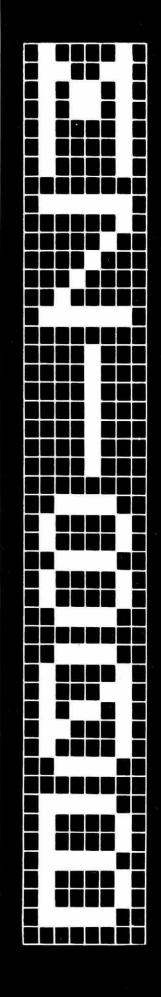
Personal Computer **TZ - 30B** RS-232C SERIAL INTERFACE



Personal Computer MZ-80B

RS-232C Serial Interface Card Model: MZ-8BI03 Technical Manual

Copyright[©] by SHARP CORPORATION

Contents

1. General Information 2
2. Specifications
3. Cautions for Handling 4
4. Method of Operation 5
Arrangement of switches and jumper chips 5
Setting port address 6
Setting baud rate for each channel 8
Modes of connector signals 9
Setting Channel A 11
Setting Channel B 12
Installation of the inferface card 13
Setting the card for delivery 14
5. Electrical Characteristics of Signals 15
Direction of signals for RS-232C 15
Direction of signals for current loop 15
Signal level with RS-232C interface
Current loop 17
6. Programming 19
Interrupts
7. Z-80-SIO Registers
Write registers
Read registers 43
8. Sample programs 51
Self-diagnosis program 51
Setting jumper blocks on the card 51
Flow chart of Self-Diagnosis program
Program by BASIC/PASCAL language
9. BASIC SB-6511
10. Circuit Diagram

1. General Information

Introduction

There are two methods of data communication between computer and external equipment: 8-bit parallel and bit serial.

The serial interface card MZ-8BI03 (hereinafter referred to as "interface card") permits data communication by the bit serial method. This interface card is manufactured in accordance with EIA RS-232C (the Electronic Industries Association RS-232C), and used for data communication with other equipment having interface based on RS-232C.

Functions of this interface card

The interface card has the following functions.

- 1. One card has two channels, each of which is capable of transmitting/receiving data independently.
- 2. One of the ten baud rates can be selected by operating the switch on the card. Baud rates can be set independently for the two channels.
- 3. Output connector signals to external equipment can be in either terminal mode or modem mode through the operation of the jumper chip.
- 4. This interface card can be used as 20mA current loop for one channel.

Applications

Equipped with the above-mentioned functions, the interface card has a variety of applications. Some applications of this very versatile serial interface card are shown below.

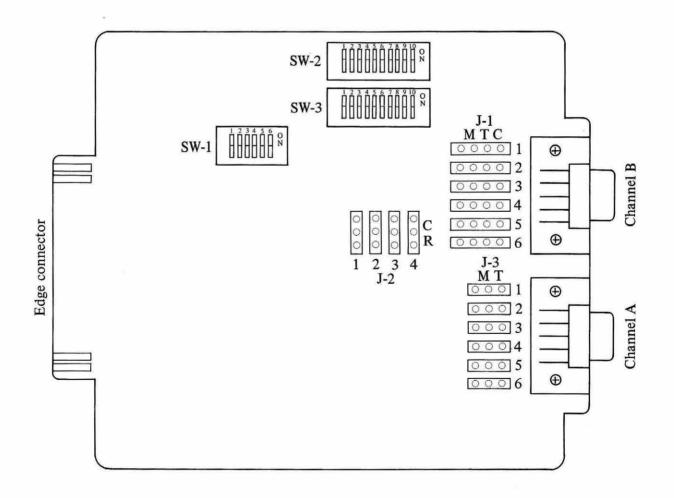
- 1. Data communication between computers on telephone line via acoustic couplers
- 2. Printer
- 3. Plotter
- 4. Digitizer
- 5. Graphic display
- 6. Card reader
- Magnetic tape equipment

2. Specifications

Communication mehod:	Asynchronous
Standard:	In compliance with EIA RS-232C
Control LSI:	Z-80SIO/0
Number of channels:	2 (Channel A and Channel B)
20mA current loop:	Changeover is allowed for one channel (Channel B)
Baud rate:	Can be set independently for the two channels (Manual setting using
	switch)
Number of baud rates:	10 (75, 110, 150, 300, 600, 1200, 1800, 2400, 4800, 9600 baud)
Character length:	5, 6, 7 or 8 bits (Selection by software)
Parity bit:	Odd, none, or even
Stop bit:	1, 1½, or 2
Mode:	Either terminal mode or modem mode can be selected for each channel
	(through the use of jumper chip).
Interrupt:	Z-80 vector interrupt can be used.
Port address:	Manual setting with switch
Operating temperature:	$0^{\circ}C \sim 50^{\circ}C$
Storage temperature:	−25°C ~ 80°C

(Note) The above-mentioned specifications may be changed in the future for improvement of the product.

3. Cautions for Handling


- This interface card has been especially designed for Sharp personal computer MZ-80B. Do not use this card for other equipment, or destruction of circuit or other troubles may be caused.
- Since the interface has NMOS, CMOS, and other highly integrated ICs incorporated in it, take adequate precautions in handling the card so that no static electricity will be generated. Otherwise, the ICs may be destroyed.
- When pulling the card out of the expansion unit, do NOT pull the signal cable. Otherwise, disconnection of wire may be caused.
- Set the switch, jumper, etc. on the card only when power is turned off.
- Do not turn ON more than one switches at a time for baud rate setting. Otherwise, the ICs may be destroyed.
- The manufacturer will not be held responsible for troubles resulting from the alteration of the circuit by the user.
- For storage, protect this interface card from static electricity, for example, by putting it in an electrically conductive bag.
- Do not leave the interface card in the following places.
 - Place with too much/little humidity
 - Place exposed to direct sunlight
 - Dusty place
 - · Excessively hot/cold place
 - Place with a lot of vibration

4. Method of Operation

Arrangement of switches and jumper chips

Before using this card, the switches and jumpers on the card must be set first. Fig. 4-1 shows the positions of the switches and jumpers.

Switch SW-1:	Used for setting port address
Switch SW-2:	Used for setting baud rate for Channel B
Switch SW-3:	Used for setting baud rate for Channel A
Jumper block J-1:	Jumper for mode selection for Channel B
Jumper block J-2:	Jumper for selection of RS-232C/current loop (for channel B)
Jumper block J-3:	Jumper for mode selection for Channel A

Fig. 4-1. Arrangement of Switches and Jumpers

Setting port address

The Z80-CPU outputs 8-bit port address. Since this card uses 4 sequential port addresses, the port address can be set by setting upper 6 bits of the 8-bit address signal using the switch (SW-1).

As shown in Table 4-1, the upper 6 bits $(A_2 \sim A_7)$ of the 8-bit address signal can be selected arbitarily.

Address bit	Segment of switch SW-1	Manufacturer's setting	Comment
A ₇	6	OFF	
A ₆	5	ON	
A_5	4	OFF	
A_4	3	OFF	These bits can be set arbitarily.
A ₃	2	ON	
A ₂	1	ON	
A ₁		-	Channel select
A ₀	-	-	Control or Data Select

Table 4-1. Switch for Setting Port Address

The correspondence between the switching positions of the switch SW-1 and logic levels is as shown below. The address of this interface card is the port address whose logic level coincides with that of the switch SW-1.

Switching position	Logic level
ON	0
OFF	1

Table 4-1 shows the state of the switch SW-1 as set by the manufacturer for delivery. In this case, the port addresses are B0H, B1H, B2H, and B3H.

Address bit A_1 is assigned for selecting channels for Z80-SIO whereas address bit A_0 is assigned for selection of control word or data.

A ₁	A ₀	Selection			
0	0	Channel A/Data			
0	1	Channel A/Control word			
1	0	Channel B/Data			
1	1	Channel B/Control word			

ON condition OFF condition Switching condition

Setting baud rate for each channel

The interface card has two channels (Channel A and Channel B), for each of which baud rate can be set independently. This operation can be carried out by selecting the switches SW-2 and SW-3 on the card. One out of the 10 baud rates can be selected.

Switch SW-2	For setting baud rate for Channel B
Switch SW-3	For setting baud rate for Channel A

The setting methods are the same for both channels. Turn on the switch corresponding to the desired baud rate and turn off the other switches. The correspondence between the segments of the switches and baud rates is shown in Table 4-2.

D1 D.4.		Segments of switches SW-2 and SW-3								
Baud Rate	1	2	3	4	5	6	7	8	9	10
75 baud	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
110	OFF	ON	OFF							
150	OFF	OFF	ON	OFF						
300	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
600	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
1200	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF
1800	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF
2400	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF
4800	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
9600	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON -

Table 4-2. Setting Baud Rates

(Caution) In setting baud rate, only one of the 10 segments of the switch SW-2 or SW-3 must be turned ON. Turning ON 2 or more segments will cause destruction of the ICs. After setting, confirm that only one segment of each switch is turned ON.

2.16

Modes of connector signals

This interface card has two 9-pin connectors as shown in Fig. 4-2.

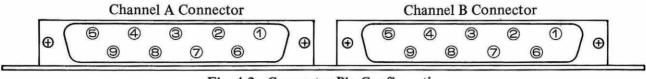


Fig. 4-2. Connector Pin Configuration

By changing the wiring of the jumper blocks J-1, J-2, J-3 on the card, signals for each connector pin can be changed. Through this operation, the channels can be set in three different states: terminal mode, modem mode, and current loop.

Terminal and modem modes are in compliance with RS-232C standard. In both modes, binary signals are transmitted by voltage levels.

Current loop is not included in the RS-232C standard, but is adopted in ASR-33 manufactured by Teletype Corporation. By this method, binary signals are transmitted with intermittent 20mA current.

The modes available for each channel are given in Table 4-3.

