
29 02AB MELODY START 8< STOP
30 02AB
31 02AB MLDST: ENT
32 02AB 2AA111 LD H L , (R A T I O)
33 02AE 7C LD A ,H
34 02AF B7 OR A
35 02B0 2B0C JR Z,MLDSP
36 02B2 D5 PUSH DE
37 02B3 EB EX DE, HL
38 02B4 2104E0 LD HL,CONTO
39 02B7 73 LD (H L) , E
40 02B8 72 LD (HL) , D
41 02B9 3E01 LD A, 1
42 02BB D1 POP DE
43 02BC 1806 JR MLDSL
44 02BE
45 02BE MLDSP: ENT
46 02BE 3E36 LD A ,36H
47 02C0 3207E0 LD (C O N T F) , A
48 02C3 AF XOR A
49 02C4 3208E0 MLDSL: LD (SUNDG) ,A
50 02C7 C9 RET
51 02C8
52 02C8 RHYTHM
53 02CB
54 02C8 B=COUNT DATA
55 02CB IN
56 02C8 EXIT CF= 1 BREAK
57 02C8 CF= 0 DK
58 02C8
59 02CB RYTHM: ENT
60 02C8 210OEO LD HL.KEYPA

Oi
CD

I MODE SET (8 2 5 3 CO)
5 E007H

I EOOSH
; TEHRO RESET

; EOOOH

** Z80 ASSEMBLER SB-7201 < 1Z—013A> PAGE 10 04.07.83

0 1 0 2 C B 3 6 F 8
0 2 02CD 2 3
0 3 0 2 C E 7 E
0 4 0 2 C F E 6 8 1
0 5 0 2 D 1 2 0 0 2
0 6 0 2 D 3 3 7
0 7 0 2 D 4 C9
0 8 0 2 D 5 3 A 0 8 E 0
0 9 0 2 D 8 OF
10 0 2 D 9 3 8 F A
11 0 2 D B 3 A 0 8 E 0
12 0 2 D E OF
13 0 2 D F 3 0 F A
14 0 2 E 1 1 0 F 2
15 0 2 E 3 AF
16 0 2 E 4 C9
1 7 0 2 E 5
18 0 2 E 5
19 0 2 E 5
2 0 0 2 E 5
2 1 0 2 E 5
2 2 0 2 E 5
2 3 0 2 E 5
2 4 0 2 E 5 F 5
2 5 0 2 E 6 C5
2 6 0 2 E 7 E 6 0 F
2 7 0 2 E 9 4 7
2 8 0 2 E A 3 E 0 8
2 9 02EC 9 0
3 0 0 2 E D 3 2 9 E 1 1
3 1 0 2 F 0 C I
3 2 0 2 F 1 F 1
3 3 0 2 F 2 C9
3 4 0 2 F 3
3 5 0 2 F 3
3 6 0 2 F 3
3 7 0 2 F 3
3 8 0 2 F 3
3 9 0 2 F 3
4 0 0 2 F 3
4 1 0 2 F 3
4 2 0 2 F 3
4 3 0 2 F 3 2 1 7 3 1 1
4 4 0 2 F 6 3 A 7 2 1 1
4 5 0 2 F 9 as
4 6 0 2 F A 6 F
4 7 0 2 F B 7E
4 8 0 2 F C 2 3
4 9 0 2 F D CB16
5 0 0 2 F F B6
51 0 3 0 0 CB1E
5 2 0 3 0 2 OF
5 3 0 3 0 3 EB
5 4 0 3 0 4 2 A 7 1 1 1
5 5 0 3 0 7 C9
5 6 0 3 0 8
5 7 0 3 0 8
5 8 0 3 0 8
5 9 0 3 0 8
6 0 0 3 0 8

LD (H L) , F 8 H
INC HL
LD A , (H L)
AND 8 1 H
JR N Z , + 4
SCF
RET
LD A , (T E M P)
RRCA
JR C , - 4
LD A , (T E M P)
RRCA
JR NC, - 4
DJNZ - 1 2
XOR A
RET

; BREAK I N CHECK

! E 0 0 8 H
! TEMPO OUT

TEMPO SET

ACC=VALUE (1 - 7)

7TEMP: : ENT
PUSH AF
PUSH BC
AND OFH
LD B , A
LD A , 8
SUB B
LD (TEMPW) , A
POP BC
POP AF
RET

5
CRT MANAGMENT

; E X I T HL : :DSPXY H = Y ,
; DE: :MANG ADR.
5 A : iMANG DATA
j CY: !MANG=1

•MANG: ! ENT
LD HL,MANG
LD A , < 1 1 7 2 H)
ADD A , L
LD L , A
LD A , (H L)
INC HL
RL (H L)
OR (H L)
RR (H L)
RRCA
EX DE, HL
LD H L , (D S P X Y)

(ON DSPXY)

CRT MANS.
DSPXY+1

P O I N T E R

RET

ORG 0 3 0 S H

o

* * 2 8 0 ASSEMBLER S B - 7 2 0 1 1Z -013A . " PASE 11 0 4 . 0 7 . 8 3

0 1 0 3 0 8 i T I M E SET
0 2 0 3 0 8
0 3 0 3 0 8 ACC=0 ! AM
0 4 0 3 0 8 = 1 : PM
0 5 0 3 0 8 DE=SEC: B INARY
0 6 0 3 0 8 ;
0 7 0 3 0 8 ?TMST ENT
OS 0 3 0 8 F 3 D I
0 9 0 3 0 9 C5 PUSH BC
10 0 3 0 A D5 PUSH DE
11 0 3 0 B E 5 PUSH HL
12 0 3 0 C 3 2 9 B 1 1 LD (A M P M) , A ; AMPM DATA
13 0 3 0 F 3 E F 0 LD A , FOH
14 0 3 1 1 3 2 9 C 1 1 LD (T I M F G) , A 5 T I M E FLAG
15 0 3 1 4 2 1 C 0 A 8 LD H L , A 8 C 0 H ; 12H
16 0 3 1 7 AF XOR A
17 0 3 1 8 E D 5 2 SBC H L , DE S COUNT DATA
TA
I S 0 3 1 A E 5 PUSH HL
19 0 3 I B 0 0 NOP
2 0 0 3 I C EB EX DE, HL
2 1 0 3 I D 2 1 0 7 E 0 LD H L , C O N T F ; E 0 0 7 H
2 2 0 3 2 0 3 6 7 4 LD (H L) , 7 4 H
2 3 0 3 2 2 3 6 B 0 LD (H L) , B O H
2 4 0 3 2 4 2 B DEC HL i C0NT2
2 5 0 3 2 5 7 3 LD (H L) , E
2 6 0 3 2 6 7 2 LD (H L) , D
2 7 0 3 2 7 2B DEC HL ; C0NT1
2 8 0 3 2 8 3 6 0 A LD (H L) , O A H
2 9 0 3 2 A 3 6 0 0 LD (H L) , 0
3 0 0 3 2 C 2 3 INC HL
3 1 0 3 2 D 2 3 INC HL 5 CONTF
3 2 0 3 2 E 3 6 8 0 LD (H L) , 8 0 H
3 3 0 3 3 0 2 B DEC HL ; C0NT2
3 4 0 3 3 1 4 E 7TMS1 LD C , (H L)
3 5 0 3 3 2 7E LD A , (H L)
3 6 0 3 3 3 BA CP D
3 7 0 3 3 4 2 0 F B JR N Z , ? T M S 1
3 8 0 3 3 6 7 9 LD A , C
3 9 0 3 3 7 BB CP E
4 0 0 3 3 8 2 0 F 7 JR N Z , 7 T M S 1
4 1 0 3 3 A 2 B DEC HL
4 2 0 3 3 B 0 0 NOP
4 3 0 3 3 C 0 0 NOP
4 4 0 3 3 D 0 0 NOP
4 5 0 j 3 E 3 6 F B LD (H L) , F B H i 1SEC
4 6 0 3 4 0 3 6 3 C LD (H L) , 3 C H
4 7 0 3 4 2 2 3 INC HL
4 8 0 3 4 3 D1 POP DE
4 9 0 3 4 4 4 E ?TMS2 LD C , (HL.>
5 0 0 3 4 5 7E LD A , (H L)
5 1 0 3 4 6 BA CP D
5 2 0 3 4 7 2 0 F B JR N Z , 7 T M S 2
5 3 0 3 4 9 7 9 LD A , C
5 4 0 3 4 A BB CP E
5 5 0 3 4 B 2 0 F 7 JR N Z , ? T M S 2
5 6 0 3 4 D E l POP HL
5 7 0 3 4 E D1 POP DE
5 8 0 3 4 F C I POP BC
5 9 0 3 5 0 FB E I
6 0 0 3 5 1 C9 RET

#* Zao ASSEMBLER SB-7201 <1Z-013A> RASE 12 04.07.83

01 0352
02 0352
03 0352
04 0352
OS 0352
06 0352 D7
07 0353 4130
08 0355 OD
09 0356
10 0356
1 1 0356
12 0356
13 0358
14 0358
15 0358
16 0358
17 0358
18 0358
19 0358
20 0358
21 0358
22 0358 E5
23 0359 2107E0
24 035C 3680
25 035E 2B
26 035F F3
27 0360 5E
28 0361 56
29 0362 FB
30 0363 7B
31 0364 B2
32 0365 280E
33 0367 AF
34 0368 21C0A8
35 036B ED52
36 036D 3810
37 036F EB
38 0370 3A9B11
39 0373 EL
40 0374 C9
41 0375 11C0A8
42 0378 3A9B11
43 037B EE01
44 037D EL
45 037E C9
46 037F F3
47 0380 2106E0
4B 0383 7E
49 0384 2F
50 0335 5F
51 0386 7E
52 0387 2F
53 0388 57
54 0389 FB
55 038A 13
56 03SB 18EB
57 03BD
58 038D
59 03BD
60 038D

BELL DATA

ENT
DEFB D7H
DEFM "AO '
DEFB ODH

DEFS
;ORB 0358H

TIME READ

EXIT ACC=0 SAM
= 1 :RM

DE=SEC. BINARY

?TMRD: ENT
PUSH HL
LD HL, CONTF
LD < H L) , 8 0 H
DEC HL
DI
LD E , (H L)
LD D , (H L)
E I
LD A , E
OR D
JR Z,?TMR1
XOR A
LD HL,ASCOH
SBC HL, DE
JR C,?TMR2
EX DE, HL
LD A,(AMPM)
POP HL
RET
LD DE,A8C0H
LD A,(AMPM)
XOR 1
POP HL
RET
DI
LD HL,C0NT2
LD A , (H L)
CPL
LD E, A
LD A , (H L)
CPL
LD D, A
E I
INC DE
JR 7TMR1+3

5 TIME INTERRUPT

T I M I N : ENT

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 13 04.07.S3

01 038D F5 PUSH AF
02 03SE C5 PUSH BC
03 03BF D5 PUSH DE
04 0390 E5 PUSH HL
05 0391 219B11 LD HL,AMPM
06 0394 7E LD A, (HL)
07 0395 EE01 XOR 1
OS 0397 77 LD (HL) , A
09 0398 2107E0 LD HL,CONTF
10 039B 3680 LD (H L) , 8 0 H
1 1 039D 2B DEC HL
12 039E E5 PUSH HL
13 039F 5E LD E , (H L)
14 03A0 56 LD D , (H L)
15 03 A1 21C0AB LD HL,ABCOH
16 03A4 19 ADD HL, DE
17 03A5 2B DEC HL
IS 03A6 2B DEC HL
19 03A7 EB EX DE, HL
20 03A8 EL POP HL
21 03A9 73 LD (HL) , E
22 03AA 72 LD < H L) , D
23 03AB EL POP HL
24 03AC DI POP DE
25 03AD CI POP BC
26 03AE F1 POP AF
27 03AF FB E I
28 03B0 C9 RET
29 03B1
30 03B1 SPACE PRINT AND DISP ACC
31 03B1
32 03B1 INPUT:HL=DISP . ADR.
33 03B1
34 03B1 SPHEX: ENT
35 03B1 CD2009 CALL 7PRTS
36 03B4 7E LD A , (H L)
37 03B5 CDC303 CALL PRTHX
38 03B8 7E LD A , (H L)
39 03B9 C9 RET
40 03BA
41 03BA
42 03BA
43 03BA ORB 03BAH
44 03BA
45 03BA (A S C I I PRINT) FOR HL
46 03BA
47 03BA PRTHL: ENT
48 03BA 7C LD A ,H
49 03BB CDC303 CALL PRTHX
50 03BE 7D LD A, L
51 03BF 1802 JR PRTHX
52 03C1
53 03C1 DEFS +2
54 03C3 ORG 03C3H;PRTHX
55 03C3
56 03C3 (A S C I I PRINT) FOR ACC
57 03C3
58 03C3 PRTHX: ENT
59 03C3 F5 PUSH AF
60 03C4 OF RRCA

S P . P R I N T

DSP OF ACC (A S C I I)

- J

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 14 04.07.S3

0 1 0 3 C 5 OF RRCA
0 2 0 3 C 6 OF RRCA
0 3 0 3 C 7 OF RRCA
0 4 0 3 C S CDDA03 CALL ASC
0 5 03CB CD 1 2 0 0 C A L L PRNT
0 6 0 3 C E F 1 POP AF
0 7 0 3 C F CDDA03 CALL ASC
OS 0 3 D 2 C 3 1 2 0 0 J P F'RNT
0 9 0 3 D 5
1 0 0 3 D 5
11 0 3 D 5
12 0 3 D 5
13 0 3 D 5 BO CHA. 1 L I N E CODE (D A T A)
14 0 3 D 5
15 0 3 D 5 S L P T : ENT
16 0 3 D 5 0 1 DEFB 0 1 H ; TEXT
17 0 3 D 6 0 9 DEFB 0 9 H
I S 0 3 D 7 0 9 DEFB 0 9 H
19 0 3 D 8 0 9 DEFB 0 9 H
2 0 0 3 D 9 OD DEFB ODH
2 1 0 3 DA ;
2 2 03DA SORB 0 3 D A H ! A S C
2 3 0 3 DA i
2 4 03DA S HEXADECIMAL TO A S C I I
2 5 03DA ! I N : ACC D 3 - D 0) ^ H E X A D E C I M A L
2 6 03DA ; E X I T : ACC = A S C I I
2 7 03DA 1
2 8 03DA ASC: ENT
2 9 03DA E 6 0 F AND OFH
3 0 03DC FEOA CP OAH
3 1 0 3 D E 3 8 0 2 J R C,NOADD
3 2 0 3 E 0 C 6 0 7 ADD A , 7
3 3 0 3 E 2 NOADD : ENT
3 4 0 3 E 2 C 6 3 0 ADD A , 3 0 H
3 5 0 3 E 4 C9 RET
3 6 OSES ;
3 7 0 3 E 5 ; A S C I I TO HEXADECIMAL
3 8 0 3 E 5 ! I N : ACC = A S C I I
3 9 0 3 E 5 ! E X I T : ACC = HEXADECIMAL
4 0 0 3 E 5 5 CY = 1 ERROR
4 1 OSES ;
4 2 OSES HEX J : ENT
4 3 OSES D 6 3 0 SUB 3 0 H
4 4 0 3 E 7 DS RET C
4 5 0 3 E 8 FEOA CP OAH
4 6 0 3 E A 3 F CCF
4 7 0 3 E B DO RET NC
4 8 03EC D 6 0 7 SUB 7
4 9 0 3 E E F E 1 0 CP 10H
5 0 0 3 F 0 3 F CCF
5 1 0 3 F 1 D8 RET C
5 2 0 3 F 2 FEOA CP OAH
5 3 0 3 F 4 C9 RET
5 4 0 3 F 5 ;
5 5 0 3 F 5 ;
5 6 0 3 F 5 DEFS + 4
5 7 0 3 F 9 ; ORG 0 3 F 9 H 5 H E X
5 8 0 3 F 9 HEX: ENT
5 9 0 3 F 9 18EA JR HEX J
6 0 0 3 F B ;

** ZBO ASSEMBLER SB-7201 <1Z—013A> PAGE 15 04.07.83

01 03FB
02 03FB
03 03FB
04 03FB 7F20
05 03FD
06 03FD 504C41:
07 0401 OD
OB 0402
09 0402 7F20
10 0404 524543 '
11 0408 52442E
12 040B OD
13 04 OC
14 040C
15 040C
16 0410
17 0410
18 0410
19 0410
20 0410
21 0410
22 0410
23 0410
24 0410
25 0410
26 0410 D5
27 0411 CD1F04
28 0414 3B07
29 0416 67
30 0417 CD1F04
31 041A 3801
32 04 IC 6F
33 04 ID D1
34 04 IE C9
35 04 I F
36 04 I F
37 04 I F
38 041F
39 04 IF
40 04 I F
41 04 I F
42 04 I F
43 04 I F
44 04 I F
45 04 IF
46 04 I F
47 04 IF C5
48 0420 1A
49 0421 13
50 0422 CDF903
51 0425 3B0D
52 0427 OF
53 0428 OF
54 0429 OF
55 042A OF
56 042B 4F
57 042C 1A
58 042D 13
59 042E CDF903
60 0431 3 8 0 1

F'RASS PLAY MESSAGE

MSG#L: ENT
DEFW

MSB#2: ENT
DEFM
DEFB

MSG#3: ENT
DEFW
DEFM

' P L A Y '
ODH

207FH
'RECORD. ; PRESS RECORD

DEFB

DEFS +4
ORB 0410HSHLHEX

4 A S C I I TO (HL)

IN DE=DATA LOW ADR.
EXIT CF=0 : OK

=1 : OUT

ENT
PUSH DE
CALL 2HEX
JR C , + 9
LD H, A
CALL 2HEX
JR C, +3
LD L , A
POP DE
RET

ORB 041FH5 2HEX

2 A S C I I TO (ACC)

IN DE=DATA LOW ADR.

EXIT CF=0 : OK
=1 : OUT

ENT
PUSH BC
LD A, (DE)
INC DE
CALL HEX
JR C, +15
RRCA
RRCA
RRCA
RRCA
LD C, A
LD A , (D E)
INC DE
CALL HEX
JR C, +3

* * Z 8 0 ASSEMBLER S B - 7 2 0 1 < 1 Z - 0 1 3 A > PAGE 1 6 0 4 . 0 7 . S 3

0 1 0 4 3 3 B 1 OR C
0 2 0 4 3 4 C I 2 H E 1 ! POP BC
0 3 0 4 3 5 C 9 RET
0 4 0 4 3 6 !
0 5 0 4 3 6 5
0 6 0 4 3 6 ! W R I T E I N F O R M A T I O N
0 7 0 4 3 6 ;
o a 0 4 3 6 ? W R I : ENT
0 9 0 4 3 6 F 3 D I
1 0 0 4 3 7 D5 PUSH DE
1 1 0 4 3 8 C 5 PUSH BC
1 2 0 4 3 9 E 5 PUSH HL
1 3 0 4 3 A 1 6 D 7 LD D , D7H ; ' W '
14 0 4 3 C 1ECC LD E . C C H ; ' L '
1 5 0 4 3 E 2 1 F 0 1 0 LD H L , I B U F E ; 1 0 F 0 H
1 6 0 4 4 1 0 1 8 0 0 0 LD B C , 8 0 H ; W R I T E BYTE
1 7 0 4 4 4 C D 1 A 0 7 W R I l : C A L L CKSUM ; CHECK SUM
i a 0 4 4 7 C D 9 F 0 6 C A L L MOTOR ; MOTOR ON
1 9 0 4 4 A 3 8 1 8 J R C , W R I 3
2 0 0 4 4 C 7 B LD A , E
2 1 0 4 4 D FECC CP CCH ! ' L '
2 2 0 4 4 F 2 0 0 D J R N Z , W R I 2
2 3 0 4 5 1 C D 0 9 0 0 C A L L NL
24 0454 D5 PUSH DE
2 5 0 4 5 5 1 1 6 7 0 4 LD DE,MSG#7 ; WRITING
2 6 0 4 5 8 DF RST 3 ; C A L L MSGX
27 0 4 5 9 1 1 F 1 1 0 LD DE,NAME ; F I L E NAME
2B 0 4 5 C DF RST 3 i C A L L MSGX
2 9 0 4 5 D DI POP DE
3 0 0 4 5 E C D 7 A 0 7 W R I 2 : C A L L GAP
3 1 0 4 6 1 C D 8 A 0 4 C A L L WTAF'E
3 2 0 4 6 4 C35405 WRI35 J P R E T 2
3 3 0467 ;
3 4 0 4 6 7 MSG#7: ENT
35 0 4 6 7 5 7 5 2 4 9 5 4 DEFM • ' W R I T I N G '
3 6 046B 494E4720
3 7 0 4 6 F OD DEFB ODH
3 8 0470
3 9 0470
4 0 0470
4 1 0470 ! 40 CHA. IN 1 L INE CODE (D A T A)
4 2 0470 ;
43 0470 L L P T : ENT
4 4 0 4 7 0 01 DEFB 01H ; T E X T MODE
4 5 0471 09 DEFB 0 9 H
46 0 4 7 2 0 9 DEFB 0 9 H
47 0 4 7 3 OB DEFB OBH
4 8 0 4 7 4 OD DEFB ODH
4 9 0475 J
5 0 0 4 7 5 !ORG 0 4 7 5 H
51 0475 S
52 0 4 7 5 ;
5 3 0475 5 W R I T E DATA
54 0 4 7 5 ;
55 0 4 7 5 ; E X I T C F = 0 : OK
5 6 0 4 7 5 ; = I : BREAK
5 7 0 4 7 5 ;
58 0 4 7 5 7WRD: ENT
59 0 4 7 5 F 3 D I
6 0 0 4 7 6 D5 PUSH DE

** ZaO ASSEMBLER SB-7201 <1Z-013A> RASE 17 04.07.S3

01 0477 C5
02 0478 E5
03 0479 16D7
04 047B 1E53
05 047D ED4B0211
06 0481 2A0411
07 0484 78
08 0485 BI
09 0486 2B4A
10 0488 1SBA
11 048A
12 048A
13 048A
14 048A
15 04BA
16 048A
17 048A
18 048A
19 048A
20 048A
21 048A D5
22 048B C5
23 048C E5
24 048D 1602
25 04BF 3EF8
26 0491 3200E0
27 0494 7E
28 0495 CD6707
29 0498 3AO1EO
30 049B E681
31 049D C2A504
32 04A0 3E02
33 04A2 37
34 04A3 182D
35 04A5 23
36 04A6 OB
37 04A7 78
38 04A8 BI
39 04A9 C29404
40 04AC 2A9711
41 04AF 7C
42 04B0 CD6707
43 04B3 7D
44 04B4 CD6707
45 04B7 CD1A0A
46 04BA 15
47 04BB C2C204
48 04BE B7
49 04BF C3D204
50 04C2 0600
51 04C4 CD010A
52 04C7 05
53 04CB C2C404
54 04CB EL
55 04CC C I
56 04CD C5
57 04CE E5
58 04CF C39404
59 04D2
60 04D2 EL

PUSH BC
PUSH HL
LD D ,D7H ; 'W •'
LD E , 5 3 H 5 "S
LD B C , (S I Z E) ; WRITE
LD HL , (DTADR) ; WRITE
LD A, B
OR C
JR Z,RETL
JR WRI1

TAPE WRITE

BC=BYTE S I Z E
HL=DATA LOW ADR.