Mode	Channel A	Channel B
Terminal mode	Available	Available
Modem mode	Available	Available
Current loop	Not available	Available

Table 4-3. Channel Mode

The correspondence between connector pins and signals in different modes is shown in Table 4-4. For connector pin numbers, refer to Fig. 4-2.

Connector pin No.	Terminal mode	Modem mode	Current loop	
1	Security grounding	Security grounding	Security grounding	
2	Transmit data TxD	Receive data RxD	20mA data TxD	
3	Receive data RxD	Transmit data TxD	20mA data return	
4	Request to send RTS	Clear to send CTS (Transmitter enable)	20mA receive RxD	
5	Clear to send CTS (Transmitter enable)	Request to send RTS	20mA receive return	
6	Data terminal ready DTR	Data carrier detect DCD (Receiver enable)	TTY TAPE control return DTR	
7	Data carrier detect DCD (Receiver enable)	Data terminal ready DTR	TTY TAPE control return	
8	Grounding for signals	Grounding for signals	Grounding for signals	
9	NC	NC	NC	

Table 4-4. Signal Configuration

In the terminal mode, transmit data are connected to pin No. 2. However, in the modem mode, receive data are connected to pin No. 2, thus creating a reverse flow of signals. The directions of each connector pin are opposite in the terminal and modem modes. This feature can be utilized in the following way.

- Terminal mode is selected for connection with acoustic coupler
- Modem mode is selected for connection with printers, plotters, etc. equipped with RS-232C interface.

Of course, there are some exceptions. Therefore, read the instruction manuals of individual equipment.

Setting Channel A

The mode of Channel A can be set by changing jumper wiring of the jumper block J-3. Terminal mode can be selected by short-circuiting all pairs of terminals marked "T" by inserting jumper chips between them as illustrated in Fig. 4-3. Modem mode can be selected by doing the same for pairs of terminals marked "M".

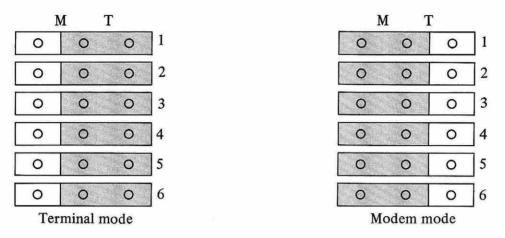
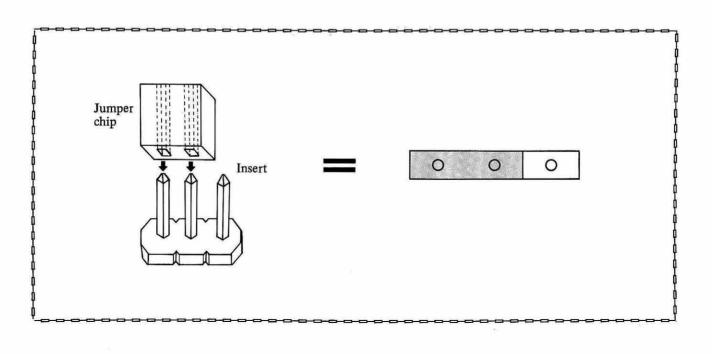



Fig. 4-3 Setting Modes for Channel A (Jumper block J-3)

Incidentally, Channel A is set at terminal mode for delivery.

Setting Channel B

Either RS-232C or current loop must be selected for Channel B. For this purpose, change the jumper wiring of the jumper block J-2. Current loop can be selected by short-circuiting all pairs of terminals marked "C" with the use of jumper chips, and RS-232C can be selected by doing the same for all apirs of terminals marked "R", as shown in Fig. 4-4.

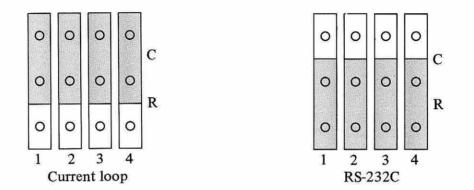
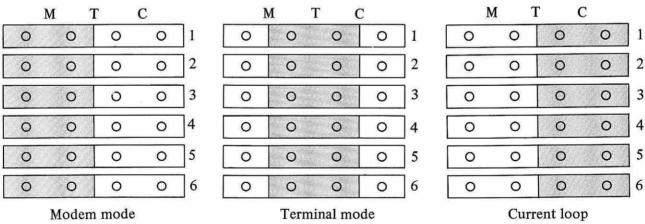
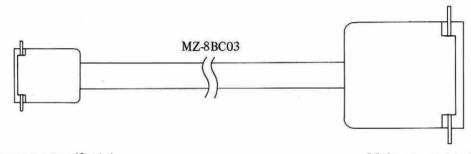


Fig. 4-4 Jumper Block J-2

Incidentally, the jumper block J-2 is set at RS-232C side for delivery.

Next, Channel B can be set at terminal mode, modem mode, or current loop by manipulating the jumper block J-1. The wiring of jumper chips is illustrated in Fig. 4-5.




Fig. 4-5 Jumper Block J-1

The jumper block J-1 is set at modem mode at the time of delivery.

Installation of the interface card

This card is designed for installation in Sharp personal computer MZ-80B. Install the card in the following procedure.

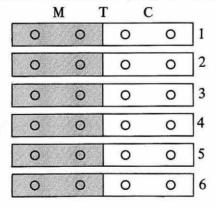
- 1. Set port address, baud rate, and mode of each channel. For this purpose, set the switches and jumper blocks on the card.
- Insert this card into the slot of the MZ-80B expansion unit. There are 6 slots in the expansion unit. Use any one of slot Nos. 1, 2, 4, and 5. For the method of insertion and the installation of expansion unit, refer to the Owner's Manual for MZ-80B.
- 3. Connect the card with other equipment, using signal cable. Signal cable MZ-8BC03 to be exclusively used for this card is sold separately. Fix both ends of the connector connection on the card side, using screws.

Male connector (9 pin) JAE DE-9P or equivalent

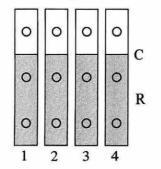
Male connector (25 pin) JAE DB-25P or equivalent

Fig. 4-6 Signal Cable

Setting the card for delivery

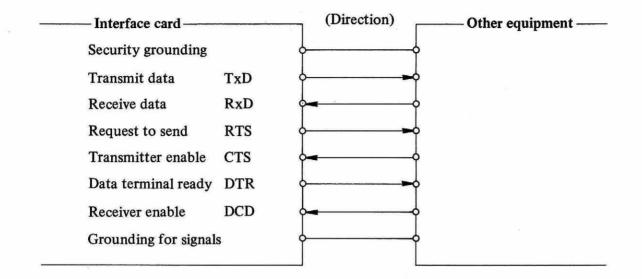

• Port address (SW-1): B0H, B1H, B2H, B3H

Switch segmen	ıt	1	1	2	3	4		5	6	
Switch positio	n	0	N	ON	OFF	OF	F	ON	OFF	
Baud rate (SW-2, S	W-3):	9600 b	aud							
Switch segment	1	2	3	4	5	6	7	8	9	10
Switch position	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON

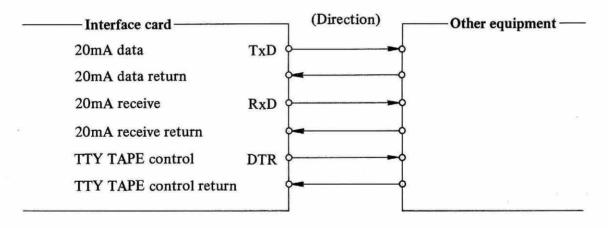

• Terminal mode for Channel A (J-3): Terminal mode

N	A '	Г	_
0	0	0	1
0	0	0	2
0	0	0	3
0	0	0	4
0	0	0	5
0	0	0	6

• Terminal mode for Channel B (J-1): Modem mode

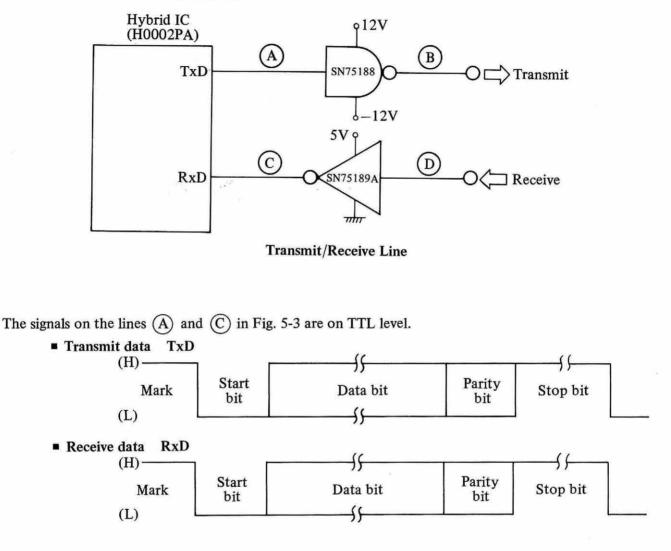


• RS-232C/current loop selection for Channel B (J-2): RS-232C

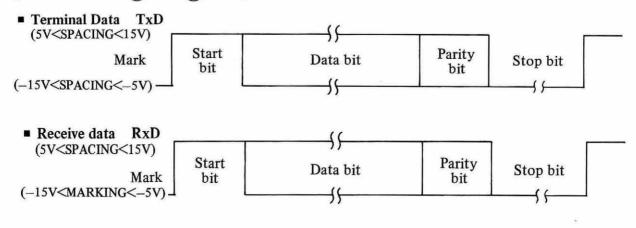


5. Electrical Characteristics of Signals

Direction of signals for RS-232C

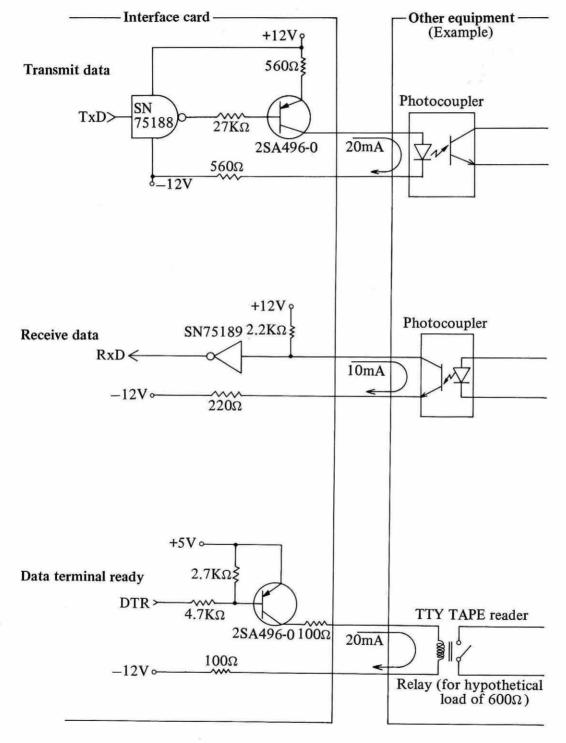


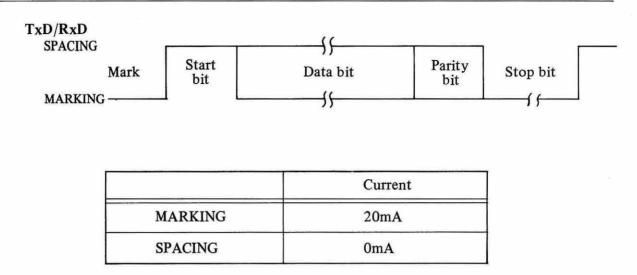
Direction of signals for current loop



Signal level with RS-232C interface

The signal levels (voltage levels) and polarities of transmit data (TxD) and receive data (RxD) with RS-232C interface are as follows.




The signals on the lines (B) and (D) in Fig. 5-3 are on RS-232C level.

Current loop

Current loop permits transmission/receiving of signals on logic levels 1 and 0, depending on the presence/absence of current. The direction of current flow is illustrated below.

Note: Since current value varies depending on load, typical values are shown here.

6. Programming

The interface card transmits data by the asynchronous transmission method. In the asynchronous data communication, a datum is composed of 4 parts: start bit, character length, parity bit, and stop bit, as shown in Fig. 6-1.

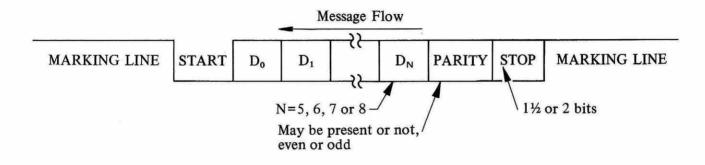
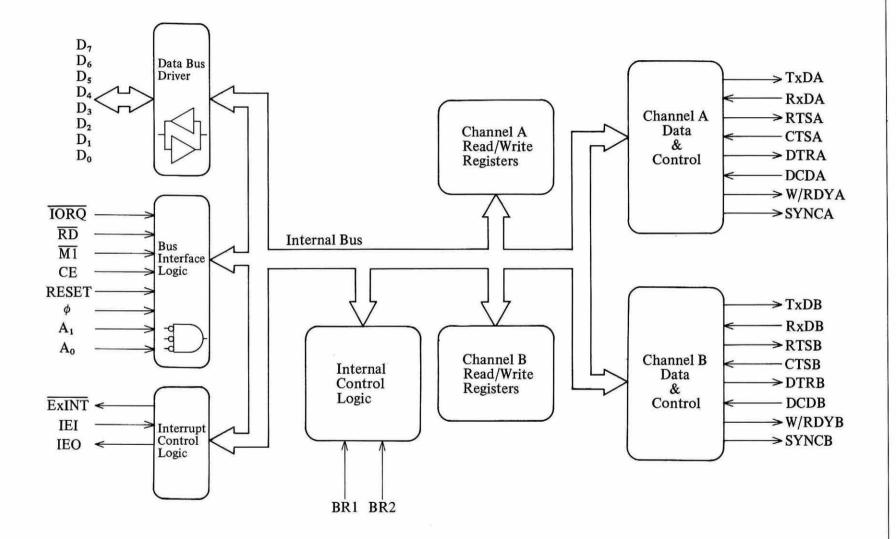



Fig. 6-1 Asynchronous Message Format

The hybrid IC (H0002PA) converts 8-bit parallel data into the message format as shown in Fig. 6-1 to transmit the data according to the predetermined baud rate, and, conversely, receives data, while checking the contents of errors, and convert them into 8-bit parallel data.

The hybrid IC consists of Z80A-SIO/0 logic, interrupt vector logic, bus interface logic, etc., and can be directly connected with Z80A-CPU bus. Further, the direct connection eliminates the necessity of a logic to return interrupt vector in the interrupt mode 2 of Z80-CPU. Fig. 6-2 shows the block diagram of the hybrid IC.

Therefore programming of the hybrid IC can be conceived in the same way as in the case of Z80A-SIO programming. The hybrid IC has two channels (Channel A and Channel B), each of which has a read register and a write register for control of the channel. Table 6-1 shows the relationship between port addresses and transmit/receive data/register, and Table 6-2 shows the registers of each channel.

Fig. 6-2 Block Diagram of Hybrid IC

20

700 CDU	A	ldress	Emetion				
Z80-CPU command	A ₁	A ₀	Function				
IN	L	L	Channel A receive data read				
IN	L	н	Channel A register read				
IN	н	L	Channel B receive data read				
IN	н	н	Channel B register read				
OUT	L	L	Channel A transmit data write				
OUT	L	н	Channel A register write				
OUT	н	L	Channel B transmit data write				
OUT	Н	Н	Channel B register write				

Table 6-1,

Table 6-2. Read/Write Registers

Channel A	Write register	WR0	WR1	-	WR3	WR4	WR5	WR6	WR7
Channel A	Read register	RR0	RR1						
ci 1 D	Write register	WR0	WR1	WR2	WR3	WR4	WR5	WR6	WR7
Channel B	Read register	RR0	RR1	RR2		•			

In order to carry out transmission/receiving of data via this interface card, the following three programs (mode setting, input, and output) are required basically. For details, refer to the description of the registers which will be given later.

Mode setting program

Particulars of asynchronous data communication must be set in the first place. Mode setting includes the following.

- Magnification of clock rate (Set at x 16)
- Number of stop bits (1, 1½, or 2)
- Presence/absence of parity bit
- Designation of odd or even parity, if any
- Transmit/receive character length (5, 6, 7, or 8 bits)

Input program

Program to read the data received by the hybrid IC.

Error check:	Checks D_6 , D_5 , and D_4 of read register PR1.
Data read:	Checks D_0 of read register RR0, and reads data if it is 1.

Output program

Program to write data to be transmitted to the hybrid IC. This program checks D_9 of the register RR0 and writes data it is 1. After that, start bit, parity bit, and stop bit are automatically added for transmission.

Example of control program

A list by assembler language is shown as an example of control program using this interface card.

Set port address	S
Channel A/data:	BOH
Channel A/control:	B1H
Channel B/data:	B2H
Channel B/control:	B3H

Mode setting parameters

Clock rate:x 16Stop bit:2 bitsParity:PresentOdd/even of parity:EvenTransmit/receivecharacter length:8 bitsDTR, RTS:Set

** Z80 ASSEMBLER SB-7201 (SIF-ROUTINE) PAGE 01 01 0000 02 0000 . 03 0000 ; Serial I/F Subroutine for MZ-8BI03 on MZ-80B 04 0000 : 05 0000 06 0000 ; 07 F000 ORG FOOOH 08 F000 ; 09 F000 ;*** Port Address Equation *** 10 F000 : 11 F000 P CHADT: EQU BOH ; channel A data port 12 F000 P CHACT: EQU B1H ; channel A control port 13 F000 P CHBDT: EQU B2H ; channel B data port 14 F000 P CHBCT: EQU **B**3H ; channel B control port 15 F000 5 16 F000 ;*** Parameter *** 17 F000 ; 18 F000 WR: ENT 19 F000 18 DEFB 188 ; channel reset 20 F001 10 DEFB 10H : EXT/STATUS reset 21 F002 10 DEFB 10H ; EXT/STATUS reset 22 F003 04 WR4: DEFB 4 ; register NO. 23 F004 4F DEFB 4FH ; x16,2stop,EV,PE 24 F005 05 WR5: DEFB 5 ; register NO. 25 F006 EA DEFB EAH \$ DTR,TxDT=8,TxEN,RTS 26 F007 03 WR3: DEFB 3 ; register NO. 27 F008 C0 : RxDT=8 COH DEFB 28 F009 1 29 F009 MODE: ENT ; mode set 30 F009 0EB1 C+CHACT LD ; CH.A port adr. load 31 FOOB 0609 LD B . 9 32 FOOD 2100F0 HL, WR LD 33 F010 EDB3 OTIR ; parameter transfer 34 F012 0EB3 LD C+CHBCT ; CH.B port adr. load 35 F014 0609 LD B,9 36 F016 2100F0 LD HL + WR 37 F019 EDB3 OTIR ; parameter transfer 38 F01B 3E03 A+3 LD ; CH.A RxEN 39 F01D D3B1 OUT (CHACT),A 5 40 F01F 3A08F0 LD A+ (WR3+1) . 41 F022 F601 OR 1 42 F024 D3B1 OUT (CHACT),A 43 F026 3E03 LD A + 3 ; CH.B RXEN 44 F028 D3B3 OUT (CHBCT),A 45 F02A 3A08F0 LD A, (WR3+1) 46 F02D F601 OR 1 47 F02F D3B3 OUT (CHBCT),A 48 F031 C9. RET 49 F032 SKP н

à

1

	**	Z 80	ASSEMBLER	SB-7	7201	<si< th=""><th>F-ROUT</th><th>[INE ></th><th>PAGE</th><th>02</th><th></th><th></th><th></th><th></th><th></th></si<>	F-ROUT	[INE >	PAGE	02					
01	F032				;										
02	F032					INF	UT ROU	ITINE							
	F032				;		F=0 :								
	F032				;		F=1 :				110100	الد در مدر			
	F032				;	(1				DR Error					
	F032				;					ERROR					
	F032				;					ERROR		NO			
09	F032				;										
	F032				INER@	:	ENT				;	error	code	buffer	
1211222	F032				-		DEFS	1							
	F033 F033				; CHAIN		ENT								
	F033		31		CHAIN	•	IN	A. (CH	ACT)			channe			
	F035		-				RRCA	67 Y 91				Lecel	ve che		
	F036						RET	NC							
	F037						LD	A + 1							
	F039						OUT	(CHAC							
	F03B						IN		ACT)		;	error	code	input	
	F03D F03F						AND	70H	(@),A						
	F042						IN		ADT)			error charad			
	F044						SCF	H7 (\$1			,	charat	Ler 1	ιρυι	
	F045						RET								
	F046				;										
	F046		-		CHBIN	:	ENT				;	channe	el Bi	nput	
	F046		33				IN	A,(CH	(BCT)		;	receiv	ve che	ck	
	F048 F049						RRCA RET	NC							
	F04A		1				LD	A+1							
	F04C						OUT		T),A						
32	F04E	DBB	33				IN		BCT)		;	error	code	input	
	F050						AND	70H							
	F052						LD		@),A			error			
	F055		32				IN	A,(CH	(BDT)		;	charad	ter i	nput	
	F057 F058						SCF								
	F059				;										
	F059					UTF	UT ROL	JTINE							
	F059				5	(ACC) =	DATA	8						
	F059				;	T -						1000			
	F059 F059				CHAQU		PUSH	AF			;	channe	el A d	outoput	
	F054		1		AOUT 1		IN		ACT)		;	buffer	empt	y check	
	F05C					~	BIT	2 , A			0.00				
	F05E		A				JR	Z + AOL	T 1						
	F060						POP	AF							
	F061		10				OUT	(CHAI	T),A		;	charad	ter o	output	
	F063 F064	UУ			;		RET								
	F064				,	т:	ENT				;	channe	el B c	utput	
	F064	F5				edii 17	PUSH	AF			1982				
	F065				BOUT1	:	IN	A, (CH	BCT)		;	buffer	empt	y check	
	F067						BIT	2,A	_						
	F069		A				JR	Z,BOL	IT 1						
	F06B F06C		12				POP OUT	AF	T) + A			charad	ter -	ut sut	
	F06E		· <u>2</u> .				RET	VAUDT	1770		7	- nara(LUEP U	JULPUL	
	F06F	- /					END								

24

Interrupts

The following paragraphs describe the use of interrupt between Z80-CPU and the interface card.

The Z80-SIO offers an elaborate interrupt scheme to provide fast interrupt response in real-time applications. As mentioned earlier, Channel B registers WR2 and RR2 contain the interrupt vector that points to an interrupt service routine in the memory. To service operations in both channels and to eliminate the necessity of writing a status analysis routine, the Z80-SIO can modify the interrupt vector in RR2 so it points directly to one of eight interrupt service routines. This is done under program control by setting a program bit (WR1, D_2) in Channel B called "Status Affects Vector." When this bit is set, the interrupt vector in WR2 is modified according to the assigned priority of the various interrupting conditions.

Transmit interrupts, Receive interrupts and External/Status interrupts are the main sources of interrupts (Figure 6-3). Each interrupt source is enabled under program control with Channel A having a higher priority than Channel B, and with Receiver, Transmit and External/Status interrupts prioritized in that order within each channel. When the Transmit interrupt is enabled, the CPU is interrupted by the transmit buffer *becoming* empty. (This implies that the transmitter must have had a data character written into it so it can become empty.) When enabled, the receiver can interrupt the CPU in one of three ways:

- Interrupt on first receive character
- Interrupt on all receive characters
- Interrupt on a Special Receive condition

Interrupt On First Character is typically used with the Block Transfer mode. Interrupt On All Receive Characters has the option of modifying the interrupt vector in the event of a parity error. The Special Receive Condition interrupt can occur on a character or message basis (End Of Frame interrupt in SDLC, for example). The Special Receive condition can cause an interrupt only if the Interrupt On First Receive Character of Interrupt On All Receive Characters mode is selected. In Interrupt On First Receive Character, an interrupt can occur from Special Receive conditions (except Parity Error) after the first receive character interrupt (example: Receive Overrun interrupt).

The main function of the External/Status interrupt is to monitor the signal transitions of the $\overline{\text{CTS}}$, $\overline{\text{DCD}}$ and $\overline{\text{SYNC}}$ pins; however, an External/Status interrupt is also caused by a Transmit Underrun condition or by the detection of a Break (Asynchronous mode) or Abort (SDLC mode) sequence in the data stream. The interrupt caused by the Break/Abort sequence has a special feature that allows the Z80-SIO to interrupt when the Break/Abort sequence is detected or terminated. This feature facilitates the proper termination of the current message, correct initialization of the next message, and the accurate timing of the Break/Abort condition in external logic.

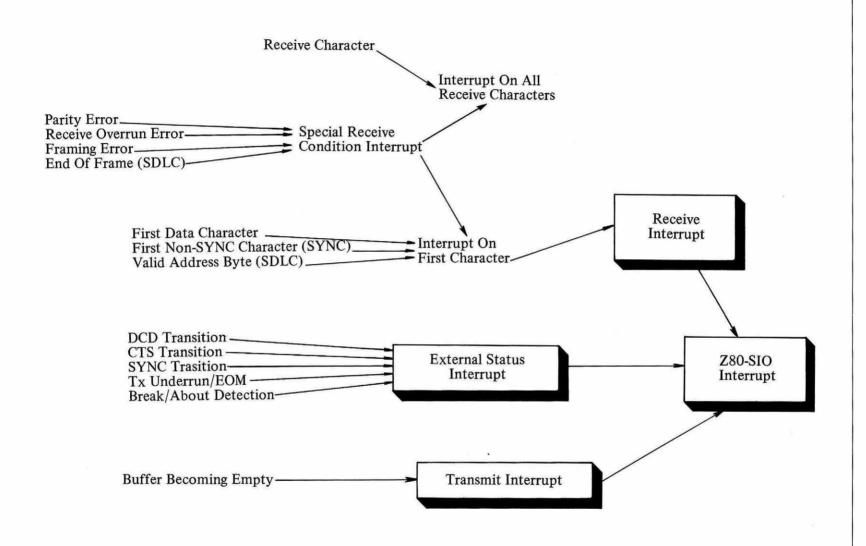


Fig. 6-3 Interrupt Structure

26

7. Z80-SIO Registers

As mentioned earlier, Z80-SIO incorporated in the hybrid IC has a write register and a read register for each channel.

The bit assignment and functional grouping of each register is configured to simplify and organize the programming process. Table 7-1 illustrates the functions assigned to each read or write register.

Register	Function
WR0	Resister pointers, CRC initialize, initialization commands for the various modes, etc.
WR1	Transmit/Receive interrupt and data transfer mode definition.
WR2	Interrupt vector (Channel B only)
WR3	Receive parameters and controls
WR4	Transmit/Receive miscellaneous parameters and modes
WR5	Transmit parameters and controls
WR6	Sync character of SDLC address field
WR7	Sync character or SDLC flag

Table 7-1. Functional Assignments of Read and Write Registers

(a) Write Register

Register	Function
RR0	Transmit/Receive buffer status, interrupt status and external status
RR1	Special Receive Condition status
RR2	Modified interrupt vector (Channel B only)

(b) Read Register

Sinch this interface card is designed exclusively for asynchrounous data communication, it cannot be applied to synchrounous communication.

Write Registers

The Z80-SIO contains eight registers (WR0–WR7) in each channel that are programmed separately by the system program to configure the functional personality of the channels. With the exception of WR0, programming the write registers requires two bytes. The first byte contains three bits (D_0-D_2) that point to the selected register; the second byte is the actual control word that is written into the register to configure the Z80-SIO.

Note that the programmer has complete freedom, after pointing to the selected register, of either reading to test the read register or writing to initialize the write register. By designing software to initialize the Z80-SIO in a modular and structured fashion, the programmer can use powerful block I/O instructions.

WR0 is a special case in that all the basic commands (CMD_0-CMD_2) can be accessed with a single byte. Reset (internal or external) initializes the pointer bits D_0-D_2 to point to WR0.

The basic commands (CMD_0-CMD_2) and the CRC controls (CRC_0, CRC_1) are contained in the first byte of any write reigster access. This maintains maximum flexibility and system control. Each channel contains the following control registers. These registers are addressed as commands (not data).

(1) WRITE REGISTER 0

WR0 is the command register; however, it is also used for CRC reset codes and to point to the other registers.

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
CRC Reset Code 1	CRC Reset Code 0	CMD 2	CMD 1	CMD 0	PTR 2	PTR 1	PRT 0
	I						
			Control Word	1	R	legister	Point

(1) Pointer Bits $(D_0 - D_2)$

Bits $D_0 - D_2$ are pointer bits that determine which other write register the next byte is to be written into or which read register the next byte is to be read from. The first byte written into each channel after a reset (either by a Reset command or by the external reset input) goes into WR0. Following a read or write to any register (except WR0), the pointer will point to WR0.