CF=0 : OK
=1 : BREAK

PUSH DE
PUSH BC
PUSH HL
LD D , 2
LD A ,FBH
LD < KEYPA) ,A
LD A , (H L)
CALL WBYTE
LD A , (KEYPB)
AND 81H
JP NZ.WTAP2
LD A, 02H
SCF
JR WTAP3
INC HL
DEC BC
LD A, B
OR C
JP NZ,WTAP1
LD HL,< SUMDT)
LD A , H
CALL WBYTE
LD A, L
CALL WBYTE
CALL LONB
DEC D
JP N Z , + 7
OR A
JP WTAF'3
LD B , 0
CALL SHORT
DEC B
JP NZ, —4
POP HL
POP BC
PUSH BC
PUSH HL
JP WTAP1

EOOOH

1 BYTE WRITE
E001H

SHIFT S< BREAK

BREAK IN CODE

S SUM DATA SET

WTAP3:
RETL: POP HL

** ZSO ASSEMBLER SB-7201 <1Z-013A> RASE 18 04.07.83

0 1 0 4 D 3 C I POP BC
0 2 0 4 D 4 D I POP DE
0 3 0 4 D 5 C9 RET
0 4 0 4 D 6 i
0 5 0 4 D 6 ;
0 6 0 4 D 6 ;
0 7 0 4 D 6 ;
0 8 0 4 D 6 ;
0 9 0 4 D 8 ORG 0 4 D B H
1 0 0 4 D 8 ;
11 0 4 D 8 5
12 0 4 D 3 ! READ INFORMATION <FROM
1 3 0 4 D 8 ;
1 4 0 4 D S ; E X I T ACC= 0 : OK C F = 0
1 5 0 4 D 8 ; 1 : ER C F = 1
1 6 0 4 D 8 ; 2 : BREAK CF
1 7 0 4 D 8 >
i a 0 4 D 8 ? R D I : ENT
19 0 4 D 8 F 3 D I
2 0 0 4 D 9 D5 PUSH DE
2 1 04DA C5 PUSH BC
2 2 0 4 D B E 5 PUSH HL
2 3 04DC 16D2 LD D , D 2 H
2 4 0 4 D E 1ECC LD E , CCH
2 5 0 4 E 0 0 1 8 0 0 0 LD B C , 8 0 H
2 6 0 4 E 3 2 1 F 0 1 0 LD H L , I B U F E
2 7 0 4 E 6 R D l : ENT
2 8 0 4 E 6 C D 9 F 0 6 CALL MOTOR
2 9 0 4 E 9 D A 7 2 0 5 • J P C , R T P 6
3 0 04EC C D 5 B 0 6 CALL TMARK
3 1 0 4 E F D A 7 2 0 5 J P C . R T P 6
3 2 0 4 F 2 C D 0 E 0 5 CALL RTAPE
3 3 0 4 F 5 C 3 5 4 0 5 J P RTF'4
3 4 0 4 F 8 i
3 5 0 4 F 8 !
3 6 0 4 F 8 S
3 7 0 4 F 8 5 0RG 0 4 F 8 H
3 8 0 4 F 8 ;
3 9 0 4 F 8 ;
4 0 0 4 F 8 ; READ DATA (FROM $CMT>
4 1 0 4 F 8 5
4 2 0 4 F 8 ; E X I T SAME UP
4 3 0 4 F 8 i
4 4 0 4 F 8 7RDD: ENT
4 5 0 4 F B F 3 D I
4 6 0 4 F 9 D5 PUSH DE
4 7 0 4 F A C5 PUSH BC
4 8 0 4 F B E5 PUSH HL
4 9 0 4 F C 16D2 LD D , D 2 H
5 0 0 4 F E 1 E 5 3 LD E , 5 3 H
5 1 0 5 0 0 E D 4 B 0 2 1 1 LD B C , (S I Z E)
5 2 0 5 0 4 2 A 0 4 1 1 LD H L , (D T A D R)
5 3 0 5 0 7 7 8 LD A , B
5 4 0 5 0 8 B1 OR C
5 5 0 5 0 9 C A 5 4 0 5 J P Z , RTF'4
5 6 0 5 0 C 18Da JR R D l
5 7 0 5 0 E 5
5 8 0 5 0 E ;
5 9 0 5 0 E ; READ TAPE
6 0 0 5 0 E ;

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 19 04.07.S3

0 1 0 5 0 E
0 2 0 5 0 E
0 3 0 5 0 E
0 4 0 5 0 E
0 5 0 5 0 E
0 6 0 5 0 E
0 7 0 5 0 E

I N B C = S I Z E
DE=LOAD ADR.

E X I T ACC- •0 : OK C F = 0
a : ER = 1
; 2 ! BREAK=1

OS 0 5 OE RTAPE: ENT
0 9 0 5 OE D5 PUSH DE
10 0 5 0 F C5 PUSH BC
11 0 5 1 0 E5 PUSH HL
12 0 5 1 1 2 6 0 2 LD H, 2
13 0 5 1 3 R T F ' l : ENT
14 0 5 1 3 0 1 0 1 E 0 LD BC,KEYF'B
15 0 5 1 6 1 1 0 2 E 0 LD DE,CSTR
16 0 5 1 9 R T P 2 : ENT
17 0 5 1 9 CDO106 CALL EDGE
I B 0 5 I C 3 B 5 4 JR Cs RTP6
19 0 5 1 E CD4A0A CALL DLY3
2 0 0 5 2 1 1A LD A , (D E)
2 1 0 5 2 2 E 6 2 0 AND 2 0 H
2 2 0 5 2 4 C A 1 9 0 5 J P Z , R T P 2
2 3 0 5 2 7 5 4 LD D , H
2 4 0 5 2 8 2 1 0 0 0 0 LD HL s 0
2 5 0 5 2 B 2 2 9 7 1 1 LD (SUMDT) , H L
2 6 0 5 2 E E l POP HL
2 7 0 5 2 F C I POP BC
2 8 0 5 3 0 C5 PUSH BC
2 9 0 5 3 1 E5 PUSH HL
3 0 0 5 3 2 R T P 3 : ENT
3 1 0 5 3 2 C D 2 4 0 6 CALL RBYTE
3 2 0 5 3 5 3 8 3 B JR C , R T P 6
3 3 0 5 3 7 7 7 LD (H L) , A
3 4 0 5 3 8 2 3 INC HL
3 5 0 5 3 9 OB DEC BC
3 6 0 5 3 A 7 8 LD A , B
3 7 0 5 3 B B I OR C
3 8 0 5 3 C 2 0 F 4 JR N Z , R T P 3
3 9 0 5 3 E 2 A 9 7 1 1 LD H L , (S U M D T)
4 0 0 5 4 1 C D 2 4 0 6 CALL RBYTE
4 1 0 5 4 4 3 8 2 C JR C , R T P 6
4 2 0 5 4 6 5 F LD E , A
4 3 0 5 4 7 C D 2 4 0 6 CALL RBYTE
4 4 0 5 4 A 3 B 2 6 JR C , RTP6
4 5 0 5 4 C BD CP L
4 6 0 5 4 D 2 0 1 6 JR NZ , RTP5
4 7 0 5 4 F 7B LD A , E
4B 0 5 5 0 BC CP H
4 9 0 5 5 1 2 0 1 2 JR N Z , R T P 5
5 0 0 5 5 3 RTF'S: ENT
5 1 0 5 5 3 AF XOR A
5 2 0 5 5 4 R T P 4 : ENT
5 3 0 5 5 4 R E T 2 : ENT
5 4 0 5 5 4 E l POP HL
5 5 0 5 5 5 C I POP BC
5 6 0 5 5 6 D1 POP DE
5 7 0 5 5 7 C D 0 0 0 7 CALL MSTOP
5 8 0 5 5 A F 5 PUSH AF
5 9 0 5 5 B 3 A 9 C 1 1 LD A , (T I M F G)
6 0 0 5 5 E FEFO CP FOH

TWICE WRITE

l ->0 EDGE DETECT

CALL D L Y 2 * 3
DATA (1 B I T) READ

i 1BYTE READ

! CHECK SUM
i CHECK SUM DATA

5 CHECK SUM DATA

I N T . CHECK

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 20 04.07.S3

01 0560 2001
02 0562 FB
03 0563 F1
04 0564 C9
05 0565
06 0565
07 0565 15
08 0566 2806
09 0568 62
10 0569 CDE20F
1 1 056C 18A5
12 056E
13 056E 3E01
14 0570 1802
15 0572
16 0572 3E02
17 0574
18 0574 37
19 0575 18DD
20 0577
21 0577
22 0577
23 0577
24 0577
25 0577 D5
26 0578 115203
27 057B F7
28 057C DI
29 057D C9
30 057E
31 057E
32 057E
33 057E
34 057E
35 057E
36 057E CDFF09
37 0581 CDCA08
38 0584 FEFO
39 0586 C9
40 0587
41 0587
42 0587
43 0587
44 0587
45 0587
46 0588
47 0568
48 0588
49 0588
50 0588
51 0588
52 0588
53 0588
54 0588
55 0588
56 0588 F3
57 0589 D5
58 058A C5
59 058B E5
60 058C ED4B02:

JR N Z , + 3
E I
POP AF
RET

RTP5S ENT
DEC D
JR Z.RTP7
LD H,D
CALL GAPCK
JR RTP1

RTF'7: ENT
LD A, 1
JR RTF'9

RTP6: ENT
LD A, 2

RTF'9: ENT
SCF
JR RTP4

; BELL

?BEL: ENT
PUSH DE
LD DE,?BELD
RST 6 ; CALL MELDY
POP DE
RET

J FLASING AND KEYIN
I EXIT :ACC INPUT KEY DATA(DSP.CODE)
; H=F0H THEN NO KEYIN(Z F L G .)

FLKEY: ENT
CALL 7FLAS
CALL ?KEY
CP FOH
RET

DEFS
SORG 05SSH

VERIFY (FROM $CMT>_

EXIT ACC =0 : OK CF=0
=1 : ER CF=I
=2 : BREAK CF=1

ENT
DI
PUSH DE
PUSH BC
PUSH HL
LD B C , (S I Z E)

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 21 04.07.S3

01 0590 2A0411
02 0593 16D2
03 0595 1E53
04 0597 78
05 059B B1
06 0599 28B9
07 059B CD1A07
08 059E CD9F06
09 05 A1 38CF
10 05A3 CD5B06
11 05A6 3SCA
12 05A8 CDAD05
13 05AB 18A7
14 05AD
15 05AD
16 05AD
17 05AD
18 05AD
19 05AD
20 05AD
21 05AD
22 05AD
23 05AD
24 05AD
25 05AD
26 05AD
27 05AD D5
28 05AE C5
29 05AF E5
30 05B0 2602
31 05B2
32 05B2 0101E0
33 05B5 1102E0
34 05B8
35 05B8 CD0106
36 05BB DA7205
37 05BE CD4A0A
38 05C1 1A
39 05C2 E620
40 05C4 CAB805
41 05C7 54
42 05C8 EL
43 05C9 CI
44 05CA C5
45 05CB E5
46 05CC
47 05CC CD2406
48 05CF 38A1
49 05D1 EE
50 05D2 209A
51 05D4 23
52 05D5 OB
53 05D6 78
54 05D7 B1
55 05DB 20F2
56 05DA 2A9911
57 05DD CD2406
58 OSEO BC
59 05E1 208B
60 05E3 CD2406

LD HL,<DTADR)
LD D,D2H ; - R '
LD E , 5 3 H •, "S"
LD A , B
OR C
JR Z,RTP4
CALL CKSUM
CALL MOTOR
JR C .RTP6
CALL TMARK 5 TAPE MARK DETECT
JR C ,RTP6
CALL TVRFY
JR RTP4

DATA VERIFY

BC=SIZE
HL=DATA LOW ADR
CSMDT=CHECK SUM

EXIT ACC=0 : OK CF=0
=1 : ER =1
=2 : BREAK-1

TVRFY: ENT
PUSH
PUSH
PUSH
LD

TVF1: ENT
LD
LD

TVF2: ENT
CALL
JP
CALL
LD
AND
JP
LD
POP
POP
PUSH
PUSH

TVF3: ENT
CALL
JR
CP
JR
INC
DEC
LD
OR
JR
LD
CALL
CP
JR
CALL

DE
BC
HL
H, 2

BC.KEYPB
DE,CSTR

EDGE
C ,RTP6
DLY3
A , (D E)
20H
Z ,TVF2

,D,H
HL
BC
BC
HL

RBYTE
C, RTP6
(HL)
NZ,RTP7
HL
BC
A , B
C
NZ,TVF3
HL,< CSMDT)
RBYTE
H
NZ,RTP7
RBYTE

; CALL DLY2*3

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 22 04.07.S3

0 1 0 5 E 6 BD
.02 0 5 E 7 2 0 8 5
0 3 0 5 E 9 15
0 4 0 5 E A C A 5 3 0 5
0 5 0 5 E D 6 2
0 6 0 5 E E 18C2
0 7 0 5 F 0
OS 0 5 FO
0 9 0 5 F 0
1 0 0 5 F 0
11 0 5 F 0 F 5
1 2 0 5 F 1 3 A 8 E 1 1
1 3 0 5 F 4 CDB10F
14 0 5 F 7 7 7
1 5 0 5 F 8 F 1
16 0 5 F 9 C9
1 7 0 5 F A
I B 0 5 F A
1 9 0 5 F A
2 0 0 5 F A
2 1 0 5 F A
2 2 0 5 F A C D 0 9 0 0
2 3 0 5 F D CDBA03
2 4 0 6 0 0 C9
2 5 0 6 0 1
2 6 0 6 0 1
2 7 0 6 0 1
2 8 0 6 0 1
2 9 0 6 0 1
3 0 0 6 0 1
3 1 0 6 0 1
3 2 0 6 0 1
3 3 0 6 0 1
3 4 0 6 0 1
3 5 0 6 0 1
3 6 0 6 0 1
3 7 0 6 0 1 3 E F 8
3 8 0 6 0 3 3 2 0 0 E 0
3 9 0 6 0 6 0 0
4 0 0 6 0 7
4 1 0 6 0 7 OA
4 2 0 6 0 8 E 6 8 1
4 3 0 6 0 A 2 0 0 2
4 4 0 6 0 C 3 7
4 5 0 6 0 D C9
4 6 0 6 0 E 1A
4 7 0 6 0 F E 6 2 0
4 8 0 6 1 1 2 0 F 4
4 9 0 6 1 3
5 0 0 6 1 3 OA
5 1 0 6 1 4 E 6 8 1
5 2 0 6 1 6 2 0 0 2
5 3 0 6 1 8 3 7
5 4 0 6 1 9 C9
5 5 0 6 1 A 1A
5 6 0 6 I B E 6 2 0
5 7 0 6 I D 2 S F 4
5 8 0 6 I F C9
5 9 0 6 2 0
6 0 0 6 2 0

CP
JR
DEC
JP
LD
JR

L
N Z . R T P 7
D
Z , R T P 8
H , D
T V F 1

F L A S H I N G DATA LOAD

ENT
PUSH
LD
CALL
LD
POP
RET

AF
A , (F L A S H)
?F'ONT
(H L) , A
AF

NEW L I N E AND P R I N T HL R E G . (A S C I I)

ENT
CALL
CALL
RET

NL
F'RTHL

ORG 0 6 0 1 H i EDGE

EDGE (T A P E DATA EDGE DETECT)

BC=KEYPB (* E 0 0 1)
DE=CSTR ($ E 0 0 2)
E X I T CF=0 OK ! C F = 1 BREAK

ENT
LD A , F B H BREAK KEY I N
LD (K E Y P A) , A
NOP
ENT
LD A , (B C)
AND 8 1 H S H I F T i< BREAK
JR N Z , + 4
SCF
RET
LD A , (D E)
AND 2 0 H
JR N Z , E D G 1 CSTR D5 = 0
ENT
LD A , (B C) 8
AND B1H 9
JR N Z , + 4 1 0 / 1 4
SCF
RET
LD A , (D E) 8
AND 2 0 H 9
JR Z , E D G 2 CSTR D5 = 1
RET 11

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 23 04. 07. S3

0 1 0 6 2 0 DEFS + 4
0 2 0 6 2 4 5 ORG 0 6 2 4 H ! R B Y T E
0 3 0 6 2 4
0 4 0 6 2 4
0 5 0 6 2 4 ; 1 BYTE READ
0 6 0 6 2 4
0 7 0 6 2 4 E X I T SUMDT=STORE
0 8 0 6 2 4 C F = 1 : BREAK
0 9 0 6 2 4
10 0 6 2 4 5 C F = 0 : DATA=ACC
11 0 6 2 4 !
12 0 6 2 4 RBYTE : ENT
13 0 6 2 4 C5 PUSH BC
14 0 6 2 5 D5 PUSH DE
15 0 6 2 6 E5 PUSH HL
16 0 6 2 7 2 1 0 0 0 8 LD H L , 0 8 0 0 H
17 0 6 2 A 0 1 0 1 E 0 LD B C , K E Y P B
18 0 6 2 D 1 1 0 2 E 0 LD D E , C S T R
19 0 6 3 0 R B Y l : ENT
2 0 0 6 3 0 C D 0 1 0 6 CALL EDGE
2 1 0 6 3 3 D A 5 4 0 6 J P C . R B Y 3
2 2 0 6 3 6 CD4A0A CALL DLY3
2 3 0 6 3 9 1A LD A , (DE)
2 4 0 6 3 A E 6 2 0 AND 2 0 H
2 5 0 6 3 C C A 4 9 0 6 J P Z , R B Y 2
2 6 0 6 3 F E5 PUSH HL
2 7 0 6 4 0 2 A 9 7 1 1 LD H L , (S U M D T)
2 8 0 6 4 3 2 3 INC HL
2 9 0 6 4 4 2 2 9 7 1 1 LD (SUMDT) , HL
3 0 0 6 4 7 E l POP HL
3 1 0 6 4 8 3 7 SCF
3 2 0 6 4 9 RBY2 ! ENT
3 3 0 6 4 9 7D LD A , L
3 4 0 6 4 A 1 7 RLA
3 5 0 6 4 B 6 F LD L , A
3 6 0 6 4 C 2 5 DEC H
3 7 0 6 4 D C 2 3 0 0 6 J P N Z , R B Y l
3 8 0 6 5 0 C D 0 1 0 6 CALL EDGE
3 9 0 6 5 3 7D LD A , L
4 0 0 6 5 4 R B Y 3 : ENT
4 1 0 6 5 4 E l POP HL
4 2 0 6 5 5 D I POP DE
4 3 0 6 5 6 C I POP BC
4 4 0 6 5 7 C9 RET
4 5 0 6 5 8 ;
4 6 0 6 5 8 5
4 7 0 6 5 8 S TAPE MARK DETECT
4S 0 6 5 8 ;
4 9 0 6 5 8 ; E=3LS> : INFORMATION
5 0 0 6 5 8 5 = 3 S S : DATA
5 1 0 6 5 8 ; E X I T CF= 0 : 0 K
5 2 0 6 5 8 ; = 1 :BREAK
5 3 0 6 5 8 ;
5 4 0 6 5 8 DEFS + 3
5 5 CI65B ;
5 6 0 6 5 B TMARK : ENT
5 7 0 6 5 B ;
5 8 0 6 5 B 5 ORG 0 6 5 B H
5 9 0 6 5 B i
6 0 0 6 5 B C D E 2 0 F CALL GAPCK

KEY DATA $ E 0 0 1
i T A P E DATA * E 0 0

4 1 OR 1 0 1
13
2 0 + 1 8 * 6 3 + 3 3
DATA READ : 8

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 24 04.07.S3

01 065E C5
02 065F D5
03 0660 E5
04 0661 212828
05 0664 7B
06 0665 FECC
07 0667 2803
08 0669 211414
09 066C 229511
10 066F 0101E0
1 1 0672 1102E0
12 0675
13 0675 2A9511
14 0678
1-5 0678 CD0106
16 067B 381E
17 067D CD4A0A
IB 0680 1A
19 0681 E620
20 06B3 28F0
21 06B5
22 06B6 20F0
23 0688
24 0688 CD0106
25 068B 3B0E
26 068D CD4A0A
27 0690 1A
28 0691 E620
29 0693 20E0
30 0695 2D
31 0696 20F0
32 0698 CD0106
33 069B
34 069B
35 069B EL
36 069C D1
37 069D CI
38 069E C9
39 069F
40 069F
41 069F
42 069F
43 069F
44 069F
45 069F
46 0&9F
47 069F
48 069F C5
49 06A0 D5
50 06 A1 E5
51 06A2 060A
52 06A4
53 06A4 3A02E0
54 06A7 E610
55 06A9 280E
56 06AB
57 06AB 06FF
58 06AD CD9609
59 06 BO 1802
60 06B2 18EB

TM1!

TM2:

RET3:
TM4:

PUSH BC
PUSH DE
PUSH HL
LD HL,2828H
LD A,E
CP CCH
JR Z, +5
LD HL,1414H
LD (TMCNT),HL
LD BC,KEYPB
LD DE,CSTR
ENT
LD HL,(TMCNT)
ENT
CALL EDBE
JR C, TM4
CALL DLY3
LD A , (D E)
AND 20H
JR Z,TM1
DEC H
JR NZ,TM2
ENT
CALL EDBE
JR C, TM4
CALL DLY3
LD A, (DE)
AND 20H
JR NZ,TM1
DEC L
JR NZ,TM3
CALL EDGE
ENT
ENT
POP HL
POP DE
POP BC
RET

5 ORG 065EH

; CALL DLY2#3

CALL DLY2*3

MOTOR ON

; IN D=®W® !WRITE
5 =3R3 SREAD
; EXIT CF=0 :0K
; = 1 :BREAK
MOTOR : ENT

PUSH BC
PUSH DE
PUSH HL
LD B, 10

M0T1 : ENT
LD A, (CSTR:
AND 10H
JR Z,M0T4

M0T2: ENT
LD B, FFH
CALL DLY12
JR +4
JR MOTOR

2 SEC DELAY
7 MSEC DELAY

MOTOR ENTRY ADJUST
ORG 06B2H

Z80 ASSEMBLER S B - 7 2 0 1 C 1 Z - 0 1 3 A > PAGE 2 5 0 4 . 0 7 . 8 3

0 1 0 6 B 4 1 0 F 7 DJNZ - 7
0 2 0 6 B 6 AF XOR A
0 3 0 6 B 7 M 0 T 7 : ENT
0 4 0 6 B 7 18E2 JR RET3
0 5 0 6 B 9 M 0 T 4 : ENT
0 6 0 6 B 9 3 E 0 6 LD A , 0 6 H
0 7 0 6 B B 2 1 0 3 E 0 LD H L . C S T P T
0 8 0 6 B E 7 7 LD (H L) , A
0 9 0 6 B F 3C INC A
10 0 6 0 0 7 7 LD (H L) , A
11 0 6 C I 10E1 DJNZ M0T1
12 0 6 C 3 C D 0 9 0 0 CALL NL
13 0 6 C 6 7A LD A , D
14 0 6 C 7 FED7 CP D7H i ' W '
1 5 0 6 C 9 2 8 0 5 JR Z ,MOTS
16 0 6 C B 1 1 F B 0 3 LD D E . M S G t t l ! PLAY MARK
1 7 0 6 C E 1 8 0 7 JR M0T9
18 0 6 D 0 M 0 T 8 : ENT
19 0 6 D 0 1 1 0 2 0 4 LD D E , M S G # 3 S " R E C O R D . "
2 0 0 6 D 3 DF RST 3 5 CALL MSGX
2 1 0 6 D 4 1 1 F D 0 3 LD D E , M S G # 2 . " P L A Y "
2 2 0 6 D 7 M 0 T 9 : ENT
2 3 0 6 D 7 DF RST 3 S CALL MSGX
2 4 0 6 D 8 M 0 T 5 : ENT
2 5 0 6 D 8 3 A 0 2 E 0 LD A , (C S T R)
2 6 0 6 D B E 6 1 0 AND 10H
2 7 06DD 20CC JR N Z , M 0 T 2
2 8 0 6 D F CD320A CALL ?BRK
2 9 0 6 E 2 2 0 F 4 JR NZ s M0T5
3 0 0 6 E 4 3 7 SCF
3 1 0 6 E 5 18D0 JR M0T7
3 2 0 6 E 7
3 3 0 6 E 7 I N I T I A L MESSAGE
3 4 0 6 E 7
3 5 0 6 E 7 MSB73 : ENT
3 6 0 6 E 7 2 A 2 A 2 0 2 0 DEFM ' * * MONITOR 1 Z - 0 1 3 A #* • *
3 7 CI6EB 4 D 4 F 4 E 4 9
3 8 0 6 E F 5 4 4 F 5 2 2 0
3 9 0 6 F 3 3 1 5 A 2 D 3 0
4 0 0 6 F 7 3 1 3 3 4 1 2 0
4 1 0 6 F B 2 0 2 A 2 A
4 2 0 6 F E OD DEFB ODH
4 3 0 6 F F
4 4 0 6 F F
4 5 0 6 F F DEFS + 1
4 6 0 7 0 0
4 7 0 7 0 0
4 8 0 7 0 0 • R S 0 7 0 0 H ; M S T O P
4 9 0 7 0 0
5 0 0 7 0 0
5 1 0 7 0 0 MOTOR STOP
5 2 0 7 0 0
5 3 0 7 0 0 MSTOP : ENT
5 4 0 7 0 0 F 5 PUSH AF
5 5 0 7 0 1 C5 PUSH BC
5 6 0 7 0 2 D5 PUSH DE
5 7 0 7 0 3 0 6 0 A LD B , 1 0
5 8 0 7 0 5 M S T l : ENT
5 9 0 7 0 5 3 A 0 2 E 0 LD A , (C S T R)
6 0 0 7 0 8 E 6 1 0 AND 10H

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 26 04.07.S3

01 070A 280B
02 070C
03 07C>C 3E06
04 070E 3203E0
05 0711 3C
06 0712 32O3E0
07 0715 10EE
08 0717
09 0717 C3E60E
10 071A
11 071A
12 071A
13 071A
14 071A
15 071A
16 071A
17 071A
18 071A
19 071A
20 071A
21 071A
22 071A C5
23 07 IB D5
24 07 IC E5
25 07 ID 110000
26 0720
27 0720 78
28 0721 BI
29 0722 200B
30 0724 EB
31 0725 229711
32 0728 229911
33 072B EL
34 072C D1
35 072D CI
36 072E C9
37 072F
38 072F 7E
39 0730 C5
40 0731 0608
41 0733
42 0733 07
43 0734 3001
44 0736 13
45 0737 10FA
46 0739 CI
47 073A 23
48 073B OB
49 073C 1BE2
50 073E
51 073E
52 073E
53 073E
54 073E 2103E0
55 0741 36SA
56 0743 3607
57 0745 3605
58 0747
59 0747
60 0747 C9

JR Z,MST3
MST2: ENT

LD A ,06H
LD < CSTPT) , A
INC A
LD <CSTPT) , A
DJNZ MST1

MST3: ENT
JP 7RSTR1

CHECK SUM

IN BC=SIZE
HL=DATA ADR.

EX IT SUMDT=STORE
CSMDT=STORE

CKS2:

ENT
PUSH BC
PUSH DE
PUSH HL
LD DE, 0
ENT
LD A, B
OR C
JR NZ,CKS2
EX DE, HL
LD (SUMDT) , , HL
LD (CSMDT) , , HL
POP HL
POP DE
POP BC
RET
ENT
LD A , (H L)
PUSH BC
LD B , + 8
ENT
RLCA
JR NC, +3
INC DE
DJNZ CKS3
POP BC
INC HL
DEC BC
JR CKS1

MODE SET OF KEYPORT

7M0DE: ENT
LD
LD
LD
LD
ENT

HL.KEYPF
(H L) , B A H
(H L) , 0 7 H
(H L) , 05H

10001010
PC3=1
PC2=1

RET

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 27 04.07.S3

01 074B
02 0748
03 0748
04 0759
05 0759
06 0759
07 0759
08 0759
09 0759
10 0759 3E15
1 1 075B 3D
12 075C C25B07
13 075F C9
14 0760
15 0760
16 0760
17 0760
18 0760 3E13
19 0762 3D
20 0763 C26207
21 0766 C9
22 0767
23 0767
24 0767
25 0767
26 0767
27 0767
28 0767
29 0767
30 0767 C5
31 0768 0608
32 076A CD1A0A
33 076D
34 076D 07
35 076E DC 1AOA
36 0771 D4010A
37 0774 05
38 0775 C26D07
39 0778 C I
40 0779 C9
41 077A
42 077A
43 077A
44 077A
45 077A
46 077A
47 077A
48 077A
49 077A C5
50 077B D5
51 077C 7B
52 077D 01F055
53 0780 11282B
54 0783 FECC
55 0785 CABE07
56 0788 01FB2A
57 078B 111414
58 078E
59 078E CD010A
60 0791 OB

DEFS +17

5 ORB 0759H;DLY1

! 107 MICRO SEC DELY

DLYL: ENT
LD A ,15H ; 18*21+20
DEC A
JP N Z , - 1
RET

;ORB 0760H;DLY2

DLY2: ENT
LD A ,13H ; 18*19+20
DEC A
JP N Z , - 1
RET

1 BYTE WRITE

ENT
PUSH BC
LD B,+B
CALL LONS
ENT
RLCA
CALL C,LONG
CALL NC,SHORT
DEC B
JP NZ,WBY1
POP BC
RET

GAP + TAPEMARK

E=3L3 LONG GAP
=3SS> SHORT GAP

ENT
PUSH BC
PUSH DE
LD A , E
LD BC,55F0H
LD DE,2828H
CP CCH
JP Z.GAPL
LD BC,2AF8H
LD DE,1414H
ENT
CALL SHORT
DEC BC

** Z80 ASSEMBLER SB 1-7201 < 1 Z—013A> PAGE 2S 04.07.83

0 1 0 7 9 2 •7B LD As B
0 2 0 7 9 3 B I OR C
0 3 0 7 9 4 2 0 F 8 JR N Z , - 6
0 4 0 7 9 6 GAP2: ENT
0 5 0 7 9 6 CD1A0A CALL LONG
0 6 0 7 9 9 1 5 DEC D
0 7 0 7 9 A 2 0 F A JR N Z . - 4
0 8 0 7 9 C SAP3 ENT
0 9 0 7 9 C CD010A CALL SHORT
10 0 7 9 F I D DEC E
11 0 7 A 0 2 0 F A JR N Z , - 4
12 0 7 A 2 CD1A0A CALL LONG
13 0 7 A 5 D1 POP DE
14 0 7 A 6 C I POP BC
15 0 7 A 7 C9 RET
16 0 7 A 8
1 7 0 7 A 8 MEMORY CORRECTION
18 0 7 A 8 COMMAND ' M '
19 0 7 A B
2 0 0 7 A 8 MCOR. ENT
2 1 0 7 A 8 CD3D01 CALL H E X I Y CRRECTION ADR.
2 2 0 7 A B MCR1 ENT
2 3 0 7 A B CDFA05 CALL NLPHL COR. ADR. P R I N T
2 4 0 7 A E C D B 1 0 3 CALL SPHEX ACC A S C I I D I S P
2 5 0 7 B 1 C D 2 0 0 9 CALL 7PRTS SPACE P R I N T
2 6 0 7 B 4 C D 2 F 0 1 CALL BGETL GET DATA & CHECK
2 7 0 7 B 7 C D 1 0 0 4 CALL HLHEX H L f A S C I K D E)
2 8 07BA 3 8 I B JR C . M C R 3
2 9 07BC C D A 6 0 2 CALL . 4DE (INC DE) * 4
3 0 0 7 B F 13 INC DE
3 1 0 7 C 0 C D 1 F 0 4 CALL 2HEX DATA CHECK
3 2 0 7 C 3 3 B E 6 JR C ,MCR1
3 3 0 7 C 5 BE CP (H L)
3 4 0 7 C 6 2 0 E 3 JR N Z , M C R 1
3 5 0 7 C 8 1 3 INC DE
3 6 0 7 C 9 1A LD A , (D E)
3 7 07CA FEOD CP ODH NOT CORRECTION ?'
3 8 07CC 2 8 0 6 JR Z , M C R 2
3 9 07CE C D 1 F 0 4 CALL 2HEX ACC(-HL(A S C I I)
4 0 0 7 D 1 3 8 D B JR C ,MCR1
4 1 0 7 D 3 7 7 LD (H L) , A DATA CORRECT
4 2 0 7 D 4 MCR2: ENT
4 3 0 7 D 4 2 3 INC HL
4 4 0 7 D 5 1BD4 JR MCR1
4 5 0 7 D 7
4 6 0 7 D 7 6 0 MCR3: LD H , B MEMORY ADR.
4 7 0?DB 6 9 LD L , C
4 8 0 7 D 9 18D0 JR MCR1
4 9 07DB
5 0 07DB
5 1 07DB
5 2 0 7 D B
5 3 07DB
5 4 0 7 E 6 ORB 0 7 E 6 H
5 5 0 7 E 6
5 6 0 7 E 6
5 7 0 7 E 6
5 8 0 7 E 6 SET 1 L I N E STATEMENT *
5 9 0 7 E 6
6 0 0 7 E 6 DE = DATA STORE LOW ADR.

JBO ASSEMBLER S B - 7 2 0 1 ' 1 Z - 0 1 3 A > PAGE 2 9 0 4 . 0 7 . 8 3

0 1 0 7 E 6 (END =CR)
0 2 0 7 E 6
0 3 0 7 E 6
0 4 0 7 E 6 7 S E T L ENT
0 5 0 7 E 6 F 5 PUSH AF
0 6 0 7 E 7 C 5 PUSH BC
0 7 0 7 E B E 5 PUSH HL
0 8 0 7 E 9 D 5 PUSH DE
0 9 0 7 E A B E T L 1 ENT
10 0 7 E A C D B 3 0 9 CALL ??KEY ; ENTRY KEY
1 1 0 7 E D AUTD3 ENT
12 0 7 E D F 5 PUSH AF ; I N KEY DATA SAVE
1 3 0 7 E E 4 7 LD B , A
14 0 7 E F 3 A 9 D 1 1 LD A , (SWRK) ! B E L L WORK
15 0 7 F 2 OF RRCA
16 0 7 F 3 D 4 7 7 0 5 CALL N C , ? B E L ! ENTRY B E L L
1 7 0 7 F 6 7 8 LD A , B
18 0 7 F 7 2 1 7 0 1 1 LD H L , K A N A F 5 KANA & GRAPH FLAG
1 9 0 7 F A E 6 F 0 AND FOH
2 0 0 7 F C FECO CP COH
2 1 0 7 F E D I POP DE !i E r e g = F L A B r e g
2 2 0 7 F F 7 8 LD A , B
2 3 0 8 0 0 2 0 1 6 JR NZ s GETL2
2 4 0 8 0 2 FECD CP CDH 5 CR
2 5 0 8 0 4 2 8 5 5 JR Z . B E T L 3
2 6 0 8 0 6 FECB CP CBH 5 BREAK
2 7 0 8 0 8 C A 2 2 0 8 J P Z , B E T L C
2 8 0 8 0 B FECF CP CFH 5 N I K O MARK WH.
2 9 0 8 0 D 2 B 0 9 JR Z . B E T L 2
3 0 0 8 0 F FEC7 CP C7H i CRT E D I T I O N
3 1 0 8 1 1 3 0 0 A JR N C . G E T L 5
3 2 0 8 1 3 CB1B RR E i CY ?
3 3 0 8 1 5 7 8 LD A . B
3 4 0 8 1 6 3 0 0 5 JR NCj GETL5
3 5 OB 18 B E T L 2 ENT
3 6 0 8 1 8 CDB50D CALL 7DSP
3 7 0 8 I B 1 BCD JR GETL1
3 8 0 8 I D G E T L 5 ENT
3 9 OB I D CDDCOD CALL 7DPCT 5 CRT CONTROL
4 0 0 8 2 0 18C8 JR GETL1
4 1 0 8 2 2
4 2 0 8 2 2 BREAK I N
4 3 0 8 2 2
4 4 0 8 2 2 E l BETLC POP HL
4 5 0 8 2 3 E 5 PUSH HL
4 6 0 8 2 4 3 6 I B LD (H L) , 1 B H 5 BREAK CODE
4 7 0 S 2 6 2 3 INC HL
4 8 0 8 2 7 3 6 0 D LD (H L) f O D H
4 9 0 8 2 9 1 8 5 3 JR GETLR
5 0 0 8 2 B BETLA
5 1 0 8 2 B
5 2 0 8 2 B OF GETLA RRCA ; CY<-D7
5 3 0 8 2 C 3 0 3 7 JR N C . G E T L 6
5 4 0 8 2 E 1 8 3 3 JR GETLB
5 5 0 B 3 0
5 6 0 8 3 0
5 7 0 B 3 0
5 8 0 8 3 0 DELAY 7M SEC AND SWEP
5 9 0 8 3 0
6 0 0 8 3 0 C D 9 6 0 9 DSWEP CALL D L Y 1 2

** Z80 ASSEMBLER SB-7201 <1Z—013A> RASE 30 04.07.83

01 0833 CD500A
02 0836 C9
03 0B37
04 0837
05 0B37
06 085B
07 085B
08 085B
09 0B5B
10 085B
1 1 0B5B CDF302
12 0B5E 0628
13 0S60 30C9
14 0B62 25
15 0B63 0650
16 0865 2EOO
17 0867 CDB40F
18 0B6A DI
19 086B D5
20 0B6C 7E
21 086D CDCEOB
22 0B70 12
23 0871 23
24 0B72 13
25 0873 10F7
26 0875 EB
27 0876 360D
28 0878 2B
29 0879 7E
30 0B7A FE20
31 087C
32 0B7C
33 087C
34 0B7C
35 0B7C 28F8
36 0B7E
37 087E
38 087E
39 0B7E CD0E09
40 0BB1 DI
41 0882 EL
42 0883 CI
43 0884 F1
44 0885 C9
45 0886
46 0886
47 08B6
48 0886
49 0893
50 0893
51 0893
52 0893
53 0893
54 0893
55 0893
56 0893
57 0893 F5
58 0894 C5
59 0895 D5
60 0896 1A

CALL 7SWEP
RET

DEFS 36

ORB 0B5BH; BETL3

CALL . MANS ; CR
LD B , 4 0 5 1LINE
JR NC,GETLA
DEC H ! BEFORE L I N E
LD B , 8 0 5 2 L I N E
LD L , 0
CALL ?PNT1
POP DE ! STORE TOP ADR
PUSH DE
LD A , (H L)
CALL 7DACN
LD (D E) , A
INC HL
INC DE
DJNZ QETLZ
EX DE, HL
LD (HL)*ODH
DEC HL
LD A , (H L)
CP 20H S SPACE THEN CR

CR AND NEW L INE

JR Z,BETLU

NEW L INE RETURN

POP DE
POP HL
POP BC
POP AF
RET

DEFS +13
;ORS 0893H

; MESSABE PRINT

; DE PRINT DATA LOW ADR.
5 END=CR

?MSS: ENT
PUSH AF
PUSH BC
PUSH DE

MSEL: LD A , (D E)

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 31 04.07.S3

0 1 0 8 9 7 FEOD CP ODH ; CR
0 2 0 8 9 9 2 8 0 C JR Z ,MSGX2
0 3 0 B 9 B C D 3 5 0 9 CALL 7PRNT
0 4 0 B 9 E 1 3 INC DE
0 5 0 S 9 F 1 8 F 5 JR MSG1
0 6 0 8 A1
0 7 0 8 A1
0 3 0 8 A1 ;ORS 0 8 A 1 H
0 9 0 8 A1
10 0 8 A1 ! A L L P R I N T MESSABE
1 1 0 8 A 1
1 2 0 8 A 1 7MSGX: ENT
1 3 0 8 A1 F 5 PUSH AF
1 4 0 8 A 2 C 5 PUSH BC
1 5 0 B A 3 D5 PUSH DE
16 0 8 A 4 1A M S B X l : LD A , < DE)
1 7 0 B A 5 FEOD CP ODH
1 8 0 8 A 7 C A E 6 0 E MSBX2: J P Z , ? R S T R 1
1 9 08AA CDB90B CALL 7ADCN
2 0 08AD C D 6 C 0 9 CALL PRNT3
2 1 0 8 B 0 13 INC DE
2 2 0 8 B 1 1 8 F 1 JR MSGX 1
2 3 0 B B 3
2 4 0 B B 3 5 TOP OF KEYTBLS
2 5 0 B B 3
2 6 0 B B 3 1 1 2 A 0 C 7KYSM! LD D E , K T B L S
2 7 0 B B 6 1 8 4 2 JR ? K Y 5
2 8 0 8 B 8
2 9 0 8 B B ; BREAK CODE I N
3 0 0 8 B 8 5
3 1 0 8 B 8 3ECB #BRK: LD A , C B H ; BREAK CODE
3 2 OBBA B7 OR A
3 3 0 8 B B 1 8 1 9 JR ? K Y 1
3 4 0 8 B D
3 5 0 8 B D
3 6 OBBD ;ORG 08BDH
3 7 0 8 B D
3 8 OBBD ; GETKEY
3 9 OBBD
4 0 OBBD 5 NOT ECHO BACK
4 1 OBBD
4 2 OBBD ; E X I T ! A C C = A S C I I CODE
4 3 0 8 B D
4 4 OBBD 7GET : ENT
4 5 0 8 B D CDCA08 CALL ?KEY ; KEY I N (D I S P L A Y CODE)
4 6 OBCO D 6 F 0 SUB FOH 5 NOT K E Y I N CODE
4 7 0 B C 2 c a RET Z
4 8 0BC3 C 6 F 0 ADD A , FOH
4 9 0BC5 C3CE0B J P 7DACN ; D I A P L A Y TO A S C I I CODE
5 0 0BC8 ;
5 1 0 8 C 8
5 2 08CQ DEFS + 2
5 3 08CA >
5 4 08CA
5 5 08CA
5 6 OBCA
5 7 08CA SORG 0 8 C A H ; 7 K E Y
5 8 08CA
5 9 OBCA S 1KEY INPUT
6 0 OBCA 5 I N B = KEY M O D E (S H I F T , C T R L , B R E A K)

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 32 04.07.S3

01 08CA C = KEY DATA (COLUMN & ROW)
02 08CA I EXIT ACC =DISPLAY CODE
03 08CA I F NO KEY ACC=FOH
04 oacA I F CY =1 THEN ATTRIBUTE ON
05 OBCA (SMALL,HIRAKANA)
06 08CA 5
07 08CA ?KEY: ENT
OS OSCA C5 PUSH BC
09 08CB D5 PUSH DE
10 oacc E5 PUSH HL
11 OBCD CD300S CALL DSWEP DELAY AND KEY SWEP
12 OSDO 78 LD A, B
13 0BD1 07 RLCA
14 08D2 3806 JR C ,?KY2
15 08D4 3EF0 LD A, FOH
16 08D6 ?KYL: ENT
17 0SD6 EL POP HL
IS 08D7 DI POP DE
19 08D8 CI POP BC
20 08D9 C9 RET
21 08DA 5
22 08DA ?KY2 = ENT
23 08DA 11EA0B LD DE,KTBL NORMAL KEY TABLE
24 08DD 7B LD A, B
25 08DE FE8S CP 88H BREAK IN
26 08E0 28D6 JR Z,#BRK
27 08E2 2600 LD H , 0 HL=ROW & COLUMN
28 08E4 69 LD L , C
29 08E5 CB6F B IT 5 , A CTRL CHECK
30 0SE7 200E JR N Z , ? K Y 5 - 3
31 0BE9 3A7011 LD A , (KANAF) 0=NR. ,1=GRAPH
32 08EC OF RRCA
33 08ED DAFE08 JP C,7KYSRP GRAPH MODE
34 OBFO 7B LD A, B CTRL KEY CHECK
35 08F1 17 RLA
36 0BF2 17 RLA
37 0BF3 38BE JR C,7KYSM
38 0BF5 1803 JR 7KY5
39 0BF7 11AAOC LD DE,KTBLC CONTROL KEY TABLE
40 OBFA ?KY5! ENT
41 OBFA 19 ADD HL, DE TABLE
42 OBFB 7KY55: ENT
43 OBFB 7E LD A , (H L)
44 08FC 18D8 JR 7KY1
45 OBFE 7KYGRP: ENT
46 OBFE CB70 BIT 6 , B
47 0900 2807 JR Z,7KYGRS
48 0902 11E90C LD DE,KTBLB
49 0905 19 ADD HL, DE
50 0906 37 SCF
51 0907 1BF2 JR 7KY55
52 0909 ;
53 0909 116A0C 7KYGRS: LD DE,KTBLGS
54 090C 1BEC JR 7KY5
55 090E 5
56 090E ;
57 090E ;
58 090E ;
59 090E 5
60 09 OE ;ORG 090EH

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 33 04.07.S3

0 1 0 9 0 E s
0 2 0 9 0 E j NEWLINE
0 3 0 9 0 E s
0 4 0 9 0 E 7 L T N L ! ENT
0 5 0 9 0 E AF XOR A
0 6 0 9 0 F 3 2 9 4 1 1 LD (D P R N T) , A
0 7 0 9 1 2 3ECD LD A , CDH
OS 0 9 1 4 1 8 4 3 JR PRNT5
0 9 0 9 1 6 DEFS + 2
1 0 0 9 1 8 SORS 0 9 1 8 H
11 0 9 1 8 s
12 0 9 I S ? N L ! ENT
1 3 0 9 1 8 3 A 9 4 1 1 LD A , (DPRNT)
14 0 9 I B B7 OR A
15 0 9 I C C8 RET Z
16 0 9 I D 18EF JR 7 L T N L
17 0 9 I F DEFS + 1
I S 0 9 2 0 ;ORG 0 9 2 0 H
19 0 9 2 0 ;
2 0 0 9 2 0 S P R I N T SPACE
2 1 0 9 2 0 ;
2 2 0 9 2 0 7 P R T S : ENT
2 3 0 9 2 0 3 E 2 0 LD A , 2 0 H
2 4 0 9 2 2 1 8 1 1 JR 7PRNT
2 5 0 9 2 4 ;
2 6 0 9 2 4 ! P R I N T TAB
2 7 0 9 2 4 5
2S 0 9 2 4 7 P R T T : ENT
2 9 0 9 2 4 CDOCOO C A L L PRNTS
3 0 0 9 2 7 3 A 9 4 1 1 LD A , (D P R N T)
3 1 0 9 2 A B7 OR A
3 2 0 9 2 B C8 RET Z
3 3 0 9 2 C D60A SUB + 10
3 4 0 9 2 E 3 8 F 4 JR C , - 1 0
3 5 0 9 3 0 2 0 F A JR N Z , - 4
3 6 0 9 3 2 DEFS + 3
3 7 0 9 3 5 ;ORG 0 9 3 5 H
3 3 0 9 3 5 ;
3 9 0 9 3 5 ; P R I N T
4 0 0 9 3 5 s
4 1 0 9 3 5 ; I N ACC = P R I N T DATA
4 2 0 9 3 5 ;
4 3 0 9 3 5 7PRNT: ENT
4 4 0 9 3 5 FEOD CP ODH
4 5 0 9 3 7 2 8 D 5 JR Z , ? L T N L
4 6 0 9 3 9 C5 PUSH BC
4 7 0 9 3 A 4 F LD C , A
4 0 0 9 3 B 4 7 LD B , A
4 9 0 9 3 C C D 4 6 0 9 CALL 7PRT
5 0 0 9 3 F 7 8 LD A . B
5 1 0 9 4 0 C I POP BC
5 2 0 9 4 1 C9 RET
5 3 0 9 4 2 5
5 4 0 9 4 2 ;
5 5 0 9 4 2 MSGOK: ENT
5 6 0 9 4 2 4 F 4 B 2 1 DEFM 'OK! '
5 7 0 9 4 5 OD DEFB ODH
5 8 ' 0 9 4 6 5 0RG 0 9 4 6 H
5 9 0 9 4 6 i
6 0 0 9 4 6 ! P R I N T ROUTINE