Command Bits (D₃-D₅)

Three bits, $D_3 - D_5$, are encoded to issue the seven basic Z80-SIO cor	Three bits, $D_3 - D_5$,	are encoded to	issue the seven	basic Z80-SIO	commands.
--	---------------------------	----------------	-----------------	---------------	-----------

Command	CMD ₂	CMD ₁	CMD ₀	
0	0	0	0	Null Command (no effect)
1	0	0	1	Send Abort (SDLC Mode)
2	0	1	0	Reset External/Status Interrupts
3	0	1	1	Channel Reset
4	1	0	0	Enable Interrupt on next Rx Character
5	1	0	1	Reset Transmitter Interrupt Pending
6	1	1	0	Error Reset (latches)
7	1	1	1	Return from Interrupt (Channel A)

Command 0 (Null)

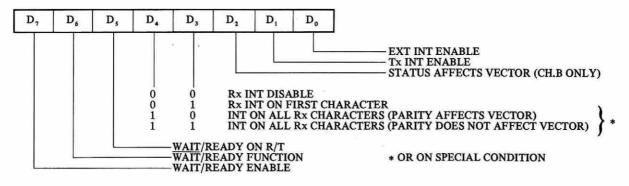
The Null command has no effect. Its normal use is to cause the Z80-SIO to do nothing while the pointers are set for the following byte.

Command 1 (Send Abort)

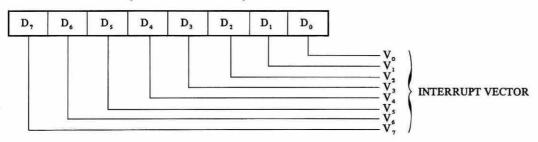
This command is used only with the SDLC mode to generate a sequence of eight to thirteen 1's.

Command 2 (Reset External/Status Interrupts)

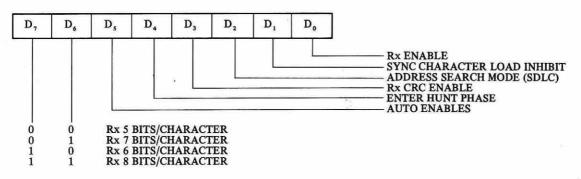
After an External/Status interrupt (a change on a modem line or a break condition, for example), the status bits of RR0 are latched. This command re-enables them and allows interrupts to occur again. Latching the status bits captures short pulses until the CPU has time to read the change.


Command 3 (Channel Reset)

This command performs the same function as an External Reset, but only on a single channel. Channel A Reset also resets the interrupt prioritization logic. All control registers for the channel must be rewritten after a Channel Reset command.


WRITE REGISTER 0

D,	D ₆	D ₅	D4	D ₃	D2	D ₁	Do]
					0	0		REGISTER 0
					ŏ	ŏ	ĭ	REGISTER 1
			6		ŏ	1	õ	REGISTER 2
					Õ	ĩ	ĩ	REGISTER 3
					1	0	Õ	REGISTER 4
					1	0	1	REGISTER 5
					1	1	0	REGISTER 6
					1	1	1	REGISTER 7
		ó	ó	ò	NUL	L CODE		
		0	0	1			T (SDLC	:)
		0	1	0	RESE	ET EXT/	STATUS	INTERRUPTS
		0	1	1	CHA	NNEL R	ESET	
		1	0	0				XT Rx CHARACTER
		1	0	1			T PENDI	ING
		1	1	0		OR RES		
1		1	1	1	RET	URN FR	OM INT	(CH-A ONLY)
0	0	NUL	L CODE					
Õ	1	RESE	ET Rx C	RC CHE	CKER			
1	0				ERATOF	2		
1	1	RESE	ET Tx UI	NDERR	UN/EOM	LATCH	L .	


WRITE REGISTER 1

WRITE REGISTER 2 (CHANNEL B ONLY)

WRITE REGISTER 3

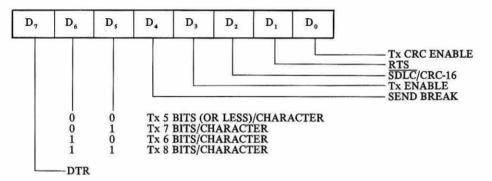
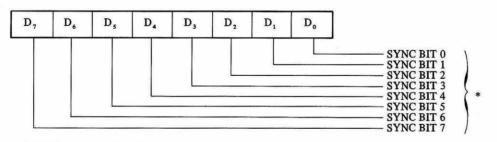
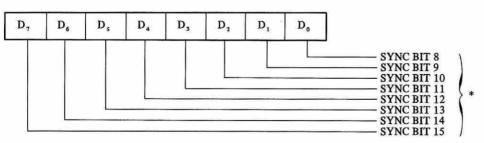


Figure 7-2. Write Register Bit Functions (I)


WRITE REGISTER 4

D,	D ₆	Ds	D4	D3	D ₂	D1	Do]
				0	0	1 ST	OP BIT/O	PARITY ENABLE PARITY EVEN/ODD S ENABLE CHARACTER
				$1 \\ 1$	0 1	1½ S 2 ST	OP BITS	S/CHARACTER /CHARACTER
		0 0 1 1	0 1 0 1	16 B SDL	F SYNC IT SYNC C MODE ERNAL	CHARA (01111)	ACTER 110 FLA	G)
0 0 1 1	0 1 0 1	x16 x32	LOCK M CLOCK CLOCK CLOCK	MODE MODE				

WRITE REGISTER 5



WRITE REGISTER 6

* ALSO SDLC ADDRESS FIELD

WRITE REGISTER 7

-

* FOR SDLC IT MUST BE PROGRAMMED TO "01111110" FOR FLAG RECOGNITION Fig. 7-2 Write Register Bit Functions (II) After a Channel Reset, four extra system clock cycles should be allowed for Z80-SIO reset time before any additional commands or controls are written into that channel. This can normally be the time used by the CPU to fetch the next op code.

Command 4 (Enable interrupt On Next Receive Character)

If the Interrupt On First Receive Character mode is selected, this command reactivates that mode after each complete message is received to prepare the Z80-SIO for the next message.

Command 5 (Reset Transmitter Interrupt Pending)

The transmitter interrupts when the transmit buffer becomes empty if the Transmit Interrupt Enable mode is selected. In those cases where these are no more characters to be sent (at the end of message, for example), issueing this command prevents further transmitter interrupts until after the next character has been loaded into the transmit buffer or until CRC has been completely sent.

Command 6 (Error Reset)

This command resets the error latches. Parity and Overrun errors are latched in RR1 until they are reset with this command. With this scheme, parity errors occurring in block transfers can be examined at the end of the block.

Command 7 (Return From Interrupt)

This command must be issued in Channel A and is interpreted by the Z80-SIO in exactly the same way it would interpret an RETI command on the data bus. It resets the interrupt-under-service latch of the highest-priority internal device under service and thus allows lower priority devices to interrupt via the daisy chain. This command allows use of the internal daisy chain even in systems with no external daisy chain or RETI command.

\bigcirc CRC Reset Codes 0 and 1 (D₆ and D₇)

Together, these bits select one of the three following reset command:

Code 1 (D_7)	Code 0 (D ₆)	Reset Command
0	0	Null Code (no affect)
0	1	Reset Receive CRC Checker
1	0	Reset Transmit CRC Generator
1	1	Reset Tx Underrun/End Of Message Latch

The Reset Transmit CRC Generator command normally initializes the CRC generator to all 0's. If the SDLC mode is selected, this command initializes the CRC generator to all 1's. The Receive CRC checker is also initialized to all 1's for the SDLC mode.

33

(2) WRITE REGISTER 1

WR1 contains the control bits for the various interrupt and Wait/Ready modes.

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
Wait/ Ready Enable	Wait Or Ready Function	Wait/ Ready On Receive/ Transmit	Receive Interrupt Mode 1	Receive Interrupt Mode 0	Status Affects Vector	Transmit Interrupt Enable	External Interrupts Enable

(1) External/Status Interrupt Enable (D₀)

The External/Status Interrupt Enable allows interrupts to occur as a result of transitions on the $\overline{\text{DCD}}$, $\overline{\text{CTS}}$ or $\overline{\text{SYNC}}$ inputs, as a result of a Break/Abort detection and termination, or at the beginning of CRC or sync character transmission when the Transmit Underrun/EOM latch becomes set.

(2) Transmitter Interrupt Enable (D_1)

If enabled, interrupts occur whenever the transmitter buffer becomes empty.

③ Status Affects Vector (D₂)

This bit is active in Channel B only. If this bit is not set, the fixed vector programmed in WR2 is returned from an interrupt acknowledge sequence. If this bit is set, the vector returned from an interrupt acknowledge is variable according to the following interrupt conditions:

Channel	V ₃	V ₂	V ₁	Interrupt Conditions	
В -	0	0	0	Transmit Buffer Empty	
	0	0	1	External/Satus Change	
	0	1	0	Receive Character Available	
	0	1	1	Special Receive Condition *	
A	1	0	0	Transmit Buffer Empty	
	1	0	1	External/Status Change	
	1	1	0	Receive Character Available	
	1	1	1	Special Receive Condition *	

(4) Receive Interrupt Modes 0 and 1 (D₃ and D₄)

Together these two bits specify the various character-available conditions. In Receive Interrupt modes 1, 2 and 3, a Special Receive Condition can cause an interrupt and modify the interrupt vector.

Mode	D4 ReceiveD3 ReceiveInterruptInterruptMode 1Mode 0		Description
0	0	0	Receive Interrupts Disabled
1	0	1	Receive Interrupt On First Character Only
2	1	0	Interrupt On All Receive Characters (Parity error is a Special Receive condition)
3	3 1 1		Interrupt On All Receive Characters (Parity error is not a Special Receive condition)

(5) Wait/Ready Function Selection $(D_5 - D_7)$

The Wait and Ready functions are selected by controlling D_5 , D_6 and D_7 . Wait/Ready function is enabled by setting Wait/Ready Enable (WR1, D_7) to 1. The Ready function is selected by setting D_6 (Wait/Ready function) to 1. If this bit is 1, the WAIT/READY output switches from High to Low when the Z80-SIO is ready to transfer data. The Wait function is selected by setting D_6 to 0. If this bit is 0, the WAIT/READY output is in the open-drain state and goes Low when active.