ROW POINTER
CR

* * 2 8 0 ASSEMBLER S B - 7 2 0 1 ; i Z - 0 1 3 A > PASE 3 4 0 4 . 0 7 . 8 3

0 1 0 9 4 6 S 1 CHA.
0 2 0 9 4 6 i I N P U T ! C = A S C I I DATA (7 D S P + 7 D P C T)
0 3 0 9 4 6 5
0 4 0 9 4 6 ?PRT s ENT
0 5 0 9 4 6 7 9 LD A , C
0 6 0 9 4 7 CDB90B CALL 7ADCN ; A S C I I TO DSPLAY
0 7 0 9 4 A 4 F LD C , A
OB 0 9 4 B FEFO CP FOH
0 9 0 9 4 D C8 RET Z i Z E R O = I L L E S A L DATA
1 0 0 9 4 E E 6 F 0 AND FOH ; MSD CHECK
11 0 9 5 0 FECO CP COH
1 2 0 9 5 2 7 9 LD A , C
1 3 0 9 5 3 2 0 1 7 JR N Z , P R N T 3
14 0 9 5 5 FEC7 CP C7H
15 0 9 5 7 3 0 1 3 JR N C , P R N T 3 i CRT EDITOR
1 6 0 9 5 9 PRNT5 ENT
1 7 0 9 5 9 CDDCOD CALL 7DPCT
I B 0 9 5 C FEC3 CP C3H
1 9 0 9 5 E 2 8 0 F JR Z , P R N T 4
2 0 0 9 6 0 FEC5 CP C5H ; HOME
2 1 0 9 6 2 2 8 0 3 JR Z , P R N T 2
2 2 0 9 6 4 FEC6 CP C6H 5 CLR
2 3 0 9 6 6 CO RET NZ
2 4 0 9 6 7 AF PRNT2 XOR A
2 5 0 9 6 8 3 2 9 4 1 1 LD (D P R N T) , A
2 6 0 9 6 B C9 RET
2 7 0 9 6 C PRNT3 ENT
2 8 0 9 6 C CDB50D CALL 7DSP
2 9 0 9 6 F 3 A 9 4 1 1 PRNT4 LD A , (D P R N T) i TAB P O I N T + 1
3 0 0 9 7 2 3C INC A
3 1 0 9 7 3 F E 5 0 CP + 8 0
3 2 0 9 7 5 3 8 F 1 JR C , P R N T 2 + 1
3 3 0 9 7 7 D 6 5 0 SUB + 8 0
3 4 0 9 7 9 1BED JR P R N T 2 + 1
3 5 0 9 7 B ;
3 6 0 9 7 B ;
3 7 0 9 7 B ;
3 8 0 9 7 B !
3 9 0 9 7 B ;
4 0 0 9 7 B S F L A S S I N Q BYPASS 1
4 1 0 9 7 B ;
4 2 0 9 7 B F L A S 1 ENT
4 3 0 9 7 B 3 A B E 1 1 LD A , (F L A S H)
4 4 0 9 7 E 1 8 6 F JR F L A S 2
4 5 0 9 B 0
4 a 0 9 8 0 ! BREAK SUBROUTINE BYPASS 1
4 7 0 9 8 0
4S 0 9 8 0 CTRL OR NOT KEY
4 9 0 9 8 0
5 0 0 9 8 0 7BRK2 : 'ENT
5 1 0 9 8 0 CB6F B I T 5 , A ! NOT OR CTRL
5 2 0 9 8 2 2 8 0 2 JR Z i 7 B R K 3 ; CTRL
5 3 0 9 8 4 B7 OR A ; NOTKEY A = 7 F H
5 4 0 9 8 5 C9 RET
5 5 0 9 8 6 5
5 6 0 9 8 6 3 E 2 0 7 B R K 3 ! LD A , 2 0 H ; CTRL D 5 = l
5 7 0 9 B 8 B7 OR A 5 ZERO F L S . CLR
5 8 0 9 8 9 3 7 SCF
5 9 0 9 8 A C9 RET
6 0 0 9 S B i

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 35 04.07.S3

0 1 0 9 8 B MSGSV: ENT
0 2 0 9 8 B 4 6 4 9 4 C 4 5 DEFM • F I L E N A M E ? *
0 3 0 9 8 F 4 E 4 1 4 D 4 5
0 4 0 9 9 3 3 F 2 0
0 5 0 9 9 5 OD DEFB ODH
0 6 0 9 9 6 ;
0 7 0 9 9 6 ; DLY 7 MSEC
0 8 0 9 9 6 5
0 9 0 9 9 6 DLY12S ENT
10 0 9 9 6 C5 PUSH BC
11 0 9 9 7 0 6 1 5 LD B , 15H
12 0 9 9 9 CD4A0A CALL DLY3
13 0 9 9 C 10FB DJNZ —3
14 0 9 9 E C l POP BC
15 0 9 9 F C9 RET
16 0 9 A 0
17 0 9 A 0
18 0 9 AO
19 0 9 A 0 5 LOADING MESSAGE
2 0 0 9 A 0 5
2 1 0 9 A 0 MSG72: ENT
2 2 0 9 AO 4 C 4 F 4 1 4 4 DEFM ' L O A D I N G '
2 3 0 9 A 4 4 9 4 E 4 7 2 0
2 4 0 9 A S OD DEFB ODH
2 5 0 9 A 9 ;
2 6 0 9 A 9 ;
2 7 0 9 A 9 ;
2 8 0 9 A 9 ; DELAY FOR LONG PULSE
2 9 0 9 A 9 5
3 0 0 9 A 9 D L Y 4 : ENT
3 1 0 9 A 9 3 E 5 9 LD A , 5 9 H ! 1 8 * 8 9 + 2 0
3 2 0 9 A B 3D DEC A
3 3 0 9 AC C 2 A B 0 9 J P N Z , —1
3 4 0 9 A F C9 RET
3 5 0 9 B 0 ;
3 6 0 9 B 0 5
3 7 0 9 B 0 DEFS + 3
3 8 0 9 B 3 5
3 9 0 9 B 3
4 0 0 9 B 3 SORG 09B3H5 77KEY
4 1 0 9 B 3
4 2 0 9 B 3 5 KEY BOAD SEARCH
4 3 0 9 B 3 5 ?< D I S P L A Y CODE CONV.
4 4 0 9 B 3
4 5 0 9 B 3 j E X I T A = D I S P L A Y CODE
4 6 0 9 B 3 CY = GRAPH MODE
4 7 0 9 B 3 ; WITH CURSOR D I S P L A Y
4 8 0 9 B 3
4 9 0 9 B 3 7 7 K E Y : ENT
5 0 0 9 B 3 E5 PUSH HL
5 1 0 9 B 4 CD920B CALL 7SAVE
5 2 0 9 B 7 K S L l : ENT
5 3 0 9 B 7 C D 7 E 0 5 CALL FLKEY S KEY
5 4 0 9 B A 2 0 F B JR N Z , K S L l i KEY I N THEN JUMP
5 5 09BC K S L 2 : ENT
5 6 09BC CD7E05 CALL FLKEY
5 7 0 9 B F 2SFB JR Z , K S L 2 5 NOT KEY I N THEN JUJrIP
5 8 0 9 C 1 6 7 LD H , A

5 NOT KEY I N THEN JUJrIP

5 9 0 9 C 2 C D 9 6 0 9 CALL DLY 12 ; DELAY CHATTER
6 0 0 9 C 5 CDCA08 CALL 7KEY

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 36 04.07.S3

01 09C8 P5
02 09C9 BC
03 09CA EL
04 09CB 20EF
05 09CD E5
06 09CE F1
07 09CF CDF005
OS 09D2 EL
09 09D3 C9
10 09D4
11 09D4
12 09D4
13 09D4
14 09D4
15 09D4 AF
16 09D5
17 09T>5 010008
18 09D8
19 09DB D5
20 09D9 57
21 09DA
22 09DA 72
23 09DB 23
24 09DC OB
25 09DD 78
26 09DE B1
27 09DF 20F9
28 09E1 DI
29 09E2 C9
30 09E3
31 09E3
32 09E3
33 09E3
34 09E3
35 09E3
36 09E3
37 09E3 F5
38 09E4 E5
39 09E5 3A02E0
40 09E8 07
41 09E9 07
42 09EA 388F
43 09EC 3A9211
44 09EF
45 09EF CDB10F
46 09F2 77
47 09F3
48 09F3 EL
49 09F4 F1
50 09F5 C9
51 09F6
52 09F6
53 09F6
54 09F6
55 09FF
56 09FF
57 09FF
58 09FF
59 09FF
60 09FF 18E2

PUSH AF
CP H ; CHATER CHECK
POP HL
JR NZ,KSL2
PUSH HL
POP AF I IN KEY DATA
CALL ?LOAD ; FLSHLNB DATA LOAD
POP HL
RET

#CLROB: ENT
XOR A

#CLR8: ENT
LD BC,0800H

CLEAR: ENT
PUSH DE
LD D, A

CLEAR1: ENT
LD (H L) , D
INC HL
DEC BC
LD A , B
OR C
JR NZ,CLEAR1
POP DE
RET

; CY FLS .

BC = CLR BYTE SIZE
A = CLR DATA

ENT
PUSH AF
PUSH HL
LD A,(KEYPC>
RLCA
RLCA
JR C ,FLAS1
LD A , (F L S D T)
ENT
CALL ?F'ONT 5 DISPLAY POSITION
LD (H L) , A
ENT
POP HL
POP AF
RET

DEFS +9

SORB 09FF 5 7FLAS

7FLAS: ENT
JR

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 37 04.07.S3

0 1 0 AO 1
0 2 0 A 0 1
0 3 0 A 0 1
0 4 0 A 0 1 SHORT AND LONS PULSE FOR 1 B I T WRITE
OS 0 A 0 1
0 6 0 A 0 1 SHORT: ENT
0 7 0 AO 1 F 5 PUSH AF ; 12
0 8 0 A 0 2 3 E 0 3 LD A , 0 3 H 5 9
0 9 0 A 0 4 3 2 0 3 E O LD (C S T P T) , A ; $ E 0 0 3 F 'C3=1
1 0 0 A 0 7 C D 5 9 0 7 CALL D L Y 1 •5 2 0 + 1 8 * 2 1 + 2 0
11 OAOA C D 5 9 0 7 CALL D L Y 1 ; 2 0 + 1 8 * 2 1 + 2 0
12 OAOD 3 E 0 2 LD A , 0 2 H ; 9
13 OAOF 3 2 0 3 E 0 LD (C S T P T) , A 5 9SE003 P C 3 = 0
14 OA 1 2 C D 5 9 0 7 CALL D L Y 1 ! 2 0 + 1 8 * 2 1 + 2 0
15 OA 1 5 C D 5 9 0 7 CALL DLY1 5 2 0 + 1 8 * 2 1 + 2 0
16 OA 18 F 1 POP AF ; 11
1 7 OA 19 C9 RET ; 1 1
18 0 A 1 A
1 9 0 A 1 A
2 0 0 A 1 A LONG: ENT
2 1 0 A 1 A F 5 PUSH AF 5 11
2 2 OA I B 3 E 0 3 LD A , 0 3 H ; 9
2 3 OA I D 3 2 0 3 E 0 LD (C S T P T) , A ; 16
2 4 0 A 2 0 C D A 9 0 9 CALL DLY4 5 2 0 + 1 8 * 8 9 + 2 0
2 5 0 A 2 3 3 E 0 2 LD A , 0 2 H ; 9
2 6 0 A 2 5 3 2 0 3 E Q LD (C S T P T) , A ; 16
2 7 0 A 2 S C D A 9 0 9 CALL DLY4 5 2 0 + 1 8 * 8 9 + 2 0
2 8 0 A 2 B F 1 POP AF ! 11
2 9 0 A 2 C C9 RET ! 11
3 0 0 A 2 D
3 1 0 A 2 D
3 2 0 A 2 D DEFS + 5
3 3 0 A 3 2
3 4 0 A 3 2
3 5 0 A 3 2 ORG 0 A 3 2 H
3 6 0 A 3 2
3 7 0 A 3 2 BREAK KEY CHECK
3 8 0 A 3 2 AND S H I F T , C T N L KEY CHECK
3 9 0 A 3 2
4 0 0 A 3 2 E X I T BREAK" ON Z E R 0 = 1
4 1 0 A 3 2 OFF Z E R 0 = 0
4 2 0 A 3 2 NO KEY CY = 0 9
4 3 0 A 3 2 KEY I N CY = 1
4 4 0 A 3 2 A D 6 = l S H I F T ON
4 5 0 A 3 2 = 0 OFF
4 6 OA 3 2 D 5 = l CTRL ON
4 7 0 A 3 2 = 0 OFF
4 8 0 A 3 2 D 4 = l SFT+CNT ON
4 9 0 A 3 2 = 0 OFF
5 0 0 A 3 2
5 1 0 A 3 2 7BRK: ENT
5 2 0 A 3 2 3 E F 8 LD A , F8H ; L I N E 8SWEEP
5 3 0 A 3 4 3 2 0 0 E 0 LD (K E Y P A) , A
5 4 0 A 3 7 0 0 NOP
5 5 0 A 3 8 3 A 0 1 E 0 LD A , (K E Y P B)
5 6 0 A 3 B B7 OR A
5 7 0A3C I F RRA
5 8 0 A 3 D D A S 0 0 9 J P C , ? B R K 2 ; S H I F T 7
5 9 0 A 4 0 17 RLA
6 0 0 A 4 1 17 RLA

00 00

** Z80 ASSEMBLER SB-7201 <1Z—013A> PAGE 3S 04.07.S3

0 1 0 A 4 2 3 0 0 4
0 2 0 A 4 4 3 E 4 0
0 3 0 A 4 6 3 7
0 4 0 A 4 7 C9
0 5 0 A 4 S
0 6 0 A 4 S
0 7 0 A 4 8 AF
0 8 0 A 4 9 C9
0 9 0 A 4 A
10 0 A 4 A
1 1 0 A 4 A
1 2 0 A 4 A
13 0 A 4 A
14 0 A 4 A 3 E 3 F
15 0A4C C 3 6 2 0 7
16 0 A 4 F
17 0 A 4 F
18 0 A 4 F
19 0 A 5 0
2 0 0 A 5 0
2 1 0 A 5 0
2 2 0 A 5 0
2 3 0 A 5 0
2 4 0 A 5 0
2 5 0 A 5 0
2 6 0 A 5 0
2 7 QA50
2 8 0 A 5 0
2 9 0 A 5 0
3 0 0 A 5 0
3 1 0 A 5 0
3 2 0 A 5 0
3 3 0 A 5 0
3 4 0 A 5 0
3 5 0 A 5 0
3 6 0 A 5 0
3 7 0 A 5 0
3 8 0A5Q
3 9 0 A 5 0
4 0 0 A 5 0 D5
4 1 0 A 5 1 E5
4 2 0 A 5 2 AF
4 3 0 A 5 3 0 6 F 8
4 4 0 A 5 5 5 7
4 5 0 A 5 6 C D 3 2 0 A
4 6 0 A 5 9 2 0 0 4
4 7 0 A 5 B 1 6 8 8
4B 0 A 5 D 1 8 1 4
4 9 0 A 5 F
5 0 0 A 5 F 3 0 0 5
5 1 0 A 6 1 5 7
5 2 0 A 6 2 1 8 0 2
5 3 0 A 6 4
5 4 0 A 6 4 CBFA
5 5 0 A 6 6
5 6 0 A 6 6 0 5
5 7 0 A 6 7 7 8
5 8 0 A 6 8 3 2 0 0 E 0
5 9 0 A 6 B FEEF
6 0 0 A 6 D 2 0 0 8

JR N C , ? B R K 1 ; BREAK 7
LD A , 4 0 H i S H I F T D 6 = l
SCF
RET

7 B R K 1 : XOR
RET

3 2 0 U SEC DELAY

D L Y 3 : ENT
LD A , 3 F H ; 1 8 * 6 3 + 3 3
J P 0 7 6 2 H ! J P D L Y 2 + 2

ORG 0 A 5 0 H ! 7SWEP

KEY BQAD SWEEP

E X I T B , D 7 = 0
= 1

D 6 = 0
= 1

D 5 = 0
= 1

D4—0
= 1

C

NO DATA
DATA
S H I F T OFF
S H I F T ON
CTRL OFF
CTRL ON
S H I F T + C T R L OFF
S H I F T + C T R L ON

= ROW i t COLOUMN
7 6 5 4 3 2 1 0
* * t t t f < - f

7SWEPS ENT
PUSH DE
PUSH HL
XOR A
LD B , F S H
LD D , A
CALL 7BRK
JR NZ ,SWEP6
LD D , S 8 H
JR SWEP9

SWEP6: ENT
JR NC,SWEPO
LD D , A
JR SWEPO

S W E P O l : ENT
SET 7 , D

SWEPO! ENT
DEC B
LD A , B
LD < K E Y P A) , A
CP EFH
JR N Z , S W E P 3

5 BREAK ON

MAP SWEEP END

* * Z 8 0 ASSEMBLER S B - 7 2 0 1 < 1 Z - 0 1 3 A > PASE 3 9 0 4 . 0 7 . 8 3

0 1 0 A 6 F F E F 8 CP FBH BREAK KEY ROW
0 2 0 A 7 1 2 8 F 3 JR Z,SWEPO
0 3 0 A 7 3 SWEP9: ENT
0 4 0 A 7 3 4 2 LD B , D
0 5 0 A 7 4 E l POP HL
0 6 0 A 7 5 D I POP DE
0 7 0 A 7 6 C9 RET
0 8 0 A 7 7 ;
0 9 0 A 7 7 SWEP3: ENT
10 0 A 7 7 3 A 0 1 E 0 LD A , (K E Y P B)
11 0A7A 2 F CPL
12 0A7B B 7 OR A
13 0A7C 2 B E 8 JR Z,SWEPO
14 0A7E 5 F LD E , A
15 0 A 7 F SWEP2: ENT
16 0 A 7 F 2 6 0 8 LD H , B
17 0AB1 7 8 LD A , B •
18 0AS2 E 6 0 F AND OFH
19 0 A 8 4 0 7 RLCA
2 0 0 A 8 5 0 7 RLCA
2 1 0 A 8 6 0 7 RLCA
2 2 0 A 8 7 4 F LD C , A
2 3 0 A 8 8 7 B LD A , E
2 4 0 A 8 9 2 5 DEC H
2 5 0A8A OF RRCA
2 6 0A8B 3 0 F C JR N C , - 2
2 7 0A8D 7C LD A , H
2 8 0 A 8 E 8 1 ADD A , C
2 9 OABF 4 F LD C , A
3 0 0 A 9 0 1BD2 JR SWEP01
3 1 0 A 9 2 ;
3 2 0 A 9 2 ;
3 3 0 A 9 2 5 A S C I I TO D I S P L A Y CODE TABL J
3 4 0 A 9 2 ;
3 5 0 A 9 2 A T B L :
3 6 0 A 9 2 S 0 0 - OF ;
3 7 0 A 9 2 FO DEFB FOH
3 8 0 A 9 3 FO DEFB FOH t A
3 9 0 A 9 4 FO DEFB FOH t B
4 0 0 A 9 5 F 3 DEFB F3H t c
4 1 0 A 9 6 FO DEFB FOH t D
4 2 0 A 9 7 F 5 DEFB F5H t E
4 3 0A9B FO DEFB FOH t F
4 4 0 A 9 9 FO DEFB FOH t G
4 5 0A9A FO DEFB FOH t H
4 6 0A9B FO DEFB FOH t i
4 7 0A9C FO DEFB FOH t J
4 8 0A9D FO DEFB FOH t K
4 9 0A9E FO DEFB FOH t L
5 0 0A9F FO DEFB FOH t M
5 1 OAAO FO DEFB FOH t N
5 2 0AA1 FO DEFB FOH t o
5 3 0AA2 i 1 0 - I F
5 4 0AA2 FO DEFB FOH t P
5 5 0AA3 C I DEFB C1H t o CUR. DOWN
5 6 0AA4 C2 DEFB C2H t R CUR. UP
5 7 0AA5 C 3 DEFB C3H t s CUR. R IGHT
5 8 0AA6 C4 DEFB C4H t T CUR. LEFT
5 9 0AA7 C5 DEFB C5H t i l HOME
6 0 OAAB C6 DEFB C6H t v CLEAR

* * ZSO ASSEMBLER S B - 7 2 0 1 <1Z—013A> PASE 4 0

0 1 0 A A 9 FO DEFB FOH t
0 2 OAAA FO DEFB FOH t
0 3 OAAB FO DEFB FOH t
0 4 OAAC FO DEFB FOH t
0 5 OAAD FO DEFB FOH t
0 6 OAAE FO DEFB FOH +
0 7 OAAF FO DEFB FOH t
0 8 OABO FO DEFB FOH t
0 9 0 A B 1 FO DEFB FOH t
10 0 A B 2 5 2 0 - 2 F 5
1 1 0 A B 2 0 0 DEFB OOH S
12 0 A B 3 6 1 DEFB 6 1 H ;
13 0 A B 4 6 2 DEFB 6 2 H
14 0 A B 5 6 3 DEFB 6 3 H #
1 5 0 A B 6 6 4 DEFB 6 4 H *
16 0 A B 7 6 5 DEFB 6 5 H 7.
17 0 A B 8 6 6 DEFB 6 6 H &
1 8 0 A B 9 6 7 DEFB 6 7 H
19 OABA 6 8 DEFB 6BH (
2 0 OABB 6 9 DEFB 6 9 H)
2 1 OABC 6B DEFB 6BH *
2 2 OABD 6A DEFB 6AH +
2 3 OABE 2F DEFB 2FH »
2 4 OABF 2A DEFB 2AH -

2 5 OACO 2E DEFB 2EH
2 6 0 A C 1 2D DEFB 2DH
2 7 0 A C 2 i 3 0 —3F i
2 a 0 A C 2 2 0 DEFB 2 0 H 0
2 9 0AC3 2 1 DEFB 2 1 H 1
3 0 0AC4 2 2 DEFB 2 2 H 2
3 1 0AC5 2 3 DEFB 2 3 H 3
3 2 0AC6 2 4 DEFB 2 4 H 4
3 3 0AC7 2 5 DEFB 2 5 H 5
3 4 0AC8 2 6 DEFB 2 6 H h
3 5 0AC9 2 7 DEFB 2 7 H 7
3 6 OACA 2 8 DEFB 2 8 H 8
3 7 OACB 2 9 DEFB 2 9 H 9
3 8 OACC 4 F DEFB 4FH
3 9 OACD 2C DEFB 2CH !
4 0 OACE 5 1 DEFB 5 1 H <
4 1 OACF 2B DEFB 2BH =

4 2 OADO 5 7 DEFB 5 7 H >
4 3 0AD1 4 9 DEFB 4 9 H ?
4 4 0AD2 ; 4 0 - 4 F i
4 5 0 A D 2 5 5 DEFB 5 5 H 3
4 6 0AD3 0 1 DEFB 0 1 H A
4 7 0AD4 0 2 DEFB 0 2 H B
4 8 0AD5 0 3 DEFB 0 3 H C
4 9 0AD6 0 4 DEFB 0 4 H D
5 0 0AD7 0 5 DEFB 0 5 H E
5 1 0AD8 0 6 DEFB 0 6 H F
5 2 0AD9 0 7 DEFB 0 7 H G
5 3 OADA 0 8 DEFB 0 8 H H
5 4 OADB 0 9 DEFB 0 9 H I
5 5 OADC OA DEFB OAH J
5 6 OADD OB DEFB OBH K
5 7 OADE OC DEFB OCH L
5 8 OADF OD DEFB ODH M
5 9 OAEO OE DEFB OEH U
6 0 0 A E 1 OF DEFB OFH 0