Both the Wait and Ready functions can be used in either the Transmit or Receive modes, but not both simultaneously. If D_5 (Wait/Ready on Receive/Transmit) is set to 1, the Wait/Ready function responds to the condition of the receive buffer (empty or full). If D_5 is set to 0, the Wait/Ready function responds to the condition of the transmit buffer (empty or full).

D ₇	D ₅	D ₆	Selected Functions	Logic States of WAIT/READY Output
0		0	WAIT	Floating (Low when it is active)
0		1	READY	High
	0 (Transmit)	0	WAIT	Low when transmit buffer is full and an SIO data port is selected. Floating when transmit buffer is empty.
1		1	READY	High when transmit buffer is full. Low when transmit buffer is empty.
1	1 (Receive)	0	WAIT	Floating when receive buffer is full. Low when receive buffer is empty and an SIO data port is selected.
(Receive)	(Receive)	1	READY	Low when receive buffer is full. High when receive buffer is empty.

The logic states of the WAIT/READY output when active or inactive depend on the combination of modes selected. Following is a summary of these combinations:

The WAIT output High-to-Low transition occurs with the delay time $t_DIC(WR)$ after the I/O request. The Low-to-High transition occurs with the delay $t_DH\phi(WR)$ from the falling edge of ϕ . The READY output High-to-Low transition occurs with the delay $t_DL\phi(WR)$ from the rising edge of ϕ . The READY output Low-to-High transition occurs with the delay $t_DL\phi(WR)$ after \overline{IORQ} falls.

The Ready function can occur any time the Z80-SIO is not selected. When the $\overline{\text{READY}}$ output becomes active (Low), the DMA controller issues $\overline{\text{IORQ}}$ and the corresponding B/\overline{A} and C/\overline{D} inputs to the Z80-SIO to transfer data. The $\overline{\text{READY}}$ output becomes inactive as soon as $\overline{\text{IORQ}}$ and $\overline{\text{CS}}$ becomes active. Since the Ready function can occur internally in the Z80-SIO whether it is addressed or not, the $\overline{\text{READY}}$ output becomes inactive when any CPU data or command transfer takes place. This does not cause problems because the DMA controller is not enabled when the CPU transfer takes place.

The Wait function – on the other hand – is active only if the CPU attempts to read Z80-SIO data that has not yet been received, which occurs frequently when block transfer instructions are used. The Wait function can also become active (under program control) if the CPU tries to write data while the transmit buffer is still full. The fact that the \overline{WAIT} output for either channel can become active when the opposite channel is addressed (because the Z80-SIO is addressed) does not affect operation of software loops or block move instructions.

(3) WRITE REGISTER 2

WR2 is the interrupt vector register; it exists in Channel B only. $V_4 - V_7$ and V_0 are always returned exactly as written; $V_1 - V_3$ are returned as written if the Status Affects Vector (WR1, D₂) control bit is 0. If this bit is 1, they are modified as explained in the previous section.

D7	D ₆	D ₅	D ₄	D ₃	D_2	D_1	D ₀
V ₇	V ₆	V ₅	V4	V ₃	V ₂	V ₁	Vo

(4) WRITE REGISTER 3

WR3 contains receiver logic control bits and parameters.

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
Receiver Bits/ Char 1	Receiver Bits/ Char 0	Auto Enables	Enter Hunt Phase	Receiver CRC Enable	Address Search Mode	Sync Char Load Inhibit	Receiver Enable

(1) Receiver Enable (D_0)

A 1 programmed into this bit allows receive operations to begin. This bit should be set only after all other receive parameters are set and receiver is completely initialized.

② Sync Character Load Inhibit (D₁)

Sync characters preceding the message (leading sync characters) are not loaded into the receive buffers if this option is selected. Because CRC calculations are not stopped by sync character stripping, this feature should be enabled only at the beginning of the message.

\bigcirc Address Search Mode (D₂)

If SDLC is selected, setting this mode causes messages with addresses not matching the programmed address in WR6 or the global (11111111) address to be rejected. In other words, no receive interrupts can occur in the Address Search mode unless there is an address match.

36

A Receiver CRC Enable (D₃)

If this bit is set, CRC calculation starts (or restarts) at the beginning of the last character transferred from the receive shift register to the buffer stack, regardless of the number of characters in the stack.

(5) Enter Hunt Phase (D_4)

The Z80-SIO automatically enters the Hunt phase after a reset; however, it can be re-entered if character synchronization is lost for any reason (Synchronous mode) or if the contents of an incoming message are not needed (SDLC mode). The Hunt phase is re-entered by writing a 1 into bit D_4 . This sets the Sync/Hunt bit (D_4) in RR0.

6 Auto Enables (D₅)

If this mode is selected, $\overline{\text{DCD}}$ and $\overline{\text{CTS}}$ become the receiver and transmitter enables, respectively. If this bit is not set, $\overline{\text{DCD}}$ and $\overline{\text{CTS}}$ are simply inputs to their corresponding status bits in RR0.

\bigcirc Receiver Bits/Characters 1 and 0 (D₇ and D₆)

Together, these bits determine the number of serial receive bits assembled to form a character. Both bits may be changed during the time that a character is being assembled, but they must be changed before the number of bits currently programmed is reached.

D ₇	D ₆	Bits/Character
0	0	5
0	1	7
1	0	6
1	1	8

(5) WRITE REGISTER 4

WR4 contains the control bits that affect both the receiver and transmitter. In the transmit and receive intialization routine, these bits should be set before issueing WR1, WR3, WR5, WR6, and WR7,

D ₇	D ₆	Ds	D ₄	D ₃	D ₂	D ₁	Do
Clock	Clock	Sync	Sync	Stop	Stop	Parity	Parity
Rate	Rate	Modes	Modes	Bits	Bits	Even/	
1	0	1	O	1	0	Odd	

1 Parity (D₀)

If this bit is set, an additional bit position (in addition to those specified in the bits/character control) is added to transmitted data and is expected in receive data. In the Receive mode, the parity bit received is transferred to the CPU as part of the character, unless 8 bits/character is selected.

2 Parity Even/ $\overline{\text{Odd}}$ (D₁)

If parity is specified, this bit determines whether it is sent and checked as even or odd (1 = even).

\bigcirc Stop Bits 0 and 1 (D₂ and D₃)

These bits determine the number of stop bits added to each asynchronous character sent. The receiver always checks for one stop bit. A special mode (00) signifies that a synchronous mode is to be selected.

D3 Stop Bits 1	D ₂ Stop Bits 0	Stop Bit		
0	0	Sync modes		
0	1	1 stop bit per character		
1	0	1½ stop bits per character		
1	1	2 stop bits per character		

(4) Sync Mode 0 and 1 (D_4 and D_5)

These bits select the various options for character synchronization.

D5 Sync Mode 1	D ₄ Sync Mode 0	Sync Mode			
0	0	8-bit programmed sync			
0	1	16-bit programmed sync			
1	0	SDLC mode (01111110 flag pattern)			
1 1		External Sync mode			

(5) Clock Rate 0 and 1 (D₆ and D₇)

These bits specify the multiplier between the clock ($\overline{\text{TxC}}$ and $\overline{\text{RxC}}$) and data rates. For synchronous modes, the x1 clock rate must be specified. Any rate may be specified for asynchronous modes; however, the same rate must be used for both the receiver and transmitter. The system clock in all modes must be at least 4.5 times the data rate. If the x1 clock rate is selected, bit synchronization must be accomplished externally.

D ₇ Clock Rate 1	D ₆ Clock Rate 0	Clock Rate		
0	0	Data Rate x 1 = Clock Rate		
0	1	Data Rate x 16 = Clock Rate		
1	0	Data Rate x $32 = $ Clock Rate		
1	1	Data Rate x 64 = Clock Rate		

(6) WRITE REGISTER 5

WR5 contains control bits that affect the operation of transmitter, with the exception of D_2 , which affects the transmitter and receiver.

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
DTR	Tx Bits/ Char 1	Tx Bits/ Char 0	Send Break	Tx Enable	CRC-16/ SDLC	RTS	Tx CRC Enable

(1) Transmit CRC Enable (D_0)

This bit determines if CRC is calculated on a particular transmit character. If it is set at the time the character is loaded from the transmit buffer into the transmit shift register, CRC is calculated on the character. CRC is not automatically sent unless this bit is set when the Transmit Underrun condition exists.

(2) Request To Sent (D_1)

This is the control bit for the $\overline{\text{RTS}}$ pin. When the $\overline{\text{RTS}}$ bit is set, the $\overline{\text{RTS}}$ pin goes Low; when reset, $\overline{\text{RTS}}$ goes High. In the Asynchronous mode, $\overline{\text{RTS}}$ goes High only after all the bits of the character are transmitted and the transmitter buffer is empty. In Synchronous modes, the pin directly follows the state of the bit.

\bigcirc CRC-16/SDLC (D₂)

This bit selects the CRC polynomial used by both the transmitter and receiver. When set, the CRC-16 polynomial $(X^{16} + X^{15} + X^2 + 1)$ is used; when reset the SDLC polynomial $(X^{16} + X^{12} + X^5 + 1)$ is used. If the SDLC mode is selected, the CRC generator and checker are preset to all 1's and a special check sequence is used. The SDLC CRC polynomial must be selected when the SDLC mode is selected. If the SDLC mode is not selected, the CRC generator and checker are preset to all 0's (for both polynomials).

(4) Transmit Enable (D_3)

Data is not transmitted until this bit is set, and the Transmit Data output is held marking. Data or sync characters in the process of being transmitted are completely sent if this bit is reset after transmission has started. If the transmitter is disabled during the transmission of a CRC character, sync of flag characters are sent instead of CRC.

Send Break (D₄)

When set, this bit immediately forces the Transmit Data output to the spacing condition, regardless of any data being transmitted. When reset, TxD returns to marking.