* * Z 8 0 ASSEMBLER S B - 7 2 0 1 < 1 Z - 0 1 3 A > PASE 4 1 0 4

0 1 0 A E 2 ; 5 0 - 5 F i
0 2 0 A E 2 1 0 DEFB 10H P
0 3 0 A E 3 11 DEFB 11H Q
0 4 0 A E 4 1 2 DEFB 12H R
0 5 0 A E 5 13 DEFB 13H S
0 6 0 A E 6 14 DEFB 14H T
07 0 A E 7 1 5 DEFB 15H U
0 8 OAES 16 DEFB 16H V
0 9 0 A E 9 1 7 DEFB 17H W
10 OAEA 18 DEFB 18H X
11 OAEB 19 DEFB 19H Y
1 2 OAEC 1A DEFB 1 AH Z
1 3 OAED 5 2 DEFB 5 2 H c
14 OAEE 5 9 DEFB 5 9 H \
1 5 OAEF 5 4 DEFB 5 4 H 3
l ib OAFO 5 0 DEFB 5 0 H
1 7 OAF 1 4 5 DEFB 4 5 H
i a 0 A F 2 ! 6 0 - 6 F i
19 0 A F 2 C7 DEFB C7H UFO
2 0 0 A F 3 C8 DEFB C8H
2 1 0 A F 4 C9 DEFB C9H
2 2 OAFS CA DEFB CAH
2 3 0 A F 6 CB DEFB CBH
2 4 0 A F 7 CC DEFB CCH
2 5 OAFS CD DEFB CDH
2 6 0 A F 9 CE DEFB CEH
2 7 OAFA CF DEFB CFH
2 8 OAFB DF DEFB DFH
2 9 OAFC E 7 DEFB E7H
3 0 OAFD E8 DEFB E8H
3 1 OAFE E 5 DEFB E5H
3 2 OAFF E9 DEFB E9H
3 3 OBOO EC DEFB ECH
3 4 0 B 0 1 ED DEFB EDH
3 5 OB02 i 7 0 - 7 F ;
3 6 0 B 0 2 DO DEFB DOH
3 7 0 B 0 3 D I DEFB D1H
3 8 0 B 0 4 D2 DEFB D2H
3 9 0 B 0 5 D3 DEFB D3H
4 0 0 B 0 6 D4 DEFB D4H
4 1 0 B 0 7 D5 DEFB D5H
4 2 0 6 0 8 D6 DEFB D6H
4 3 0 B 0 9 D7 DEFB D7H
4 4 OBOA D8 DEFB D8H
4 5 OBOB D9 DEFB D9H
4 6 OBOC DA DEFB DAH
4 7 OBOD DB DEFB DBH
4 8 OBOE DC DEFB DCH
4 9 OB OF DD DEFB DDH
5 0 OB 10 DE DEFB DEH
5 1 O B I 1 CO DEFB COH
5 2 OB 12 ; BO - SF i
5 3 OB 12 8 0 DEFB 8 0 H J
5 4 OB 13 BD DEFB BDH
5 5 OB 14 9D DEFB 9DH
5 6 OB 15 B1 DEFB B1H
5 7 OB 16 B 5 DEFB B5H
5 8 OB 17 B9 DEFB B9H
5 9 OB I B B4 DEFB B4H
6 0 OB 19 9 E DEFB 9EH

CO
en

** ZBO ASSEMBLER SB-7201 <1Z-013A> PAGE

0 1 O B I A B2 DEFB B2H
0 2 OB I B B6 DEFB B6H
0 3 OB 1C BA DEFB BAH
0 4 OB I D BE DEFB BEH
0 5 OB I E 9 F DEFB 9FH
0 6 OB I F B3 DEFB B3H
0 7 0 B 2 0 B7 DEFB B7H
OS 0 B 2 1 BB DEFB BBH
0 9 0 B 2 2 ; 9 0 - 9 F ;
1 0 0 B 2 2 BF DEFB BFH
1 1 0 B 2 3 A 3 DEFB A3H
12 0 B 2 4 8 5 DEFB a 5 H
1 3 0 B 2 5 A4 DEFB A4H
14 0 B 2 6 AS DEFB A5H
15 0 B 2 7 A6 DEFB A6H
16 0 B 2 S 9 4 DEFB 9 4 H
17 0 B 2 9 8 7 DEFB B7H
I S 0 B 2 A 8 8 DEFB BBH
1 9 0 B 2 B 9C DEFB 9CH
2 0 0B2C 8 2 DEFB 8 2 H
2 1 0 B 2 D 9 8 DEFB 9 8 H
2 2 0 B 2 E 8 4 DEFB B4H
2 3 0 B 2 F 9 2 DEFB 9 2 H
2 4 0 B 3 0 9 0 DEFB 9 0 H
2 5 0 B 3 1 S3 DEFB 8 3 H
2 6 0 B 3 2 S AO - AF S
2 7 0 B 3 2 9 1 DEFB 9 1 H
2 0 0 B 3 3 8 1 DEFB 8 1 H
2 9 0 B 3 4 9A DEFB 9AH
3 0 0 B 3 5 9 7 DEFB 9 7 H
3 1 0 B 3 6 9 3 DEFB 9 3 H
3 2 0 B 3 7 9 5 DEFB 9 5 H
3 3 0 B 3 8 8 9 DEFB B9H
3 4 0 B 3 9 A I DEFB A1H
3 5 0B3A AF DEFB AFH
3 6 0 B 3 B 8B DEFB BBH
3 7 0B3C 8 6 DEFB 8 6 H
3 8 0B3D 9 6 DEFB 9 6 H
3 9 0 B 3 E A 2 DEFB A2H
4 0 0 B 3 F AB DEFB ABH
4 1 0 B 4 0 AA DEFB AAH
4 2 0 B 4 1 SA DEFB 8AH
4 3 0 B 4 2 ; BO - BF i
4 4 0 B 4 2 8 E DEFB 8EH
4 5 0 B 4 3 BO DEFB BOH
4 6 0 B 4 4 AD DEFB ADH
4 7 0 B 4 5 8D DEFB BDH
4 8 0 B 4 6 A7 DEFB A7H
4 9 0 B 4 7 A8 DEFB ABH
5 0 0 B 4 8 A9 DEFB A9H
5 1 0 B 4 9 8F DEFB BFH
5 2 0B4A 8C DEFB 8CH
5 3 0 B 4 B AE DEFB AEH
5 4 0B4C AC DEFB ACH
5 5 0 B 4 D 9B DEFB 9BH
5 6 0 B 4 E AO DEFB AOH
5 7 0 B 4 F 9 9 DEFB 9 9 H
5 8 0 B 5 0 BC DEFB BCH
5 9 0 B 5 1 BB DEFB BBH
6 0 OB 5 2 ; CO - CF !

00 0>

* * Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 43 04.07.S3

0 1 0 B 5 2 4 0 DEFB 4 0 H
0 2 0 B 5 3 3B DEFB 3BH
0 3 0 B 5 4 3A DEFB 3AH
0 4 0 B 5 5 7 0 DEFB 7 0 H
0 5 0 B 5 6 3C DEFB 3CH
0 6 0 B 5 7 7 1 DEFB 7 1 H
0 7 0 B 5 8 5A DEFB 5AH
0 8 0 B 5 9 3D DEFB SDH
0 9 0B5A 4 3 DEFB 4 3 H
10 0 B 5 B 5 6 DEFB 5 6 H
11 0B5C 3 F DEFB 3FH
12 0 B 5 D I E DEFB 1EH
13 0 B 5 E 4A DEFB 4AH
14 0 B 5 F 1C DEFB 1CH
15 0 B 6 0 5D DEFB SDH
16 OB 6 1 3 E DEFB 3EH
17 0 B 6 2 5 DO - DF ;
18 0 B 6 2 5C DEFB 5CH
19 0 B 6 3 I F DEFB 1FH
2 0 0 B 6 4 5 F DEFB 5FH
2 1 0 B 6 5 5 E DEFB 5EH
2 2 0 B 6 6 3 7 DEFB 3 7 H
2 3 0 B 6 7 7B DEFB 7BH
2 4 0 B 6 8 7 F DEFB 7 F H
2 5 0 B 6 9 3 6 DEFB 3 6 H
2 6 0 B 6 A 7A DEFB 7AH
2 7 0 B 6 B 7E DEFB 7EH
2 8 0B6C 3 3 DEFB 3 3 H
2 9 0 B 6 D 4 B DEFB 4BH
3 0 0 B 6 E 4C DEFB 4CH
3 1 0 B 6 F I D DEFB 1DH
3 2 0 B 7 0 6C DEFB 6CH
3 3 0 B 7 1 SB DEFB 5BH
3 4 0 B 7 2 5 EO - EF ;
3 5 0 B 7 2 7 8 DEFB 7 8 H
3 6 0 B 7 3 4 1 DEFB 4 1 H
3 7 0 B 7 4 3 5 DEFB 3 5 H
3 8 0 B 7 5 3 4 DEFB 3 4 H
3 9 0 B 7 6 7 4 DEFB 7 4 H
4 0 0 B 7 7 3 0 DEFB 3 0 H
4 1 0 B 7 8 3 8 DEFB 3 8 H
4 2 0 B 7 9 7 5 DEFB 7 5 H
4 3 0B7A 3 9 DEFB 3 9 H
4 4 0 B 7 B 4 D DEFB 4DH
4 5 0B7C 6 F DEFB 6 F H
4 6 0 B 7 D 6E DEFB 6EH
4 7 0 B 7 E 3 2 DEFB 3 2 H
4 8 0 B 7 F 7 7 DEFB 7 7 H
4 9 0 B 8 0 7 6 DEFB 7 6 H
5 0 0 B 8 1 7 2 DEFB 7 2 H
5 1 0 B 8 2 ! FO - FF ;
5 2 0 B 8 2 7 3 DEFB 7 3 H
5 3 0 B 8 3 4 7 DEFB 4 7 H
5 4 0 B S 4 7C DEFB 7CH
5 5 OB 8 5 5 3 DEFB 5 3 H
5 6 0 B 8 6 3 1 DEFB 3 1 H
5 7 0 B B 7 4E DEFB 4EH
5 8 0 B 8 a 6D DEFB 6DH
5 9 0 B B 9 4 8 DEFB 4 8 H
6 0 0B8A 4 6 DEFB 4 6 H

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 44 04.07.S3

0 1 0 B 8 B 7D DEFB 7DH
0 2 0B8C 4 4 DEFB 4 4 H
0 3 OBBD I B DEFB 1BH
0 4 0B8E 5 8 DEFB 5SH
0 5 OBBF 7 9 DEFB 7 9 H
0 6 OB 9 0 4 2 DEFB 4 2 H
0 7 0 B 9 1 6 0 DEFB 6 0 H
OS 0 B 9 2 5
0 9 0 B 9 2 ;
10 0 B 9 2 5 F L A S H I N G DATA SAVE
11 0 B 9 2 ;
12 0 B 9 2 7SAVE : ENT
13 0 B 9 2 2 1 9 2 1 1 LD H L , F L S D T
14 0 B 9 5 3 6 E F LD (H L) , E F H
15 0 B 9 7 3 A 7 0 1 1 LD A , (K A N A F)
16 0B9A OF RRCA
17 0B9B 3 8 0 3 JR C , SVO—2
18 0B9D OF RRCA
19 0B9E 3 0 0 2 JR NC,SVO
2 0 ' OB AO 3 6 F F LD (H L) , F F H
2 1 0BA2 SVO: ENT
2 2 0BA2 7 E LD A , (H L)
2 3 0 B A 3 F 5 PUSH AF
2 4 0BA4 CDB10F CALL ?PONT
2 5 0BA7 7E LD A , (H L)
2 6 0 B A 8 3 2 8 E 1 1 LD (F L A S H) , A
2 7 OBAB F 1 POP AF
2 8 OBAC 7 7 LD (H L) , A
2 9 OBAD AF XOR A
3 0 OBAE 2 1 0 0 E 0 LD H L , KEYPA
3 1 0 B B 1 7 7 LD (H L) , A
3 2 0BB2 2 F CPL
3 3 0 B B 3 7 7 LD (H L) , A
3 4 0BB4 C9 RET
3 5 0BB5 S V l : ENT
3 6 0BB5 3 6 4 3 LD (H L) , 4 3 H
3 7 0BB7 1 8 E 9 JR SVO
3 8 0BB9
3 9 0BB9 SORG 0BB9HS7ADCN
4 0 0BB9
4 1 0 B B 9
4 2 0BB9 5 A S C I I TO D I S P L A Y CODE
4 3 0BB9
4 4 0BB9 I N A C C : A S C I I
4 5 0BB9 E X I T A C C : D I S P L A Y
4 6 0.BB9
4 7 0BB9 7ADCN ENT
4 8 0BB9 C5 PUSH BC
4 9 OBBA E 5 PUSH HL
5 0 OBBB 2 1 9 2 0 A LD H L , A T B L
5 1 OBBE 4 F LD C , A
5 2 OBBF 0 6 0 0 LD B , 0
5 3 0BC1 0 9 ADD H L , BC
5 4 0BC2 7 E LD A , (H L)
5 5 0BC3 1 8 1 B JR DACN3
5 6 0BC5 ;
5 7 0BC5 5 6 3 1 2 E 3 0 VRNS: DEFM " V I . OA"
5 8 0BC9 4 1
5 9 OBCA OD DEFB ODH
6 0 OBCB DEFS + 3

5 NOMAL CURSOR

5 GRAPH MODE

! NORMAL MODE
; GRAPH CURSOR

i F L A S I N G P O S I T I O N

KANA CURSOR

VERSION MANAGEMENT

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 45 04.07.S3

01 OBCE
02 OBCE
03 OBCE ORB OBCEH;?DACN
04 OBCE
05 OBCE DISPLAY CODE TO A S C I I CONV. ;
06 OBCE
07 OBCE IN ACC = DISPLAY CODE
OB OBCE EXIT ACC = ASCI I
09 OBCE
10 OBCE 7DACN ENT
11 OBCE C5 PUSH BC
12 OBCF E5 PUSH HL
13 OB DO D5 PUSH DE
14 0BD1 21920A LD HL,ATBL
15 0BD4 54 LD D ,H
16 0BD5 5D LD E , L
17 0BD6 010001 LD BC,0100H
IB 0BD9 EDB1 CPIR
19 OBDB 2S06 JR Z,DACN1
20 OBDD 3EF0 LD A, FOH
21 OBDF DACN2 ENT
22 OBDP D1 POP DE
23 OBEO DACN3 ENT
24 OBEO EL POP HL
25 0BE1 CI POP BC
26 0BE2 C9 RET
27 0BE3
28 0BE3 DACN1 ENT
29 0BE3 B7 OR A
30 0BE4 2B DEC HL
31 0BE5 ED52 SBC HL, DE
32 0BE7 7D LD A, L
33 0BE8 18F5 JR DACN2
34 OBEA
35 OBEA
36 OBEA
37 OBEA KEY MATRIX TO DISPLAY CODE TABL
38 OBEA
39 OBEA KTBL: ENT
40 OBEA SO 00 - 07 >
41 OBEA BF DEFB BFH SPARE
42 OBEB CA DEFB CAH BRAPH
43 OBEC 58 DEFB 58H *
44 OBED C9 DEFB C9H ALPHA
45 OBEE FO DEFB FOH NO
46 OBEF 2C DEFB 2CH ;
47 OBFO 4F DEFB 4FH
4B 0BF1 CD DEFB CDH CR
49 0BF2 S I 08 - OF ;
50 0BF2 19 DEFB 19H Y
51 0BF3 1A DEFB 1 AH Z
52 0BF4 55 DEFB 55H
53 0BF5 52 DEFB 52H E
54 0BF6 54 DEFB 54H 1
55 0BF7 FO DEFB FOH NULL
56 OBFB FO DEFB FOH NULL
57 0BF9 FO DEFB FOH NULL
58 OBFA S2 0 - 1 7
59 OBFA 11 DEFB 11H Q
60 OBFB 12 DEFB 12H R

** Z80 ASSEMBLER SB-7201 <1Z-013A> RASE 46 04.07.S3

0 1 OBFC 1 3 DEFB 13H S
0 2 OBFD 14 DEFB 14H T
0 3 OBFE 15 DEFB 15H U
0 4 OBFF 16 DEFB 16H V
0 5 OCOO 1 7 DEFB 17H W
0 6 0 C 0 1 18 DEFB 18H X
0 7 0 C 0 2 ! S 3 18 - I F J
0 8 0 C 0 2 0 9 DEFB 0 9 H I
0 9 0 C 0 3 OA DEFB OAH J
1 0 0 C 0 4 OB DEFB OBH K
1 1 0 C 0 5 OC DEFB OCH L
1 2 0 C 0 6 OD DEFB ODH M
1 3 0 C 0 7 OE DEFB OEH N
14 0 C 0 8 OF DEFB OFH 0
1 5 0 C 0 9 1 0 DEFB 10H P
16 OCOA SS4 2 0 - 2 7
1 7 OCOA 0 1 DEFB 0 1 H A
18 OCOB 0 2 DEFB 0 2 H B
1 9 OCOC 0 3 DEFB 0 3 H C
2 0 OCOD 0 4 DEFB 0 4 H D
2 1 OCOE 0 5 DEFB 0 5 H E
2 2 OCOF 0 6 DEFB 0 6 H F
2 3 0 C 1 0 0 7 DEFB 0 7 H G
2 4 0 C 1 1 0 8 DEFB 0 8 H H
2 5 0 C 1 2 ! S 5 2 8 - 2 F
2 6 0 C 1 2 2 1 DEFB 2 1 H 1
2 7 0 C 1 3 2 2 DEFB 2 2 H 2
2 8 0 C 1 4 2 3 DEFB 2 3 H 3
2 9 0 C 1 5 2 4 DEFB 2 4 H 4
3 0 0 C 1 6 2 5 DEFB 2 5 H 5
3 1 0 C 1 7 2 6 DEFB 2 6 H 6
3 2 0 C 1 8 2 7 DEFB 2 7 H 7
3 3 0 C 1 9 2 8 DEFB 2SH 8
3 4 0C1A ! S 6 3 0 - 3 7
3 5 0C1A 5 9 DEFB 5 9 H \

3 6 0 C 1 B 5 0 DEFB 5 0 H t
3 7 0C1C 2A DEFB 2AH -

3 8 0C1D 0 0 DEFB OOH SPACE
3 9 0 C 1 E 2 0 DEFB 2 0 H 0
4 0 0 C 1 F 2 9 DEFB 2 9 H 9
4 1 0 C 2 0 2 F DEFB 2 F H »
4 2 0 C 2 1 2 E DEFB 2EH
4 3 0 C 2 2 5S7 3 8 - 3 F
4 4 0 C 2 2 C8 DEFB C8H I N S T .
4 5 0 C 2 3 C7 DEFB C7H D E L .
4 6 0 C 2 4 C2 DEFB C2H CURSOR
4 7 0 C 2 5 C I DEFB C1H CURSOR
4 8 0 C 2 6 C3 DEFB C3H CURSOR
4 9 0 C 2 7 C4 DEFB C4H CURSOR
5 0 0 C 2 8 4 9 DEFB 4 9 H 7
5 1 0 C 2 9 2D DEFB 2DH /
5 2 0C2A 5
5 3 0C2A ! K T B L S H I F T ON
5 4 0C2A 5
5 5 0C2A K T B L S : ENT
5 6 0C2A 5 SO 0 0 - 0 7
5 7 0C2A BF DEFB BFH SPARE
5 8 0 C 2 B CA DEFB CAH GRAPH
5 9 0C2C I B DEFB 1BH POND
6 0 0C2D C9 DEFB C9H ALPHA

* Z 8 0 ASSEMBLER S B - 7 2 0 1 <1Z—013A> PAGE 4 7 0 4 . 0 7 . 8 3

0 1 0 C 2 E FO DEFB FOH ; NO
0 2 0 C 2 F 6A DEFB 6AH ; +
0 3 0 C 3 0 6 B DEFB 6BH 9 *
0 4 0 C 3 1 CD DEFB CDH i CR
0 5 0 C 3 2 ; s i OB-OF
0 6 0 C 3 2 9 9 DEFB 9 9 H s y
0 7 0 C 3 3 9A DEFB 9AH ; z
0 8 0 C 3 4 A4 DEFB A4H ; x

0 9 0 C 3 5 BC DEFB BCH ; t
10 0 C 3 6 4 0 DEFB 4 0 H S }
1 1 0 C 3 7 FO DEFB FOH ; NULL
12 0 C 3 8 FO DEFB FOH ; NULL
13 0 C 3 9 FO DEFB FOH ; NULL
14 0C3A ; S 2 1 0 - 1 7
1 5 0C3A 9 1 DEFB 9 1 H j q
16 0 C 3 B 9 2 DEFB 9 2 H 5 r
17 0C3C 9 3 DEFB 9 3 H ; s
I S 0C3D 9 4 DEFB 9 4 H ; t
1 9 0 C 3 E 9 5 DEFB 9 5 H ; u
2 0 0 C 3 F 9 6 DEFB 9 6 H j v
2 1 0 C 4 0 9 7 DEFB 9 7 H ; w
2 2 0 C 4 1 9 8 DEFB 9BH ; x
2 3 0 C 4 2 5 S3 I B — I F
2 4 0 C 4 2 8 9 DEFB 8 9 H ; i
2 5 0 C 4 3 8A DEFB 8AH 5 -j
2 6 0 C 4 4 8B DEFB 8BH i k
2 7 0 C 4 5 8C DEFB 8CH 5 1
2 8 0 C 4 6 8D DEFB SDH ; m
2 9 0 C 4 7 8 E DEFB 8EH ' n

3 0 0 C 4 8 8 F DEFB 8 F H j •
3 1 0 C 4 9 9 0 DEFB 9 0 H j p
3 2 0C4A SS4 2 0 - 2 7
3 3 0C4A 8 1 DEFB 8 1 H i a
3 4 0 C 4 B 8 2 DEFB 8 2 H ; b
3 5 0C4C 8 3 DEFB 8 3 H ; c
3 6 0C4D 8 4 DEFB B4H ; d
3 7 0 C 4 E 8 5 DEFB B5H ; e
3 8 0 C 4 F 8 6 DEFB B6H ; -f
3 9 0 C 5 0 8 7 DEFB 8 7 H j g
4 0 0 C 5 1 a s DEFB 8 8 H 5 h
4 1 0 C 5 2 ; S5 2 8 - 2 F
4 2 0 C 5 2 6 1 DEFB 6 1 H j ;
4 3 0 C 5 3 6 2 DEFB 6 2 H 5 "
4 4 0 C 5 4 6 3 DEFB 6 3 H ; #
4 5 0 C 5 5 6 4 DEFB 6 4 H ; *
4 6 0 C 5 6 6 5 DEFB 6 5 H ; •/.
4 7 0 C 5 7 6 6 DEFB 6 6 H ; &
4 8 0 C 5 S 6 7 DEFB 6 7 H ; '
4 9 0 C 5 9 6 8 DEFB 6 8 H ; (
5 0 0C5A ; S 6 3 0 - 3 7
5 1 0C5A 8 0 DEFB BOH ; \
5 2 0 C 5 B A 5 DEFB ASH ! POND MARK
5 3 0C5C 2 B DEFB 2BH ; YEN
5 4 0C5D 0 0 DEFB OOH i SPACE
5 5 CIC5E 6 0 DEFB 6 0 H 5 'IT'
5 6 0 C 5 F 6 9 DEFB 6 9 H ;)
5 7 0 C 6 0 5 1 DEFB 5 1 H s <
5 8 0 C 6 1 5 7 DEFB 5 7 H ; >
5 9 0 C 6 2 ; S 7 3 8 - 3 F
6 0 0 C 6 2 C6 DEFB C6H ; CLR

* * Z 8 0 ASSEMBLER S B - 7 2 0 1 < 1 Z — 0 1 3 A > PAGE 4 8 0 4 . 0 7 . S 3

0 1 0 C 6 3 C 5 DEFB C5H ; HOME
0 2 0 C 6 4 C2 DEFB C 2 H i CURSOR UP
0 3 0 C 6 5 C I DEFB C 1 H ; CURSOR DOWN
0 4 0 C 6 6 C3 DEFB C 3 H i CURSOR R I G H T
0 5 0 C 6 7 C4 DEFB C 4 H ; CURSOR L E F T
0 6 0 C 6 8 5 A DEFB 5 A H ;
0 7 0 C 6 9 4 5 DEFB 4 S H ; ^
OS 0 C 6 A 5
0 9 0 C 6 A 5 BRAF 'HIC
1 0 0 C 6 A 5
11 0 C 6 A K T B L B S : ENT
1 2 0 C 6 A 5 SO 0 0 - 0 7
1 3 0 C 6 A BF DEFB BFH S SPARE
14 0 C 6 B FO DEFB FOH i BRAPH BUT N U L L
1 5 0 C 6 C E 5 DEFB E 5 H S
16 0 C 6 D C9 DEFB C9H ; ALPHA
1 7 0 C 6 E FO DEFB FOH ; NO
18 0 C 6 F 4 2 DEFB 4 2 H i # ;
1 9 0 C 7 0 B6 DEFB B 6 H ; #:
2 0 0 C 7 1 CD DEFB CDH ; CR
2 1 0 C 7 2 j S l 0 8 - 0 F
2 2 0 C 7 2 7 5 DEFB 7 5 H ; #Y
2 3 0 C 7 3 7 6 DEFB 7 6 H ; # z
2 4 0 C 7 4 B2 DEFB B 2 H ; #3
2 5 0 C 7 5 DB DEFB D8H ; #C
2 6 0 C 7 6 4 E DEFB 4 E H ; #]
2 7 0 C 7 7 FO DEFB FOH 5 # N U L L -
2 8 0 C 7 8 FO DEFB FOH 5 # N U L L
2 9 0 C 7 9 FO DEFB FOH S # N U L L
3 0 0 C 7 A ; S 2 1 0 - 1 7
31 0 C 7 A 3C DEFB 3CH J #C!
3 2 0 C 7 B 30 DEFB 30H ; #R
3 3 0 C 7 C 4 4 DEFB 4 4 H ; # s
3 4 0C7D 71 DEFB 71H i # T
3 5 0 C 7 E 7 9 DEFB 7 9 H ; # u
3 6 0C7F DA DEFB DAH s # v
3 7 0 C 8 0 3 8 DEFB 3 B H ; #w
3 8 0C81 6D DEFB 6DH ; # x
3 9 0 C B 2 ; S 3 I B — I F
4 0 0 C B 2 7D DEFB 7DH ; # 1
4 1 0 C 8 3 5C DEFB 5CH ; # J
4 2 0 C 8 4 SB DEFB 5BH : #K
4 3 0 C 8 5 B4 DEFB B 4 H ; #L
44 0 C S 6 IC DEFB 1CH ; #M
4 5 0 C 8 7 3 2 DEFB 3 2 H ; #N
4 6 0 C 8 8 BO DEFB BOH ; # 0
47 0C89 D6 DEFB D6H ; #P
4 8 0C8A ; S4 2 0 - 2 7
4 9 OCBA 5 3 DEFB 5 3 H ; #A
5 0 0C8B 6 F DEFB 6 F H ; # B
5 1 0 C 8 C DE DEFB DEH S #C

0C8D 47 DEFB 4 7 H ; #D
5 3 OCBE 3 4 DEFB 3 4 H ! # E
5 4 0 C 8 F 4A DEFB 4 A H ; # F
5 5 0 C 9 0 4B DEFB 4 B H ; #G
5 6 0 C 9 1 7 2 DEFB 7 2 H i #H
5 7 0 C 9 2 ; s s 2 8 - 2 F
5 8 0 C 9 2 3 7 DEFB 3 7 H ; # 1
5 9 0 C 9 3 3 E DEFB 3EH ; # 2
6 0 0 C 9 4 7 F DEFB 7 F H i # 3

* ZaO ASSEMBLER S B - 7 2 0 1 : i Z - 0 1 3 A > PAGE 4 9 0 4 . 0 7 8 3

0 1 0 C 9 5 7 B DEFB 7BH # 4
0 2 0 C 9 6 3A DEFB 3AH # 5
0 3 0 C 9 7 5E DEFB 5EH # 6
0 4 0 C 9 8 I F DEFB 1FH # 7
0 5 0 C 9 9 BD DEFB BDH # 8
0 6 0C9A ; S 6 3 0 - 3 F
0 7 0C9A D4 DEFB D4H #YEN
0 8 0 C 9 B 9E DEFB 9EH # +
0 9 0C9C D2 DEFB D2H # -
10 0C9D 0 0 DEFB OOH SPACE
1 1 0 C 9 E 9C DEFB 9CH # 0
12 0 C 9 F A1 DEFB A1H # 9
1 3 0 C A 0 CA DEFB CAH
14 0 C A 1 B8 DEFB B8H
1 5 0 C A 2 i S 7 3 S - 3 F
1 6 0 C A 2 C8 DEFB C8H I N S T
1 7 OCAS C7 DEFB C7H DEL
18 0CA4 C2 DEFB C2H CURSOR UP
19 OCAS C I DEFB C1H CURSOR DOWN
2 0 0 C A 6 C3 DEFB C3H CURSOR R I G H T
2 1 0CA7 C4 DEFB C4H CURSOR LEFT
2 2 OCAS BA DEFB BAH # ?
2 3 0CA9 DB DEFB DBH # /
2 4 OCAA 5
2 5 OCAA 5 CONTROL CODE
2 6 OCAA
2 7 OCAA KTBLC ENT
2 8 OCAA 5 SO 0 0 - 0 7 N
2 9 OCAA FO DEFB FOH
3 0 OCAB FO DEFB FOH
3 1 OCAC FO DEFB FOH t
3 2 OCAD FO DEFB FOH
3 3 OCAE FO DEFB FOH
3 4 OCAF FO DEFB FOH
3 5 OCBO FO DEFB FOH
3 6 0 C B 1 FO DEFB FOH
3 7 0 C B 2 ; S I 08—OF
3 8 0 C B 2 FO DEFB FOH t Y E 3
3 9 0 C B 3 5A DEFB 5AH t z E4 (CHECK
4 0 0CB4 FO DEFB FOH + 3
4 1 0 C B 5 FO DEFB FOH t c E5
4 2 0CB6 FO DEFB FOH t 3 E7
4 3 0CB7 FO DEFB FOH
4 4 OCBS FO DEFB FOH
4 5 0CB9 FO DEFB FOH
4 6 OCBA ; S2 1 0 - 1 7
4 7 OCBA C I DEFB C1H t s
4 8 OCBB C2 DEFB C2H t R
4 9 OCBC C3 DEFB C3H t s
5 0 OCBD C4 DEFB C4H + T
5 1 OCBE C5 DEFB C5H t u
5 2 OCBF C6 DEFB C6H t v
5 3 OCCO FO DEFB FOH t w E l
5 4 0CC1 FO DEFB FOH t x E2
5 5 0CC2 5 S3 1 8 - I F
5 6 0CC2 FO DEFB FOH t i F 9
5 7 0CC3 FO DEFB FOH t J FA
5 8 0CC4 FO DEFB FOH + K FB
5 9 0CC5 FO DEFB FOH t L FC
6 0 0CC6 FO DEFB FOH t M FD

* * Z 8 0 ASSEMBLER S B - 7 2 0 1 1 Z - 0 1 3 A ' PAGE 5 0 0 4 . 0 7 . 8 3

0 1 0CC7 FO DEFB FOH t N FE
0 2 0CC8 FO DEFB FOH t Q F F
0 3 0CC9 FO DEFB FOH t P EO
0 4 OCCA i S 4 2 0 - 2 7
0 5 OCCA FO DEFB FOH t A F 1
0 6 OCCB FO DEFB FOH t B F 2
0 7 OCCC FO DEFB FOH t C F 3
OS OCCD FO DEFB FOH t D F 4
0 9 OCCE FO DEFB FOH t E F 5
10 OCCF FO DEFB FOH t F F 6
11 OCDO FO DEFB FOH t G F 7
12 0CD1 FO DEFB FOH t H F 8
13 0CD2 ;S5 - 2 8 - 2 F
14 0CD2 FO DEFB FOH
1 5 0CD3 FO DEFB FOH
16 0CD4 FO DEFB FOH
17 0CD5 FO DEFB FOH
18 0CD6 FO DEFB FOH
19 0CD7 FO DEFB FOH
2 0 0CD8 FO DEFB FOH
2 1 0CD9 FO DEFB FOH
2 2 OCDA ; S 6 3 0 - 3 7
2 3 OCDA FO DEFB FOH t Y E N E6
2 4 OCDB FO DEFB FOH
2 5 OCDC FO DEFB FOH
2 6 OCDD FO DEFB FOH
2 7 OCDE FO DEFB FOH
2 8 OCDF FO DEFB FOH t , EF
2 9 OCEO FO DEFB FOH
3 0 0 C E 1 5S7 3 8 - 3 F
3 1 0 C E 1 FO DEFB FOH
3 2 0 C E 2 FO DEFB FOH
3 3 0CE3 FO DEFB FOH
3 4 0CE4 FO DEFB FOH
3 5 0CE5 FO DEFB FOH
3 6 0CE6 FO DEFB FOH
3 7 0CE7 FO DEFB FOH
3 8 0CE8 FO DEFB FOH t / EE
3 9 0CE9 5
4 0 0CE9 5 KANA
4 1 0CE9 i
4 2 0CE9 K T B L G : ENT
4 3 0CE9 5 SO 0 0 - 0 7
4 4 0CE9 BF DEFB BFH SPARE
4 5 OCEA FO DEFB FOH GRAPH BUT
4 6 OCEB CF DEFB CFH N I K O WH.
4 7 OCEC C9 DEFB C9H ALPHA
4 8 OCED FO DEFB FOH NO
4 9 OCEE B5 DEFB B5H MO
5 0 OCEF 4D DEFB 4DH DAKU TEN
5 1 OCFO CD DEFB CDH CR
5 2 0 C F 1 ; S I 0 8 - OF
5 3 0 C F 1 3 5 DEFB 3 5 H HA
5 4 0 C F 2 7 7 DEFB 7 7 H TA
5 5 0 C F 3 D7 DEFB D7H WA
5 6 0 C F 4 B3 DEFB B3H YD
5 7 0 C F 5 B7 DEFB B7H HANDAKU
5 8 0 C F 6 FO DEFB FOH
5 9 0 C F 7 FO DEFB FOH
6 0 0 C F 8 FO DEFB FOH

* * Z80 ASSEMBLER S B - 7 2 0 1 < 1 Z - 0 1 3 A > PAGE 5 1 0 4 . 0 7 . 8 3

0 1 0 C F 9 ; S 2 1 0 - 1 7
0 2 0 C F 9 7C DEFB 7CH KA
0 3 OCFA 7 0 DEFB 7 0 H KE
0 4 OCFB 4 1 DEFB 4 1 H S H I
0 5 OCFC 3 1 DEFB 3 1 H KO
0 6 OCFD 3 9 DEFB 3 9 H H I
0 7 OCFE A6 DEFB A6H TE
OS OCFF 7 8 DEFB 7 8 H K I
0 9 ODOO DD DEFB DDH C H I
1 0 0 D 0 1 • S3 1 B - 1 F
1 1 ODO1 3D DEFB 3DH FU
1 2 0 D 0 2 5D DEFB SDH M I
1 3 0 D 0 3 6C DEFB 6CH MU
14 0 D 0 4 5 6 DEFB 5 6 H ME
1 5 ODO 5 I D DEFB 1DH R H I
1 6 0 D 0 6 3 3 DEFB 3 3 H RA
1 7 0 D 0 7 D5 DEFB D5H HE
I S 0 D 0 8 B I DEFB B1H HO
1 9 0 D 0 9 5 S4 2 0 - 2 7
2 0 0 D 0 9 4 6 DEFB 4 6 H SA
2 1 ODO A 6E DEFB 6EH TO
2 2 ODOB D9 DEFB D9H THU
2 3 ODOC 4 8 DEFB 4 8 H SU
2 4 ODOD 7 4 DEFB 7 4 H KU
2 5 ODOE 4 3 DEFB 4 3 H SE
2 6 ODOF 4C DEFB 4CH SO
2 7 0 D 1 0 7 3 DEFB 7 3 H MA
2 8 OD 11 ; s s 2 8 - 2 F
2 9 0 D 1 1 3F DEFB 3FH A
3 0 0 D 1 2 3 6 DEFB 3 6 H I
3 1 0 D 1 3 7E DEFB 7EH U
3 2 0 D 1 4 3B DEFB 3BH E
3 3 0 D 1 5 7A DEFB 7AH 0
3 4 OD 16 I E DEFB 1EH NA
3 5 0 D 1 7 5 F DEFB 5FH N I
3 6 0 D 1 8 A2 DEFB A2H NU
3 7 0 D 1 9 ; S 6 3 0 - 3 7
3 8 0 D 1 9 D3 DEFB D3H YO
3 9 0D1A 9F DEFB 9FH YU
4 0 0 D 1 B D1 DEFB D1H YA
4 1 0D1C 0 0 DEFB OOH SPACE
4 2 OD 1D 9D DEFB 9DH NO
4 3 OD 1E A3 DEFB A3H NE
4 4 0 D 1 F DO DEFB DOH RU
4 5 0 D 2 0 B9 DEFB B9H RE
4 6 0 D 2 1 ; S 7 3 8 - 3 F
4 7 0 D 2 1 C6 DEFB C6H 7CLR %
4 8 0 D 2 2 C5 DEFB C5H 7H0ME 13
4 9 0 D 2 3 C2 DEFB C2H 7CURS0R UP
5 0 0 D 2 4 C I DEFB C1H 7CURS0R DOWN
5 1 0 D 2 5 C3 DEFB C3H 7CURS0R R I B H T
5 2 0 D 2 6 C4 DEFB C4H 7CURS0R L E F T
5 3 0 D 2 7 BB DEFB BBH DASH
5 4 0 D 2 8 BE DEFB BEH RO
5 5 0 D 2 9 5
5 6 0 D 2 9 ; MEMORY DUMP
5 7 0 D 2 9 5 COMMAND " D '
5 8 0 D 2 9 5
5 9 0 D 2 9 DUMP! ENT
6 0 0 D 2 9 C D 3 D 0 1 CALL HEX I Y START ADR.

** Z80 ASSEMBLER SB-7201 <1Z-013A> RASE 52 04.07.S3

0 1 0D2C C D A 6 0 2 CALL . 4DE
0 2 0 D 2 F E5 PUSH HL
0 3 0 D 3 0 C D 1 0 0 4 CALL HLHEX ! END ADR.
0 4 0 D 3 3 D I POP DE
0 5 0 D 3 4 3 8 5 2 JR Cn DUMl 5 DATA ER. THEN
0 6 0 D 3 6 EB EX D E , HL
0 7 0 D 3 7 0 6 0 B DUM3: LD B , 0 8 H i D I S P BBYTES
OS 0 D 3 9 0 E 1 7 LD C , 2 3 i CHA. P R I N T B I A S
0 9 0 D 3 B CDFA05 C A L L NLPHL ! NEWLINE P R I N T
10 0 D 3 E C D B 1 0 3 DUM2: CALL SPHEX S S P . P R T . + A C C PRT.
11 0 D 4 1 2 3 I N C HL
12 0 D 4 2 F 5 ' PUSH AF
1 3 0 D 4 3 3 A 7 1 1 1 LD A , (D S P X Y) ! D I S P L A Y P O I N T
14 0 D 4 6 8 1 ADD A , C
1 5 0 D 4 7 3 2 7 1 1 1 LD (D S P X Y) , A i X A X I S . = X + C r e g
1 6 0D4A F 1 POP AF
1 7 0 D 4 B F E 2 0 CP 2 0 H
I S 0D4D 3 0 0 2 JR N C , + 4
1 9 0 D 4 F 3 E 2 E LD A , 2EH 5 '
2 0 0 D 5 1 CDB90B CALL 7ADCN ! A S C I I TO DSPLAY CODE
2 1 0 D 5 4 CD6C09 CALL PRNT3
2 2 0 D 5 7 3 A 7 1 1 1 LD A , (D S P X Y)
2 3 0D5A OC INC C
2 4 0 D 5 B 9 1 SUB C ! A S C I I DSP P O S I T I O N
2 5 0D5C 3 2 7 1 1 1 LD (D S P X Y) , A
2 6 0 D 5 F OD DEC C
2 7 0 D 6 0 OD DEC C
2 8 0 D 6 1 OD DEC C
2 9 0 D 6 2 E5 PUSH HL
3 0 0 D 6 3 E D 5 2 SBC H L , DE
3 1 0 D 6 5 E l POP HL
3 2 0 D 6 6 2 8 I D JR Z , D U M l - 3
3 3 0 D 6 8 3 E F 8 LD A , F8H
3 4 0D6A 3 2 0 0 E 0 LD (K E Y P A) , A
3 5 0D6D 0 0 NOP
3 6 0 D 6 E 3 A 0 1 E 0 LD A , (KEYF'B)
3 7 0 D 7 1 FEFE CP FEH ; S H I F T KEY 7
3 8 0 D 7 3 2 0 0 3 JR N Z , + 5
3 9 0 D 7 5 CDA60D CALL 7BLNK i 64MSEC DELAY
4 0 0 D 7 8 10C4 DJNZ DUM2
4 1 0D7A CDCAOB CALL 7KEY ! STOP D I S P
4 2 0D7D B7 OR A
4 3 0 D 7 E 2 8 F A JR Z , - 4 ; SPACE KEY THEN STOP
4 4 0 D 8 0 CD320A CALL 7BRK ! BREAK I N ?
4 5 0 D 8 3 2 0 B 2 JR NZ ,DUM3
4 6 0 D 8 5 C 3 A D 0 0 J P S T l 5 COMMAND I N !
4 7 0 D 8 S 2 1 A 0 0 0 D U M l : LD H L , 1 6 0 ! 2 0 * 8 BYTE
4 8 ODSB 19 ADD H L , DE
4 9 ODBC 1 BAB JR D U M 3 - 1
5 0 0 D 8 E
5 1 ODBE
5 2 0 D 8 E
5 3 ODBE
5 4 0 D 8 E DEFS + 2 4
5 5 0DA6
5 6 0DA6
5 7 0DA6
5 8 0DA6 ORB 0 D A 6 H ; 7 B L N K
5 9 0DA6

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 53 04.07.S3

0 1 0DA6
0 2 0DA6
0 3 0DA6
0 4 0DA6 F 5
0 5 0DA7 3 A 0 2 E 0
0 6 ODAA 0 7
0 7 ODAB 3 0 F A
0 8 ODAD 3 A 0 2 E 0
0 9 ODBO 0 7
1 0 0 D B 1 3 8 F A
11 0DB3 F 1
12 0DB4 C9
1 3 0 D B 5
14 0DB5
15 0DB5
16 0DB5
1 7 0DB5
18 0DB5
19 0DB5
2 0 0DB5
2 1 0DB5
2 2 0DB5
2 3 0DB5
2 4 0DB5 F 5
2 5 0DB6 C5
2 6 0DB7 D5
2 7 0DB8 E5
2 8 0DB9
29- 0DB9 CDB10F
3 0 ODBC 7 7
3 1 ODBD 2 A 7 1 1 1
3 2 ODCO 7D
3 3 0DC1 F E 2 7
3 4 0DC3 2 0 0 B
3 5 0DC5 C D F 3 0 2
3 6 0DC8 3 8 0 6
3 7 ODCA EB
3 8 ODCB 3 6 0 1
3 9 ODCD 2 3
4 0 ODCE 3 6 0 0
4 1 ODDO
4 2 ODDO 3EC3
4 3 0DD2 180C
4 4 0DD4
4 5 0DD4
4 6 0DD4
4 7 0DD4
4 8 0DD4
4 9 0DD4
5 0 0DD4 3 A 7 0 1 1
5 1 0DD7 F E 0 1
5 2 0DD9 3ECA
5 3 ODDB C9
5 4 ODDC
5 5 ODDC
5 6 ODDC
5 7 ODDC
5 8 ODDC
5 9 ODDC
6 0 ODDC

V - B L A N K CHECK

AF
A , (K E Y P C)

NC, - 4
A , (K E Y P C)

c , -
AF

B L N K : ENT
PUSH
LD
RLCA
JR
LD
RLCA
JR
POP
RET

ORG 0DB5HS 7DSF

D I S P L A Y ON P O I N T E R

ACC = D I S P L A Y CODE
EXCEPT FOH

D S P O l :

ENT
PUSH AF
PUSH BC
PUSH DE
PUSH HL
ENT
CALL 7P0NT
LD (H L) , A
LD H L , (D S P X Y)
LD A , L
CP + 3 9
JR N Z . D S P 0 4
CALL . MANG
JR C , D S P 0 4
EX DE, HL
LD (H L) , + 1
INC HL
LD (H L) , 0
ENT
LD A , C3H
JR 7DPCT+4

DSPLAY P O S I T I O N

; L O G I C A L 1ST COLUMN

! L O G I C A L 2ND COLUMN

; CURSL

GRAPHIC STATUS CHECK

GRSTAS: LD A , (K A N A F)
CP 0 1 H
LD A . C A H
RET

ORG ODDCHi 7DPCT

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 54 04.07.S3

0 1 ODDC
0 2 ODDC
0 3 ODDC
0 4 ODDC
0 5 ODDC
0 6 ODDC
0 7 ODDC
0 8 ODDC F 5
0 9 ODDD C5
1 0 ODDE D5
11 ODDF E 5
1 2 ODEO 4 7
1 3 ODE 1 E 6 F 0
14 0DE3 FECO
15 ODES 2 0 I B
16 0DE7 AS
1 7 ODEB 0 7
1 8 0DE9 4 F
19 ODEA 0 6 0 0
2 0 ODEC 2 1 A A 0 E
2 1 ODEF 0 9
2 2 ODFO 5E
2 3 0 D F 1 2 3
2 4 0 D F 2 5 6
^ 5 0 D F 3 2 A 7 1 1 1
2 6 0 D F 6 EB
2 7 0 D F 7 E9
2 8 ODFB
2 9 ODFB
3 0 ODFB
3 1 ODFB
3 2 0 D F 8 EB
3 3 0 D F 9 7C
3 4 ODFA F E 1 8
3 5 ODFC 2 8 2 5
3 6 ODFE 2 4
3 7 ODFF
3 8 ODFF
3 9 ODFF
4 0 ODFF
4 1 ODFF
4 2 ODFF 2 2 7 1 1 1
4 3 0 E 0 2 C 3 E 5 0 E
4 4 OEOS
4 5 0 E 0 5
4 6 OEOS EB
4 7 0 E 0 6 7C
4 8 0 E 0 7 B7
4 9 0 E 0 8 2 8 F B
5 0 OEOA 2 5
5 1 OEOB
5 2 OEOB 1 B F 2
5 3 OEOD
5 4 OEOD EB
5 5 OEOE 7D
5 6 OEOF F E 2 7
5 7 OE 11 3 0 0 3
5 8 0 E 1 3 2C
5 9 0 E 1 4 1BE9
6 0 0 E 1 6

D I S P L A Y CONTROL !