Transmit Bits/Characters 0 and 1 (D₅ and D₆)

Together, D_6 and D_5 control the number of bits in each byte transferred to the transmit buffer.

D ₆ Transmit Bits/ Character 1	D ₅ Transmit Bits/ Character 0	Bits/Character	
0	0	Five or less	
0	1	7	
1	0	6	
1	1	8	

Bits to be sent must be right justified, least-significant bits first. The Five Or Less mode allows transmission of one to five bits per character; however, the CPU should format the data character as shown in the following table.

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Transmit Bits/Character
1	1	1	1	0	0	0	D	1
1	1	1	0	0	0	D	D	2
1	1	0	0	0	D	D	D	3
1	0	0	0	D	D	D	D	4
0	0	0	D	D	D	D	D	5

D: Data bit

⑦ Data Terminal Ready (D₇)

This is the control bit for the $\overline{\text{DTR}}$ pin. When set, $\overline{\text{DTR}}$ is active (Low); when reset, $\overline{\text{DTR}}$ is in-active (High).

41

(7) WRITE REGISTER 6

This register is programmed to contain the transmit sync character in the Monosync mode, the first eight bits of a 16-bit sync character in the Bisync mode, or a transmit sync character in the External Sync mode. In the SDLC mode, it is programmed to contain the secondary address field used to compare against the address field of the SDLC frame.

D ₇	D ₆	D ₅	D_4	D ₃	D_2	\mathbf{D}_1	Do
Sync 7	Sync 6	Sync 5	Sync 4	Sync 3	Sync 2	Sync 1	Sync 0

(8) WRITE REGISTER 7

This register is programmed to contain the receive sync character in the Monosync mode, a second byte (last eight bits) of a 16-bit sync character in the Bisync mode, or a flag character (01111110) in the SDLC mode. WR7 is not used in the External Sync mode.

\mathbf{D}_7	\mathbf{D}_{6}	D_5	D_4	D ₃	D_2	\mathbf{D}_1	Do
Sync 15	Sync 14	Sync 13	Sync 12	Sync 11	Sync 10	Sync 9	Sync 8

Sync Mode	WR6	WR7
Monosync	Transmit sync character	Receive sync character
Bisync	First 8 bits of a 16-bit sync character	Last 8 bits of a 16-bit sync character
External Sync	Transmit sync character	Not used
SDLC	SDLC check address	SDLC flag (0111 1110)

Read Registers

The Z80-SIO contains three registers, RR0-RR2 (Figure 10), that can be read to obtain the status information for each channel (except for RR2-Channel B only). The status information includes error conditions, interrupt vector and standard communications-interface signals.

To read the contents of a selected read register other than RR0, the system program must first write the pointer byte to WR0 in exactly the same way as a write register operation. Then, by executing an input instruction, the contents of the addressed read register can be read by the CPU.

The status bits of RR0 and RR1 are carefully grouped to simplify status monitoring. For example, when the interrupt vector indicates that a Special Receive Condition interrupt has occurred, all the appropriate error bits can be read from a single register (RR1).

(1) READ REGISTER 0

This register contains the status of the receive and transmit buffers; the $\overline{\text{DCD}}$, $\overline{\text{CTS}}$ and $\overline{\text{SYNC}}$ inputs; the Transmit Underrun/EOM latch; and the Break/Abort latch.

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
Break/ Abort	Transmit Underrun/ EOM	CTS	Sync/ Hunt	DCD	Transmit Buffer Empty	Interrupt Pending (Ch. A only)	Receive Character Available

(1) Receive Character Available (D_0)

This bit is set when at least one character is available in the receive buffer; it is reset when the receive FIFO is completely empty.

\bigcirc Interrupt Pending (D₁)

Any interrupting condition in the Z80-SIO causes this bit to be set; however, it is readable only in Channel A. This bit is mainly used in applications that do not have vectored interrupts available. During the interrupt service routine in these applications, this bit indicates if any interrupt conditions are present in the Z80-SIO. This eliminates the need for analyzing all the bits of RR0 in both Channels A and B. Bit D_1 is reset when all the interrupting conditions are satisfied. This bit is always 0 in Channel B.

③ Transmit Buffer Empty (D_2)

This bit is set whenever the transmit buffer becomes empty, except when a CRC character is being sent in a synchronous or SDLC mode. The bit is reset when a character is loaded into the transmit buffer. This bit is in the set condition after a reset.

(4) Data Carrier Detect (D_3)

The DCD bit shows the state of the $\overline{\text{DCD}}$ input at the time of the last change of any of the five External/Status bits (DCD, CTS, Sync/Hunt, Break/Abort of Transmit Underrun/EOM). Any transition of the $\overline{\text{DCD}}$ input causes the DCD bit to be latched and causes an External/Status interrupt. To read the current state of the DCD bit, this bit must be read immediately following a Reset External/Status interrupt command.

5 Sync/Hunt (D₄)

Since this bit is controlled differently in the Asynchronous, Synchronous and SDLC modes, its operation is somewhat more complex than that of the other bits and therefore requires more explanation.

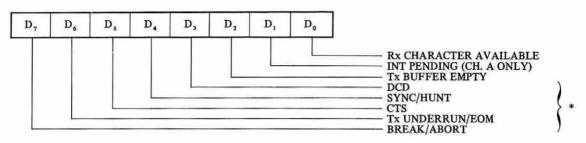
In asynchronous modes, the operation of this bit is similar to the DCD status bit, except that Sync/Hunt shows the state of the \overline{SYNC} input. Any High-to-Low transition on the \overline{SYNC} pin sets this bit and causes an External/Status interrupt (if enabled). The Reset External/Status Interrupt command is issued to clear the interrupt. A Low-to-High transition clears this bit and sets the External/Status interrupt. When the External/Status interrupt is set by the change in state of any other input or condition, this bit shows the inverted state of the \overline{SYNC} pin at the time of the change. This bit must be read immediately following a Reset External/Status Interrupt command to read the current state of the \overline{SYNC} input.

In the External Sync mode, the Sync/Hunt bit operates in a fashion similar to the Asynchronous mode, except the Enter Hunt Mode control bit enables the external sync detection logic. When the External Sync Mode and Enter Hunt Mode bits are set (for example, when the receiver is enabled following a reset), the \overline{SYNC} input must be held High by the external logic until external character synchronization is achieved. A High at the \overline{SYNC} input holds the Sync/Hunt status bit in the reset condition.

When external synchronization is achieved, \overline{SYNC} must be driven Low on the second rising edge of \overline{RxC} after that rising edge of \overline{RxC} on which the last bit of the sync character was received. In other words, after the sync pattern is detected, the external logic must wait for two full Receive Clock cycles to activate the \overline{SYNC} input. Once \overline{SYNC} is forced Low, it is a good practice to keep it Low until the CPU informs the external sync logic that synchronization has been lost or a new message is

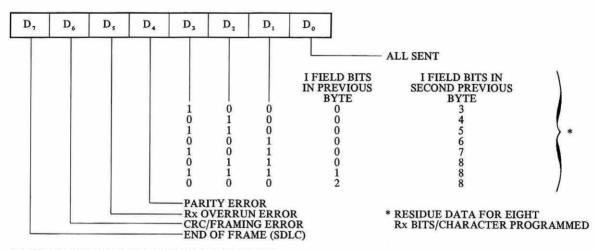
about to start. Refer to Figure 18 for timing details. The High-to-Low transition of the SYNC input sets the Sync/Hunt bit, which - in turn - sets the External/Status interrupt. The CPU must clear the interrupt by issueing the Reset External/Status Interrupt command.

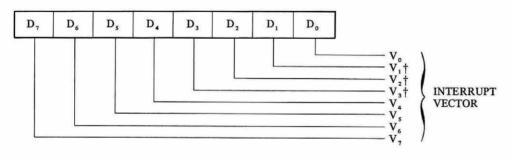
When the \overline{SYNC} input goes High again, another External/Status interrupt is generated that must also be cleared. The Enter Hunt Mode control bit is set whenever character synchronization is lost or the end of message is detected. In this case, the Z80-SIO again looks for a Hihg-to-Low transition on the \overline{SYNC} input and the operation repeats as explained previously. This implies the CPU should also inform the external logic that character synchronization has been lost and that the Z80-SIO is waiting for \overline{SYNC} to become active.


In the Monosync and Bisync Receive modes, the Sync/Hunt status bit is initially set to 1 by the Enter Hunt Mode bit. The Sync/Hunt bit is reset when the Z80-SIO establishes character synchronization. The High-to-Low transition of the Sync/Hunt bit causes an External/Status interrupt that must be cleared by the CPU issueing the Reset External/Status Interrupt command. This enables the Z80-SIO to detect the next transition of other External/Status bits.

When the CPU detects the end of message or that character synchronization is lost, it sets the Enter Hunt Mode control bit, which - in turn - sets the Sync/Hunt bit to 1. The Low-to-High transition of the Sync/Hunt bit sets the External/Status interrupt, which must also be cleared by the Reset External/Status Interrupt command. Note that the \overline{SYNC} pin acts as an output in this mode and goes Low every time a sync pattern is detected in the data stream.

In the SDLC mode, the Sync/Hunt bit is initially set by the Enter Hunt mode bit, or when the receiver is disabled. In any case, it is reset to 0 when the opening flag of the first frame is detected by the Z80-SIO. The External/Status interrupt is also generated, and should be handled as discussed previously.


Unlike the Monosync and Bisync modes, once the Sync/Hunt bit is reset in the SDLC mode, it does not need to be set when the end of message is detected. The Z80-SIO automatically maintains synchronization. The only way the Sync/Hunt bit can be set again is by the Enter Hunt Mode bit, or by disabling the receiver.