ACC = CONTROL CODE

PUSH AF
PUSH B.C
PUSH DE
PUSH HL
LD B , A
AND FOH
CP COH
JR N Z i C U R S 5
XOR B
RLCA
LD C , A
LD B , + 0
LD H L . C T B L 5 PASE M0DE1
ADD H L , B C
LD E , (H L)
INC HL
LD D , (H L >
LD H L , (D S P X Y)
EX D E , H L
J P (H L)

CURSD: ENT
EX
LD
CP
JR
INC

C U R S l : ENT

D E , HL
A , H
+ 2 4
Z , C U R S 4
H

LD H L , (D S P X Y)

CURSR:

ENT
LD (D S P X Y) ,1
J P 7RSTR

ENT
EX D E , HL
LD A , H
OR A
JR Z . C U R S 5
DEQ H
ENT
JR CURS3
ENT
EX D E , HL
LD A , L
CP + 3 9
JR N C , C U R S 2
INC L
JR CURS3
ENT

LD H L , (D S P X Y)

! LD H L , < DSPXY)

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 55 04.07.S3

01 0E16 2E00
02 0E18 24
03 0E19 7C
04 0E1A FE19
05 0E1C 38E1
06 0E1E 2618
07 0E20 227111
08 0E23
09 0E23 1848
10 0E25
11 0E25
12 0E25 EB
13 0E26 7D
14 0E27 B7
15 0E2B 2803
16 0E2A 2D
17 0E2B 18D2
18 0E2D 2E27
19 0E2F 25
20 0E30 F20B0E
21 0E33 2600
22 0E35 2271 11
23 0E38 18C8
24 0E3A
25 0E3A
26 0E3A 217311
27 0E3D 06 IB
28 0E3F CDD80F
29 0E42 2100D0
30 0E45 CDD409
31 0E48 3E71
32 0E4A CDD509
33 0E4D
34 0E4D 210000
35 0E50 1 SAD
36 0E52
37 0E52
38 0E5A
39 0E5A
40 0E5A
41 0E5A
42 0E5A CDF302
43 0E5D OF
44 0E5E 30B6
45 0E60 2EOO
46 0E62 24
47 0E;63 FE1B
48 0E65 2803
49 0E67 24
50 0E68 1895
51 0E6A
52 0E6A 227111
53 0E6D
54 0E6D
55 0E6D
56 0E6D
57 0E6D 01C003
58 0E70 11OODO
59 0E73 212BD0
60 0E76 C5

LD
INC
LD
CP
JR
LD
LD

CURS4: ENT
JR

S
CURSL: ENT

EX
LD
OR
JR
DEC
JR
LD
DEC
JP
LD
LD
JR

CLRS: ENT
LD
LD
CALL
LD
CALL
LD
CALL
ENT
LD
JR

DEFS

CR

ENT
CALL
RRCA
JR
LD
INC
CP
JR
INC
JR
ENT
LD

ENT
LD
LD
LD
PUSH

L,+0
H
A,H
+25
C,CURS1
H, +24
(DSPXY) i HL

SCROL

DE,HL
A,L
A
Z,+5
L
CURS3
L, +39
H
P,CURSU1
H,0
(DSPXY),HL
CURS5

HL,MANG
B, 27
7CLER
HL.DOOOH
#CLR08
A,71H
#CLR8

LD HL,(DSPXY)

HL, 0
CURS3

• MANG

NC,CURS2
L, 0
H
+24
Z, CR1
H
CURS1

(DSPXY) ,HL

BC,03C0H
DE,SCRN
HL,SCRN+40
BC

CDLOR DATA
D800H—DFFFH CLR

DSPXY:O X=0,Y=0

TOP OF «CRT ADR
1 COLUMN
1000 STORE

*# Z80 ASSEMBLER SB-7201 <1Z-013A> RASE 56 04. 07.S3

0 1 0 E 7 7 .EDBCl
0 2 0 E 7 9 C I
0 3 0 E 7 A D5
0 4 0 E 7 B H O O D S
0 5 0 E 7 E 2 1 2 B D B
0 6 0 E S 1 EDBO
0 7 0 E B 3 0 6 2 8
OB 0 E 8 5 EB
0 9 0 E 8 6 3 E 7 1
1 0 0 E 8 B CDDDOF
11 0 E 8 B E l
12 OESC 0 6 2 8
13 0 E 8 E CDDBOF
14 0 E 9 1 0 1 1 A 0 0
15 0 E 9 4 1 1 7 3 1 1
16 0 E 9 7 2 1 7 4 1 1
17 0 E 9 A EDBO
I S 0E9C 3 6 0 0
19 0 E 9 E 3 A 7 3 1 1
2 0 0 E A 1 B7
2 1 0 E A 2 2 8 4 1
2 2 0 E A 4 2 1 7 2 1 1
2 3 0 E A 7 3 5
2 4 OEAS 1 8 C 3
2 5 OEAA
2 6 OEAA
2 7 OEAA
2 8 OEAA
2 9 OEAA 6 D 0 E
3 0 OEAC F 8 0 D
3 1 OEAE 0 5 0 E
3 2 OEBO ODOE
3 3 0 E B 2 2 5 0 E
3 4 0 E B 4 4 D 0 E
3 5 0 E B 6 3 A 0 E
3 6 OEBB F 8 0 E
3 7 OEBA 3 8 0 F
3 8 OEBC E 1 0 E
3 9 OEBE EEOE
4 0 OECO E 5 0 E
4 1 0 E C 2 E 5 0 E
4 2 0EC4 5 A 0 E
4 3 0EC6 E 5 0 E
4 4 OECB E 5 0 E
4 5 OECA
4 6 OECA
4 7 OECA
4 8 OECA
4 9 OECA
5 0 OECA CBDC
5 1 OECC 7E
5 2 OECD 2 3
5 3 OECE 7 7
5 4 OECF 2B
5 5 OEDO CB9C
5 6 0ED2 EDAS
5 7 0ED4 7 9
5 8 0ED5 BO
5 9 0ED6 2 0 F 2
6 0 0ED8 EB

L D I R
POP BC
PUSH DE
LD D E , S C R N + 8 0 0 H ; COLOR RAM SCROLL
LD H L , S C R N + 8 2 8 H ; SCROLL TOP + 4 0
L D I R
LD B , 4 0 ! ONE L I N E
EX D E , H L
LD A , 7 1 H ; COLOR RAM I N I T I A L
CALL 7 D I N T
POP HL
LD B , 4 0
CALL ?CLER ; LAST L I N E CLEAR
LD B C , 2 6 5 ROW NUMBER + 1
LD DE,MANB ; L O B I C A L MANABEMENT
LD H L . M A N G + l
L D I R
LD < H L) , 0
LD A , (M A N B)
OR A
JR Z , ? R S T R
LD H L , D S P X Y + 1
DEC (H L)
JR SCROL

CONTROL CODE TABLE

DEFW SCROL
DEFW CURSD
DEFW CURSU
DEFW CURSR
DEFW CURSL
DEFW HOME
DEFW CLRS
DEFW DEL
DEFW I N S T
DEFW ALPHA
DEFW KANA
DEFW 7RSTR
DEFW 7RSTR
DEFW CR
DEFW 7RSTR
DEFW 7RSTR

! S C R O L L I N B
; CURSOR

I N S T BYPASS

SET 3 , H ! COLOR RAM
LD A , (H L) ; FROM
INC HL
LD (H L) , A ; TO
DEC HL 5 ADR A D J .
RES 3 , H
LDD ; CHA. TRNS
LD A , C
OR B j BC=0 7
JR N Z , I N S T 2
EX DE, HL

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 57 04.07.S3

0 1 0ED9
0 2 OEDB
0 3 OEDD
0 4 OEDF
0 5 0 E E 1
0 6 0 E E 1
0 7 0 E E 1
OS 0 E E 1
0 9 0 E E 1
1 0 0 E E 1
11 0 E E 1
1 2 0 E E 1
1 3 0 E E 2
14 0 E E 2
15 0 E E 5
16 0 E E 5
17 0 E E 5
18 0 E E 5
19 0 E E 5
2 0 0 E E 5
2 1 0 E E 6
2 2 0 E E 6
2 3 0 E E 7
2 4 0 E E 8
2 5 0 E E 9
2 6 OEEA
2 7 OEEA
2 8 OEEA
2 9 DOOO
3 0 E 0 0 3
3 1 OEEA
3 2 OEEA
3 3 OEEA
3 4 OEEA
3 5 OEEE
3 6 OEEE

3 6 0 0
CBDC
3 6 7 1
1 8 0 4

AF

3 2 7 0 1 1

D1
CI
F 1
C9

LD
SET
LD
JR

(H L) , 0
3 , H
(H L) , 7 1 H
7RSTR

! COLOR RAM

ORG 0 E E 1 H i ALPHA

ALPHA: ENT
XOR A

A L P H 1 : ENT
LD (KANAF),A

RESTORE

7RSTR: ENT
POP

7RSTR1 : ENT
POP
POP
POP
RET

DE
BC
AF

MONITOR WORK AREA

SCRN: EQU DOOOH
KANST: EQU E 0 0 3 H

DEFS + 4
SORB OEEEH? KANA

; KANA STATUS PORT

3 7 OEEE KANA: ENT
3 8 OEEE CDD40D CALL GRSTAS
3 9 OEF1 CAB90D J P Z . D S P O l ; NOT GRAPH KEY

4 0 0 E F 4 3 E 0 1 LD A , + 1
4 1 0 E F 6 18EA JR A L P H 1
4 2 0 E F 8 i
4 3 0 E F 8 S
4 4 0 E F 8 D E L : ENT
4 5 0 E F 8 EB EX D E , HL 5 LD H L , (D S P X Y)
4 6 0 £ F 9 7C LD A , H S HOME 7
4 7 OEFA B5 OR L
4 8 OEFB 2 8 E 8 JR Z * 7RSTR
4 9 OEFD 7D LD A , L
5 0 OEFE B7 OR A
5 1 OEFF 2 0 0 D JR NZ , D E L I 5 L E F T S I D E 7
5 2 0 F 0 1 C D F 3 0 2 CALL . MANG
5 3 0 F 0 4 3 8 0 8 JR C , D E L 1
5 4 0 F 0 6 CDB10F CALL 7 P 0 N T
5 5 0 F 0 9 2B DEC HL
5 6 OFOA 3 6 0 0 LD <HL) , + 0
5 7 OFOC 1 8 2 5 JR I N S T - 5 5 JP CURSL
5 8 OFOE D E L I : ENT
5 9 OFOE C D F 3 0 2 CALL • MANG
6 0 0 F 1 1 OF RRCA

** Z80 ASSEMBLER S B - 7 2 0 1 <1Z -013A> PASE 5B 0 4 . 0 7 . B 3

01 OF 12 3E28 LD A, 40
02 OF 14 3001 JR NC ,+3
03 OF 16 07 RLCA ; ACC=SO
04 OF 17 95 SUB L
05 OF 18 47 LD B, A ; TRNS. BYTE
06 OF 19 CDB10F CALL 7P0NT
07 C1F1C 7E DEL2: LD A , (H L) ! CHA. FROM ADR
08 OF ID 2B DEC HL
09 0F1E 77 LD <HL) , A ; TO
10 OF I F 23 INC HL
11 0F20 CBDC SET 3 , H ! COLOR RAM
12 0F22 7E LD A , (H L)
13 0F23 2B DEC HL
14 0F24 77 LD (HL) , A
15 0F25 CB9C RES 3 , H ; CHA.
16 0F27 23 INC HL
17 0F28 23 INC HL 5 NEXT
IS 0F29 10F1 DJNZ DEL2
19 0F2B 2B DEC HL ; ADR.ADJUST
20 0F2C 3600 LD (HL) , 0
21 0F2E CBDC SET 3 , H
22 0F30 217100 LD HL ,71H ; BLUE + WHITE
23 0F33 3EC4 LD A ,C4H ; JP CURSL
24 0F35 C3E00D JP 7DPCT+4
25 0F38
26 0F38 INST: ENT
27 0F38 CDF302 CALL . MANB
28 0F3B OF RRCA
29 0F3C 2E27 LD LS +39
30 0F3E 7D LD A , L
31 0F3F 3001 JR NC, +3
32 OF 41 24 INC H
33 0F42 CDB40F CALL 7PNT1
34 OF 4 5 E5 PUSH HL
35 0F46 2A7111 LD HL , (DSPXY)
36 0F49 3002 JR NC, +4
37 0F4B 3E4F LD A, +79
38 0F4D 95 SUB L
39 0F4E 0600 LD B , 0
40 0F50 4F LD C, A
41 0F51 DI POP DE
42 0F52 2891 JR Z,7RSTR
43 0F54 1A LD A , (D E)
44 0F55 B7 OR A
45 0F56 20BD JR NZ,7RSTR
46 0F58 62 LD H, D ! HLFDE
47 0F59 6B LD L , E
48 0F5A 2B DEC HL
49 0F5B C3CA0E JP INST2 ; JUMP NEXT (BYPASS)
50 0F5E .
51 0F5E
52 0F5E PROBRAM SAVE
53 0F5E
54 0F5E CMD. ' S '
55 0F5E
56 0F5E SAVE: ENT
57 0F5E CD3D01 CALL HEX IY 5 START ADR.
58 0F61 220411 LD (D T A D R) , H L ! DATA ADR. BUFFER
59 0F64 44 LD B , H
60 0F65 4D LD C , L

* * Z 8 0 ASSEMBLER S B - 7 2 0 1 <1Z—013A> PAGE 5 9 0 4 . 0 7 . 8 3

0 1 0 F 6 6 • C D A 6 0 2 CALL . 4DE
0 2 0 F 6 9 C D 3 D 0 1 CALL H E X I Y END ADR.
0 3 0 F 6 C E D 4 2 SBC H L , BC BYTE S I Z E
0 4 0 F 6 E 2 3 INC HL
0 5 0 F 6 F 2 2 0 2 1 1 LD (S I Z E) * HL BYTE S I Z E BUFFER
0 6 0 F 7 2 C D A 6 0 2 CALL . 4DE
0 7 0 F 7 5 C D 3 D 0 1 CALL H E X I Y EXECUTE ADR.
OB 0 F 7 8 2 2 0 6 1 1 LD (E X A D R) * HL BUFFER
0 ? 0 F 7 B C D 0 9 0 0 CALL NL
10 0 F 7 E 1 1 8 B 0 9 LD DE,MSGSV SAVED F I L E N A M E
11 0 F 8 1 DF RST 3 CALL MSGX
12 0 F 8 2 C D 2 F 0 1 CALL BGETL F I L E N A M E INPUT
13 0 F 8 5 C D A 6 0 2 CALL . 4DE
14 OFBB C D A 6 0 2 CALL . 4DE
15 OFBB 2 1 F 1 1 0 LD H L , N A M E NAME BUFFER
16 0 F 8 E S A V 1 : ENT
17 OFBE 1 3 INC DE
i a OFBF 1A LD A , (D E)
19 0 F 9 0 7 7 LD (H L) , A F I L E N A M E TRANS.
2 0 0 F 9 1 2 3 INC HL
2 1 0 F 9 2 FEOD CP ODH END CODE
2 2 0 F 9 4 2 0 F 8 JR N Z . S A V l
2 3 0 F 9 6 3 E 0 1 LD A , 0 1 H A T T R I B U E ! O B J .
2 4 0 F 9 8 3 2 F 0 1 0 LD (A T R B) , A
2 5 0 F 9 B C D 3 6 0 4 CALL ?WRI
2 6 0 F 9 E D A 0 7 0 1 J P C , ? E R WRITE ERROR
2 7 0 F A 1 C D 7 5 0 4 CALL 7WRD DATA
2 3 0 F A 4 D A 0 7 0 1 J P C , 7 E R
2 9 0 F A 7 C D 0 9 0 0 CALL NL
3 0 OFAA 1 1 4 2 0 9 LD DE,MSSOK OK MESSAGE
3 1 OFAD DF RST 3 CALL MSBX
3 2 OFAE C 3 A D 0 0 J P S T 1
3 3 0 F B 1
3 4 0 F B 1
3 5 0 F B 1 !ORS 0 F B 1 H S 7 P 0 N T
3 6 0 F B 1
3 7 0 F B 1
3 8 0 F B 1 5 COMPUTE P O I N T ADR . ;
3 9 0 F B 1
4 0 0 F B 1 i HL = SCREEN CORDINATE
4 1 0 F B 1 i E X I T
4 2 0 F B 1 ; HL = P O I N T ADR. ON SCREEN
4 3 0 F B 1
4 4 OFB1 7 P 0 N T : ENT
4 5 0 F B 1 2 A 7 1 1 1 LD H L , (D S P X Y)
46 0 F B 4
4 7 OFB 4 5 ORG 0 F B 4 H ; 7 P N T 1
4B 0 F B 4
4 9 0 F B 4 7 P N T 1 : ENT
5 0 0 F B 4 F 5 PUSH AF
5 1 0 F B 5 C5 PUSH BC
5 2 0FB6 D5 PUSH DE
53 0 F B 7 E 5 PUSH HL
5 4 OFBB C I POP BC
5 5 0 F B 9 1 1 2 8 0 0 LD D E , 0 0 2 8 H 4 0
56 OFBC 2 1 D B C F LD HL ,SCRN—40
5 7 OFBF 7PNT2! ENT
5 8 OFBF 1 9 ADD H L , DE
5 9 OFCO 0 5 DEC B
60 0 F C 1 F 2 B F 0 F JP P , —2

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 60 04.07.S3

0 1 0 F C 4 0 6 0 0
0 2 0 F C 6 0 9
0 3 0 F C 7 D I
0 4 0 F C 8 C I
0 5 0 F C 9 F 1
0 6 OFCA C9
0 7 OFCB
OS OFCB
0 9 OFCB
10 OFCB
1 1 OFCB
12 OFCB
1 3 OFCB CDBB05
14 OFCE D A 0 7 0 1
1 5 0 F D 1 1 1 4 2 0 9
16 0 F D 4 DF
17 0 F D 5 C3ADOO
1 8 0 F D 8
19 OFDS
2 0 0 F D 8
2 1 OFDB
2 2 0 F D 8
2 3 OFDB
2 4 OFDS
2 5 OFDB
2 6 OFDB
2 7 OFDB
2 8 0 F D 8
2 9 OFDB AF
3 0 0 F D 9 1 8 0 2
3 1 OFDB
3 2 OFDB 3 E F F
3 3 OFDD
3 4 OFDD 7 7
3 5 OFDE 2 3
3 6 OFDF 10FC
3 7 0 F E 1 C9
3 8 0 F E 2
3 9 0 F E 2
4 0 0 F E 2
4 1 0 F E 2
4 2 0 F E 2
4 3 0 F E 2 C5
4 4 0 F E 3 D5
4 5 0 F E 4 E5
4 6 0 F E 5 0 1 0 1 E 0
4 7 OFEB 1 1 0 2 E 0
4 8 OFEB
4 9 OFEB 2 6 6 4
5 0 OFED
5 1 OFED C D 0 1 0 6
5 2 OFFO 3 8 0 B
5 3 0 F F 2 CD4A0A
5 4 0 F F 5 1A
5 5 0 F F 6 E 6 2 0
5 6 0 F F 8 2 0 F 1
5 7 OFFA 2 5
5 8 OFFB 2 0 F 0
5 9 OFFD
6 0 OFFD C 3 9 B 0 6

LD
ADD
POP
POP
POP

RET

V E R I F Y I N G

COMMAND
Y: ENT

CALL
J P
LD
RST
JP

B, + 0
H L , BC
DE
BC
AF

7VRFY
C , ? E R
DE,MSGOK
3
S T l

ORG 0 F D 8 H ; 7 C L E R

CLER ;
B = S I Z E
HL—LOW ADR.

7 C L E R : ENT
XOR
JR
ENT
LD
ENT
LD
INC
DJNZ
RET

A
+ 4

A , FFH

(H L) , A
HL

GAP CHECK

GAPCK:

G A P C K l :

ENT
PUSH BC
PUSH DE
PUSH HL
LD B C , K E Y P B
LD DE,CSTR
ENT
LD H , 100
ENT
CALL EDBE
JR C , S A P C K 3
CALL DLY3
LD A , (D E)
AND 2 0 H
JR N Z , G A P C K l
DEC H
JR N Z . G A P C K 2
ENT
J P RETS

! CALL D L Y 2 * 3

** ZSO ASSEMBLER SB-7201 <1Z-013A> PAGE 61

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 62 04.07.S3

1 1
1;

01 1000
02 1000
0 3 1 0 0 0
0 4 1 0 0 0
0 5 1 0 0 0
06 1000
0 7 1 0 0 0
OS 1 0 F 0
0 9 1 0 F 0
10 1 0 F 0

1 0 F 0
1 0 F 0

13 1 0 F 1
14 1 0 F 1
15 1 1 0 2
16 1102
17 1 1 0 4
18 1 1 0 4
19 1 1 0 6
20 1106
21 1108
22 1108
2 3 1 1 7 0
2 4 1 1 7 0
2 5 1 1 7 1
2 6 1 1 7 1
2 7 1 1 7 3
2 8 1 1 7 3
2 9 1 1 8 E
3 0 1 1 8 E
3 1 1 1 8 F
3 2 1 1 8 F
3 3 1 1 9 1
3 4 1 1 9 1
3 5 1 1 9 2
3 6 1 1 9 2
3 7 1 1 9 3
3 8 1 1 9 3
3 9 1 1 9 4
4 0 1 1 9 4
4 1 1 1 9 5
4 2 1 1 9 5
4 3 1 1 9 7
4 4 1 1 9 7
4 5 1 1 9 9
4 6 1 1 9 9
4 7 11'9B
4 8 119B
4 9 119C
5 0 119C
5 1 119D
5 2 119D

1 19E
119E
1 1 9 F
1 1 9 F

5 7 11 AO
5 8 11AO
5 9 11A1
60 11AI

MONITOR WORK AREA
(M Z - 7 0 0)

Do
5 4
5 5
5 6

S P !
I B U F E :
A T R B :

NAJ1E:

S I Z E !

DTADR:

EXADR:

COMNT!

K A N A F :

DSPXY!

MANS!

F L A S H :

F L P S T !

F L S S T :

F L S D T :

STRGF:

DPRNT:

TMCNT:

SUMDT:

CSMDT:

AMPM:

T I M F G :

SWRK:

TEMPW:

ONTYO:

OCTV:

R A T I O :

ORS
ENT
ENT
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS

t-17

+2

) TAPE B U F F E R) 1 2 8 B)
5 A T T R I B U T E

5 F I L E NAME

i BYTE S I Z E

i DATA ADR

i E X E C U T I O N ADR

; COMMENT

; KANA F L A B

i D I S P L A Y C O - O R D I N A T E S

5 COLOUMN MANAGEMENT

5 F L A S H I N G DATA

! F L A S S I N G P O S I T I O N

! F L A S I N G STATUS

j CURSOR DATA

; S T R I N G FLAG

! TAB COUNTER

5 TAPE MARK COUNTER

! CHECK SUM DATA

i FOR COMPARE SUM DATA

5 AMPM DATA

; T I M E FLAG

; KEY SOUND FLAG

5 TEMPO WORK

5 ONTYO WORK

; OCTAVE WORK

5 ONPU R A T I O

** Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 63 04.07.83

0 1 11 A 3 BUFERi
0 2 1 1 A 3
0 3 1 1 F 4 5
0 4 1 1 F 4 1
0 5 1 1 F 4 ;
0 6 1 1 F 4 !
0 7 1 1 F 4 5
0 8 EOOO P KEYPA
0 ? E 0 0 1 P KEYPB
10 E 0 0 2 P KEYPC
11 E 0 0 3 P KEYPF
12 E 0 0 2 P CSTR!
13 E 0 0 3 P CSTPT
14 E 0 0 4 P CONTCI
15 E 0 0 5 P C0NT1
16 E 0 0 6 P C0NT2
17 E 0 0 7 P CONTF
i a E 0 0 8 P SUNDG
1 9 E 0 0 8 P TEMP:
2 0 1 1 F 4 5
2 1 1 1F4

ENT ; GET L I N E
DEFS + 8 1

EQU T A B L E I / O PORT

EQU EOOOH
EQU E 0 0 1 H
EQU E 0 0 2 H
EQU E 0 0 3 H
EQU E 0 0 2 H
EQU E 0 0 3 H
EQU E 0 0 4 H
EQU E 0 0 5 H
EQU E 0 0 6 H
EQU E 0 0 7 H
EQU E 0 0 8 H
EQU EOOBH

END

** Z30 ASSEMBLER SB-7201 <1

ttBRK OBBB # C L R 0 8 0 9 D 4 # C L R 8
. 4DE 0 2 A 6 . L P T 0 1 7 6 . MANG
77KEY 0 9 B 3 7ADCN 0 B B 9 7 B E L
7BRK 0 A 3 2 7BRK1 0 A 4 8 7 B R K 2
7 C L R F F OFDB 7DACN OBCE 7 D I N T
7ER 0 1 0 7 7 F L A S 0 9 F F 7 F L S
7KEY OBCA 7 K Y 1 0 8 D 6 7 K Y 2
7KYGRP OSFE 7KYGRS 0 9 0 9 7KYSM
7MLDY 0 1 C 7 7M0DE 0 7 3 E 7MSG
7 P N T 1 0 F B 4 7 P N T 2 OFBF 7 P 0 N T
7PRTS 0 9 2 0 7PRTT 0 9 2 4 7RDD
7RSTR1 0 E E 6 7SAVE 0 B 9 2 7SUIEP
7TMR2 0 3 7 F 7TMRD 0 3 5 8 7TMS1
7VRFY 0 5 S S 7WRD 0 4 7 5 71>JRI
AMPM 1 19B ASC 03DA ATBL
BELL 0 0 3 E BGETL 0 1 2 F BRKEY
CKS2 0 7 2 F CKS3 0 7 3 3 CKSUM
CLRS 0 E 3 A CMYO 0 0 5 B COMNT
C0NT2 E 0 0 6 CONTF E 0 0 7 CR
CSTPT E 0 0 3 CSTR E 0 0 2 CTBL
CURS3 ODFF CURS4 0 E 2 3 CURS5
CURSR OEOD CURSU 0 E 0 5 CURSU1
DACN3 OBEO DEL 0 E F 8 D E L I
D L Y 1 2 0 9 9 6 D L Y 2 0 7 6 0 D L Y 3
DSF'01 0DB9 DSP04 ODDO DSPXY
DUMl ODSB DUM2 0 D 3 E DUM3
EDS2 0 6 1 3 EDGE 0 6 0 1 EX ADR
FD2 0 1 0 2 F L A S 1 0 9 7 B F L A S 2
FLKEY 0 5 7 E F L P S T 11BF FLSDT
GAP1 0 7 S E GAP2 0 7 9 6 GAP3
GAPCK2 OFED GAPCK3 OFFD GETKY
GETL2 OS I S GETL3 0 8 5 B G E T L 5
GETLB 0 8 6 3 BETLC 0 B 2 2 GETLR
GOTO OOFS BRSTAS 0DD4 HEX
H H 0 4 I D HLHEX 0 4 1 0 HOME
I N S T 2 OECA KANA OEEE KANAF
KEYPB E 0 0 1 KEYF'C E 0 0 2 KEYPF
KTBL OBEA KTBLC OCAA KTBLG
L E T N L 0 0 0 6 L L P T 0 4 7 0 LOAO
LPRNT 0 1 S F M#TBL 0 2 8 4 MANG
MCR2 0 7 D 4 MCR3 0 7 D 7 MELDY
MLD3 0 2 0 D MLD4 0 2 1 1 MLD5
MLDST 0 2 A B MONIT 0 0 0 0 MOT 1
MOTS 0 6 D 8 M0T7 0 6 B 7 MOTS
MSG 0 0 1 5 MSB#1 0 3 F B MSB#2
MSG1 0 8 9 6 MSG72 0 9 A 0 MSG73
MSBSV 0 9 B B MSGX 0 0 I B MSGX 1
MST2 0 7 0 C MST3 0 7 1 7 MSTA
MTBL 0 2 6 C NAME 1 0 F 1 NL
OCTV 1 1 AO ONF'l 0 2 1 F 0 N P 2
ONTYO 1 1 9 F OF'TBL 0 2 9 C PEN
PMSG1 0 1 AB PRNT 0 0 1 2 PRNT2
PRNT5 0 9 5 9 PRNTS OOOC PRNTT
PTEST 0 1 5 5 PTRN 0 1 8 0 PTSTO
R B Y l 0 6 3 0 RBY2 0 6 4 9 RBY3
RDA 0 1 B 6 RDDAT 0 0 2 A R D I N F
RETS 0 6 9 B RTAF'E 0 5 0 E RTP1
RTF'4 0 5 5 4 RTPS 0 5 6 5 RTP6
RTF'9 0 5 7 4 RYTHM 0 2 C 8 SAV1
SCROL 0E6D SG OOF'7 SHORT

- 0 1 3 A > PAGE 6 4 0 4 . 0 7

0 9 D 5 $MCP 0 0 6 B . . LF'T 0 1 7 B
0 2 F 3 2 H E 1 0 4 3 4 2HEX 0 4 I F
0 5 7 7 7BELD 0 3 5 2 7BLNK 0DA6
0 9 8 0 7BRK3 0 9 8 6 7CLER OFDB
OFDD 7DPCT ODDC 7DSP 0DB5
0 9 E 3 7GET OBBD 7 G E T L 0 7 E 6
08DA 7 K Y 5 OBFA 7 K Y 5 5 OBFB
0 S B 3 7 L 0 A D 0 5 F 0 7 L T N L 0 9 0 E
0 8 9 3 7MSGX 0 8 A1 ? N L 0 9 I B
0 F B 1 7PRNT 0 9 3 5 7PRT 0 9 4 6
0 4 F B 7 R D I 0 4 D B 7RSTR 0 E E 5
0 A 5 0 7TEMF' 0 2 E 5 7TMR1 0 3 7 5
0 3 3 1 7TMS2 0 3 4 4 7TMST 0 3 0 8
0 4 3 6 ALPH1 0 E E 2 ALPHA 0 E E 1
0 A 9 2 ATRB 1 0 F 0 AUT03 0 7 E D
0 0 I E BUFER 1 1 A 3 CKS1 0 7 2 0
0 7 1 A CLEAR 0 9 D B CLEAR1 09DA
1 1 0 8 CONTO E 0 0 4 CONT 1 E 0 0 5
OESA CR1 0 E 6 A CSMDT 1 1 9 9
OEAA CURS1 ODFF CURS2 0 E 1 6
0 E 0 2 CURSD 0 D F 8 CURSL 0 E 2 5
OEOB DACN1 0 B E 3 DACN2 OBDF
OFOE D E L 2 0 F 1 C D L Y 1 0 7 5 9
0A4A DLY4 0 9 A 9 DPRNT 1 1 9 4
1 171 DSWEP 0 8 3 0 DTADR 1 1 0 4
0 D 3 7 DUMP 0 D 2 9 EDG1 0 6 0 7
1 1 0 6 FD OOFF FD 1 0 1 0 6
0 9 E F F L A S 3 0 9 F 3 F L A S H 1 18E
1 1 9 2 F L S S T 1 1 9 1 GAP 0 7 7 A
0 7 9 C GAPCK 0 F E 2 G A P C K l OFEB
0 0 I B GETL 0 0 0 3 B E T L 1 0 7 E A
0 8 I D GETL6 0 8 6 5 BETLA 0 8 2 B
0 8 7 E GETLU 0 8 7 6 BETLZ 0B6C
0 3 F 9 H E X I Y 0 1 3 D HEX J 0 3 E 5
0E4D I B U F E 1 0 F 0 I N S T 0 F 3 8
1 1 7 0 KANST E 0 0 3 KEYPA EOOO
E 0 0 3 K S L 1 0 9 B 7 K S L 2 09BC
0CE9 KTBLGS 0 C 6 A KTBLS 0C2A
0 1 16 LOAD 0 1 1 1 LONG 0 A 1 A
1 1 7 3 MCOR 0 7 A S MCR1 0 7 A B
0 0 3 0 MLD1 0 1 D 1 MLD2 0 2 0 5
0 2 1 4 MLDS l 0 2 C 4 MLDSP 0 2 B E
0 6 A 4 M0T2 0 6 A B M0T4 0 6 B 9
0 6 D 0 M0T9 0 6 D 7 MOTOR 0 6 9 F
0 3 F D MSG#3 0 4 0 2 MSG#7 0 4 6 7
0 6 E 7 MSGE1 0 1 4 7 MSGOK 0 9 4 2
0 8 A 4 MSGX2 0 8 A 7 MST1 0 7 0 5
0 0 4 4 MSTOP 0 7 0 0 MSTP 0 0 4 7
0 0 0 9 NLPHL 0 5 F A NOADD 0 3 E 2
0 2 2 C 0 N P 3 0 2 6 5 ONPU 0 2 1 C
0 1 8 B PLOT 0 1 8 4 PMSG 0 1 A 5
0 9 6 7 PRNT3 0 9 6 C PRNT4 0 9 6 F
OOOF PRTHL 0 3 B A PRTHX 0 3 C 3
0 1 5 A P T S T 1 0 1 7 0 R A T I O 1 1 A 1
0 6 5 4 RBYTE 0 6 2 4 R D l 0 4 E 6
0 0 2 7 RET1 0 4 D 2 RET2 0 5 5 4
0 5 1 3 RTP2 0 5 1 9 RTP3 0 5 3 2
0 5 7 2 RTP7 0 5 6 E RTP8 0 5 5 3
0 F 8 E SAVE 0 F 5 E SCRN DOOO
0 AO 1 S I Z E 1 1 0 2 SLF'T 0 3 D 5

* *

SP
S T 2
SVO
SWEP3
TEMPW
TM1
TMCNT
VERFY
WBYTE
WRINF
XTEMP

ZSO ASSEMBLER S B - 7 2 0 1 < 1 Z - 0 1 3 A > F'AGE 6 5

1 0 F 0 SPHEX 0 3 B 1 SS 0 0 A 2 STO 0 0 7 0 ST 1 OOAD
OOBB START 0 0 4 A STRGF 1 1 9 3 SUMDT 1 1 9 7 SUNDG E 0 0 8
0 B A 2 S V l 0 B B 5 SWEPO 0 A 6 6 SWEPO1 0 A 6 4 SWEP2 0 A 7 F
0 A 7 7 SWEF'6 0 A 5 F SWEP9 0 A 7 3 SWRK 119D TEMP EOOB
1 1 9 E T I M F G 119C T I M I N 0 3 8 D T IMRD 0 0 3 B T I M S T 0 0 3 3
0 6 7 5 TM2 0 6 7 8 TM3 0 6 8 8 TM4 0 6 9 B TMARK 0 6 5 B
1 1 9 5 T V F 1 0 5 B 2 T V F 2 0 5 B B T V F 3 05CC TVRFY 0 5 A D
0 0 2 D VGQFF 0 7 4 7 VRFY OFCB VRNS 0BC5 WBY1 0 7 6 D
0 7 6 7 WRDAT 0 0 2 4 W R I 1 0 4 4 4 W R I 2 0 4 5 E W R I 3 0 4 6 4
0 0 2 1 WTAF'l 0 4 9 4 WTAP2 0 4 A 5 WTAP3 0 4 D 2 WTAPE 0 4 8 A
0 0 4 1

a

(V

<j>

o

t

- t

a to

•"t> »

S3

£W

™ «

•

c fv

w cv

t? if

oa •

N

I "
,Q

=1 = .

CV "H >
o >
>

A. 6 Color Plotter-Printer Control Codes
A.6.1 Control codes used in the text mode
• Text code ($01)

Sets the printer in the text mode.
• Graphic code ($02) Same as the BASIC MODE GR statement.

Sets the printer in the graphic mode.
• Line up ($03) Same as the BASIC SKIP-1 statement.

Moves the paper one line in the reverse direction. The line counter is decremented by 1.
• Pen test ($04) Same as the BASIC TEST statement.

Writes the following patterns to start ink flowing from the pens, then sets scale = 1 (40 chr/line),
color = 0.

Black Blue Green Red

• Reduction scale ($09) + ($09) + ($09)
Reduces the scale from 1 to 0 (80 chr/line).

• Reduction cancel ($09) + ($09) + (SOB)
Enlarges the scale from 0 to 1. (40 chr/line).

• Line counter set ($09) + ($09) + (ASCII)2 + (ASCII)! + (ASCII)0 + (SOD)
Same as the BASIC PAGE statement.

Specifies the number of lines per page as indicated by 3 bytes of ASCII code. The maximum number of
lines per page is 255. Set to 66 when the power is turned on or the system is reset.

• Line feed ($0A) Same as the BASIC SKIP 1 statement.
Moves the paper one line in the forward direction. The line counter is incremented by 1.

• Magnify scale ($0B)
Enlarges the scale from 1 to 2 (26 chr/line).

• Magnify cancel ($0C)
Reduces the scale from 2 to 1.

• Carriage return ($0D)
Moves the carriage to the left side of the print area.

• Back space ($0E)
Moves the carriage one column to the left. This code is ignored when the carriage is at the left side
of the print area.

• Form feed ($OF)
Moves the paper to the beginning of the next page and resets the line counter to 0.

• Next color ($ ID)
Changes the pen to the next color.

A.6.2 Character scale
• The character scale is automatically set to 1 (40 chr/line) when the power is turned on. Afterwards,

it can be changed by the control codes and commands.
• In the graphic mode, the scale can be changed in the range from 0 to 63.
• The scale is set to 1 when the mode is switched from graphic to text.

A.6.3 Graphic mode commands
A. 6. 3. 1 Command type

In the graphic mode, the printer can be controlled by outputting the following commands to the printer.
Words in parentheses are BASIC statements which have the same functions as the graphic mode com-

mands.

Command name Format Function

LINE TYPE Lp (p = 0 to 15)
Specifies the type of line (solid or dotted) and
the dot pitch.
p = 0 : solid line, p = 1 — 15 : dotted line p p

ALL INITIALIZE A Sets the printer in the text mode.

HOME (PHOME) H
Lifts the pen and returns it to the origin (home
position).

INITIALIZE (HSET) I
Sets the current pen location as the origin
(x = 0, y = 0).

DRAW (LINE) Dx, y, . . . xn, yn
(- 9 9 9 ^ x , y < 999)

Draws lines from the current pen location to
coordinates (x j , y j) , then to coordinates
(x 2 ' Y2)> a n d so forth.

RELATIVE DRAW
(RLINE)

J A X , Ay . . . Axn, Ayn
(- 9 9 9 < AX, Ay < 9 9 9)

Draws lines from the current pen location to
relative coordinates (axj , Ayj), then to relative
coordinates (AX2 , AY2) and so forth.

MOVE (MOVE) Mx, y
(—999 < x, y < 999) Lifts the pen and moves it to coordinates (x, y).

RELATIVE MOVE
(RMOVE)

R A X , Ay
(- 9 9 9 < A X , Ay < 999)

Lifts the pen and moves it to relative coordinates
(A X , Ay).

COLOR CHANGE
(PCOLOR) Cn (n = 0 to 3) Changes the pen color to n.

SCALE SET Sn (n = 0 to 63) Specifies the character scale.

ALPHA ROTATE Qn (n = 0 to 3) Specifies the direction in which characters are
printed.

PRINT P c ! c 2 c 3 . . . cn (n = °°) Prints characters.

AXIS (AXIS)
Xp, q, r (p = 0 or 1)
(q = - 9 9 9 to 999)
(r= 1 to 255)

Draws an X axis when p = 1 and a Y axis when
p = 0. q specifies the scale pitch and r specifies
the number of scale marks to be drawn.

A. 6. 3. 2 Command format

There are 5 types of command formats as shown below.
1. Command character only (without parameters)

"A", H , I
2. Command character plus one parameter

"L", "C", S , Q
3. Command character plus pairs of parameters

D , J , M , R
, is used to separate parameters, and a CR code is used to end the parameter list.

4. Command plus character string
P

The character string is terminated with a CR code.
5. Command plus three parameters „x.,

"," is used to separate parameters.

199-

A. 6. 3. 3 Parameter specification

1. Leading blanks are ignored.
2. Any number preceded by " — " is treated as a negative number.
3. If the number of digits of a number exceeds 3, only the lower 3 digits are effective.
4. Each parameter is ended with "," or a CR code. If other than numbers are included in a parameter,

subsequent characters are ignored until a comma or CR code is detected.

Example) D ^ - 1 3 5 . 2 1 ,

t Ignored .—-

A. 6. 3. 4 Abbreviated formats

1. Any command can be followed by a one-character command without entering a CR code.
Ex) " HD100, 200" CR is effective and is the same as "H" CR " D100, 200" CR.

2. Any command can be followed by a command with one parameter by separating them with a
comma ",".
Ex) " LO, S1, Q0, C1, D100, 20011 CR is effective.

3. A command with pairs of parameters must be terminated with a CR code.

4. 6. 3. 5 Data change due to mode switching

The following data changes when the printer is switched from the graphic mode to the text mode.
• X and Y coordinates

Y is set to 0 and the origin is placed at the left side of the printable area.
• Direction of characters

Q is set to 0.
• Character scale

Character scale is set to 1.
• The line type setting is not affected.

200-

A. 7 Notes Concerning Operation
• Data recorder

• Although the data recorder of the MZ-700 is highly reliable, the read/write head will wear out after
prolonged use. Further, magnetic particles and dust will accumulate on the head, degrading read/write
performance. Therefore, the head must be cleaned periodically or replaced when it becomes worn.
1. To clean the head, open the cassette compartment, press the I PLAY | key, and wipe the head

and pinch roller using a cotton swab. If they are very dirty, soak the cotton swab in alcohol.
2. When the head becomes worn, contact your dealer. Do not attempt to replace it by yourself.

• Cassette tape

• Any commercially available cassette tape can
be used with the MZ-700. However, it is re-
commended that you use quality cassette
tape produced by a reliable manufacturer.
• Use normal type tapes.
• Avoid using C-120 type cassette tapes.
• Use of C-60 or shorter cassette tapes is

recommended.
• Be sure to take up any the slack in the tape

with a pencil or the like as shown at right
before loading the cassette tape: otherwise,
the tape may break or become wound round
the pinch roller.

• Protecting programs/data from accidental erasure

The data recorder of the MZ-700 is equipped
with a write protect function which operates in
the same manner as with ordinary audio cassette
tape decks.

To prevent data from being accidentally erased,
remove the record lock-out tab from the cassette
with a screwdriver or the like. This makes it
impossible to press the | RECORD key, prevent-
ing erasure of, valuable data.

• Other

• See page 109 for commercially available cassette tape decks.

• Display unit

When using a display unit other than one specified for the MZ-700, the screen size must be adjusted.
See page 106.

Slack
/

(oi irn d>

T T
Slack

Remove record lock-out
tab with a screwdriver.

Tab for side A
Tab for side B

201-

• Color plotter-printer

• Do not rotate the pen drum in the reverse direction when replacing pens.
• Be sure to remove the pens from the pen drum, replace their caps to them, and store them in the case

to prevent them from drying out when the printer is not to be used for an extended period of time.
• It takes a certain amount of time for ink on the paper to dry. (The ink is water-soluble.)
• Do not rip off the paper when the printer cover is removed. Hold down the paper holder when ripping

off the paper.
• Do not touch the internal mechanism when replacing the pens. Failure to observe this warning may

result in damage to the printer.
• The color plotter printer generates sound' for a moment when the power is turned on. This is not

a problem.
• Letters printed in the 80 character line mode may be difficult to read. In this case, use the 40 character/

line mode.
• In the graphic mode, lines printed repeatedly may become blurred. This is particularly liable to occur

when a dotted line is printed repeatedly. Due to the characteristics of the ball pen, this is unavoidable.

• Notes concerning software

• It takes about 3 minutes to load the BASIC interpreter.
• The reset switch on the rear panel is to used in the following cases. (See 3. 1. 1.)

To stop execution of a BASIC program during normal execution or when the program enters an infinite
loop. To return to the program, use the # command. However, the program or hardware should be
checked if the program loops.

• BASIC calculation error

• BASIC converts decimal values to floating point binary values before performing calculations, then
converts the binary calculation results into decimal numbers for display. This can result in a certain
amount of error.

(Example:)

P R I N T 8 1 7 . 3 - 8 1 0 . 4
6 . 8 9 9 9 9 9 Correct result is 6.9.

• Approximations are made during calculation of functions and exponentiation.

• The above must be considered when using IF statements.

(Example:)

1 0 A = 1 / 1 0 0 X 1 0 0
2 0 I F A = 1 T H E N P R I N T " T R U E " : G O T O 4 0
3 0 P R I N T " F A L S E "
4 0 P R I N T " A = " ; A
5 0 E N D
R U N
F A L S E
A = 1

Although the practical result of the equation in line 10 is 1, this program prints FALSE because of
error due to conversion.

202-

• Notes concerning handling

• Power switch
The power switch should be left untouched for at least 10 seconds after being turned on or off.
This is necessary to ensure correct operation of the computer. Do not unplug the power cable when
the power switch is on: otherwise, trouble may result.

• Power cable
Avoid placing heavy objects such as desks on top of the power cable. This may damage the power
cable, possibly resulting in a serious accident. Be sure to grasp the cable by the plug when unplugging
it.

• Power supply voltage
The power supply voltage is 240/220 VAC. The computer may not operate properly if the voltage
is too high or too low. Contact your dealer for assistance if you experience this problem.

• Ventilation
Many vents are provided in the cabinet to prevent overheating. Place the computer in a well ventilat-
ed place, and do not cover it with a cloth. Do not place any objects on the left side of the computer,
since this is where the vents for the power supply unit are located.

• Humidity and dust
Do not use the computer in a damp or dusty places.

• Temperature
Do not place the computer near heaters or in places where it may be exposed to direct sunlight;
failure to observe this precaution may result in damage to the computer's components.

• Water and foreign substances
Water and other foreign substances (such as pins) entering the computer will damage it. Unplug
the power cable immediately and contact your dealer for assistance if such an accident occurs.

• Shock
Avoid subjecting the computer to shock; strong shocks will damage the computer permanently.

• Trouble
Stop immediately operation and contact your dealer if you note any abnormality.

• Prolonged disuse
Be sure to unplug the power cable if the computer is not to be used for a prolonged period of time.

• Connection of peripheral devices
Use only parts and components designated by Sharp when connecting any peripheral devices, other-
wise, the computer may be damaged.

• Dirt
Wipe the cabinet with a soft cloth soaked in water or detergent when it becomes dirty. To avoid
discoloration of the cabinet, do not use volatile fluids such as benzene.

203-

• Noise
It is recommended that a line filter be used when the computer is used in a place where high level
noise signals may be present in the AC power. (A line filter can be obtained from your Sharp dealer).
Move the signal cables as far as possible from the power cable and other electrical appliances.

• RF interference
Interference with TV or radio reception may occur due to the RF signal generated by the computer
if it is used near a TV or radio set. TV sets generate a strong magnetic field which may result in
incorrect operation of the computer. If this occurs, move the TV set at least 2 to 3 meters away
from the computer.

This apparatus complies with requirements of EEC directive 76/889/EEC.

204-

Copying/Debugging of MZ-700 Basic Interpreter
A. Please follow the procedure below mentioned to copy the BASIC tape.

1) Power on MZ-700 (->• monitor state)
2) Partial memory should be modified by the use of monitor command M (memory correction) as

follows:

*MCF00
CFOO FF - > CD
CF01 00 27
CF02 FF - > 00
CF03 00 -y 38
CF04 FF 03
CF05 00 - > CD
CF06 FF — > 2A
CF07 00 - > 00
CF08 FF -y DA
CF09 00 - » FE
CFOA FF 00
CFOB 00 - > C3
CFOC FF —r AD
CFOD 00 00
CFOE FF CD
CFOF 00 27
CF10 FF 00
CF11 00 - > 38
CF12 FF F5
CF13 00 C3
CF14 FF CB
CF15 00 - > OF

I SHIFT | + BREAK | to be keyed in.
NOTE: The content of memory from CFOO to CF15 may not always be as above mentioned.

3) The cassette to be read (copyed from) should be set to the tape recorder.
4) Key in the monitor command J (Jump) as follows:

* JCFOO [CR]
± PLAY

NOTE: If a but ton of the tape recorder is still pushed no play indication will appear.

5) Confirming the " J . P L A Y " indication above mentioned, push I PLAY | but ton and load the content
of BASIC tape. On this occasion, no indication like FILE NAME, etc. will be shown. When ERROR
occured, please restart f rom the item 1) again.

6) Set a new cassette to which the BASIC should be written into the recorder and execute | REWIND] .

7) Key in as follows:

X J 1 1 0 8 [CR]

8) The monitor will be cleared and the following indication will appear:

S-BASICEX SAVER xx GS xx 25
HIT ANY KEY?

9) Push any key.

± Record Play
I STOP | but ton should be pushed beforehand.

10) Push | RECORD"! button. The copy will start and the following indication will appear:

WRITING S-BASIC

On the occasion of MZ-711, item 9) should be effectuated after setting the external tape recorder
in recording state.

11) After the sound "Pit Pit", the copy will be terminated.
12) The monitor state will be recovered by pushing the rear RESET SW.
13) Rewind the tape and push I STOP! button.
14) Key in as follows:

X JCFOE [CR|
± PLAY

15) Push | PLAY | but ton of the recorder and the "VERIFY" function will be executed. When success-
ful verified, the indication of "OK!" will appear though no other indication like FILE NAME etc.
will appear. When error occured, please restart from the item 4).

16) Please make sure to enable the write protection of the cassette by removing the nail.

B. The following procedure is requested to modify the content of BASIC interpreter.
a) Operate just as the case for copying mentioned in item 1) to 5).
b) Call up the address to be modified by using the monitor command M.

Ex. 8A in 1234H should be changed to 7A.

XM
1234 8A
1235 8A
X

Key in
1234
7 A [CR|

SHIFT 1 + I BREAK

C. The operation from the item 6) onwards should be continued hereafter.