* USED WITH "EXTERNAL/STATUS INTERRUPT" MODE

READ REGISTER 1[†]

† USED WITH SPECIAL RECEIVE CONDITION MODE

READ REGISTER 2

† VARIABLE IF "STATUS AFFECT VECTOR" IS PROGRAMMED

6 Clear To Send (D₅)

This bit is similar to the DCD bit, except that it shows the inverted state of the CTS pin.

\bigcirc Transmit Underrun/End Of Message (D₆)

This bit is in a set condition following a reset (internal or external). The only command that can reset this bit is the Reset Transmit Underrun/EOM Latch command (WR0, D_6 and D_7). When the Transmit Underrun condition occurs, this bit is set; its becoming set causes the External/Status interrupt, which must be reset by issueing the Reset External/Status Interrupt, command bits (WR0). This status bit plays an important role in conjunction with other control bits in controlling a transmit operation.

Break/Abort (D₇)

In the Asynchronous Receive mode, this bit is set when a Break sequence (null character plus framing error) is detected in the data stream. The External/Status interrupt, if enabled, is set when Break is detected. The interrupt service routine must issue the Reset External/Status Interrupt command (WR0, CMD_2) to the break detection logic so the Break sequence termination can be recognized.

The Break/Abort bit is reset when the termination of the Break sequence is detected in the incoming data stream. The termination of the Break sequence also causes the External/Status interrupt to be set. The Reset External/Status Interrupt command must be issued to enable the break detection logic to look for the next Break sequence. A single extraneous null character is present in the receiver after the termination of a break; it should be read and discarded.

In the SDLC Receive mode, this status bit is set by the detection of an Abort sequence (seven or more 1's). The External/Status interrupt is handled the same way as in the case of a Break. The Break/Abort bit is not used in the Synchronous Receive mode.

(2) READ REGISTER 1

This register contains the Special Receive condition status bits and Residue codes for the I-field in the SDLC Receive Mode.

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
End Of Frame (SDLC)	CRC/ Framing Error	Receiver Overrun Error	Parity Error	Residue Code 2	Residue Code 1	Residue Code 0	All Sent

(1) All Sent (D_0)

In asynchronous modes, this bit is set when all the characters have completely cleared the transmitter. Transitions of this bit do not cause interrupts. It is always set in synchronous modes.

\bigcirc Residue Codes 0, 1 and 2 (D₁-D₃)

In those cases of the SDLC receive mode where the I-field is not an integral multiple of the character length, these three bits indicate the length of the I-field. These codes are meaningful only for the transfer in which the End Of Frame bit is set (SDLC). For a receive character length of eight bits per character, the codes signify the following:

Residue Code 2	Residue Code 1	Residue Code 0	I-Field Bits In Previous Byte	I-Field Bits In Second Previous Byte
1	0	0	0	3
0	1	0	0	4
1	1	0	0	5
0	0	1	0	6
1	0	1	0	7
0	1	1	0	8
1	1	1	1	8
0	0	0	2	8

If a receive character length different from eight bits is used for the I-field, a table similar to the previous one may be constructed for each different character length. For no residue (that is, the last character boundary coincides with the boundary of the I-field and CRC field), the Residue codes are:

Bits per Character	D ₃ Residue Code 2	D ₂ Residue Code 1	D ₁ Residue Code 0
8 Bits per Character	0	1	1
7 Bits per Character	0	0	0
6 Bits per Character	0	1	0
5 Bits per Character	0	0	1

3 Parity Error (D₄)

When parity is enabled, this bit is set for those characters whose parity does not match the programmed sense (even/odd). The bit is latched, so once an error occurs, it remains set until the Error Reset command (WR0) is given.

(4) Receive Overrun Error (D_5)

This bit indicates that more than three characters have been received without a read from the CPU. Only the character that has been written over is flagged with this error, but when this character is read, the error condition is latched until reset by the Error Reset command. If Status Affects Vector is enabled, the character that has been overrun interrupts with a Special Receive Condition vector.

(5) CRC/Framing Error (D₆)

If a Framing Error occurs (asynchronous modes), this bit is set (and not latched) for the receive character in which the Framing Error occurred. Detection of a Framing Error adds an additional one-half of a bit time to the character time so the Framing Error is not interpreted as a new start bit. In synchronous and SDLC modes, this bit indicates the result of comparing the CRC checker to the appropriate check value. This bit is reset by issueing an Error Reset command. The bit is not latched, so it is always updated when the next character is received. When used for CRC error and status in synchronous modes, it is usually set since most bit combinations result in a non-zero CRC except for a correctly completed message.

(6) End Of Frame (D_7)

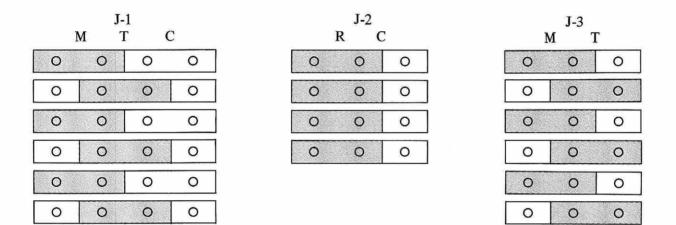
This bit is used only with the SDLC mode and indicates that a valid ending flag has been received and that the CRC Error and Residue codes are also valid. This bit can be reset by issueing the Error Reset command. It is also updated by the first character of the following frame.

(3) READ REGISTER 2 (Ch. B Only)

This register contains the interrupt vector written into WR2 if the Status Affects Vector control bit is not set. If the control bit is set, it contains the modified vector shown in the Status Affects Vector paragraph of the Write Register 1 section. When this register is read, the vector returned is modified by the highest priority interrupting condition at the time of the read. If no interrupts are pending, the vector is modified with $V_3 = 0$, $V_2 = 1$ and $V_1 = 1$. This register may be read only through Channel B.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ₀
V_7 V_6 V_5 V_4 V_3 V_2 V_1	Vo

Variable if Status Affects Vector is enabled

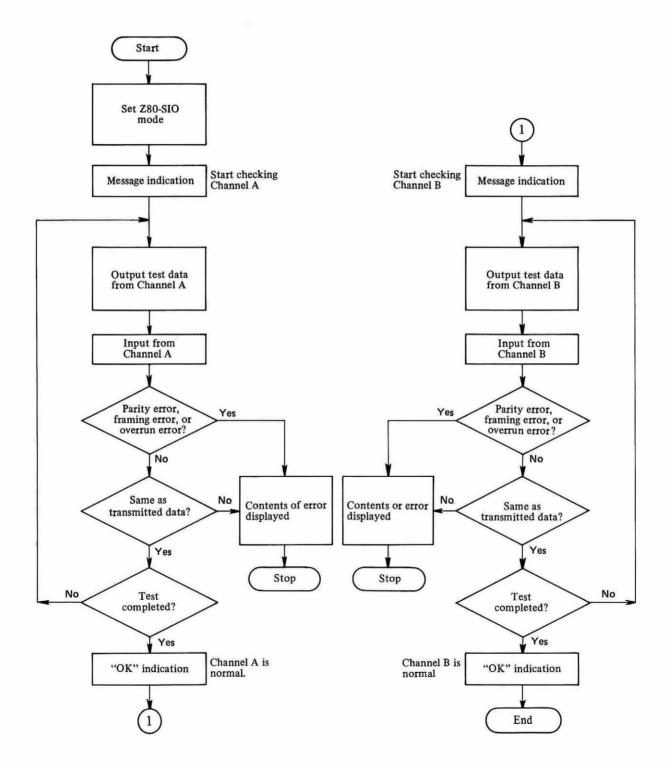

8. Sample Programs

Self-diagnosis program

Let us consider a program for self-diagnosis of this interface card and assume that data are transmitted from Channel A are received by Channel A. For channel B, similar communication system shall be adopted. Self-diagnosis of the interface card can be made by examining whether the receive data and transmit data are the same at the time of transmission/receiving.

Setting jumper blocks on the card

For the self-diagnosis as mentioned above, set the jumper blocks on the card as follows.


Since port addresses B0H, B1H, B2H, and B3H are used in the program, set the switch SW-1 in the following (factory setting).

Switch segment	6	5	4	3	2	1
Switch position	OFF	ON	OFF	OFF	ON	ON

Set the switch for baud rate setting as desired. After setting each mode, install the card in MZ-80B. On this occasion, signal cable needs not to be connected.

Flow Chart of Self-diagnosis Program

Start testing Channel A. Stop the program when an error occurs. If Channel A is found normal, test Channel B then.

Program by BASIC/PASCAL language

Now, let us draw up the program described in the above-mentioned flow chart, using [†]BASIC and PASCAL languages. The program list is shown later.

In the BASIC program, the routine to control the interface card is composed of machine language. The machine language data are written into the memory by POKE statement and the routine is called by USR statement. The routine is made by programming statement Nos. 1000 through 1990.

Statement Nos. 1080~1160.....Parameters

Clock rate	1	x 16
Stop bit		2 bits
Parity	\$	Present
Odd/even of		
parity		Even
Transmit/recei	ive	
character		8 bits
Auto enable	:	Set

Statement Nos. $1180 \sim 1370$ Mode setting routine
Statement Nos. 1550~1610 Channel A input routine
Input data are stored in Address CHAR.
Error flags are stored in Address INER@.
Statement Nos. $1630 \sim 1740$ Channel B input routine
Input data are stored in Address CAHR.
Error flags are stored in Address INER@.
Statement Nos. 1780~1840 Channel A output routine.
Transmit data are stored in Address CHAR.
Statement Nos. 1860~1930 Channel B output routine
Transmit data are stored in Address CHAR.
Statement Nos. 1950 ~ 1990 Writes machine language data in the memory

Since the concept of programming by PASCAL language is the same as that of BASIC programming, refer to the program list for actual programming.

by BASIC language

U			-	-		
1000	REM	*****	*******	********	*********	*******
1010	REM	*				*
1020	REM	* Ser:	ial I/F S	Subroutine	for MZ-8BI03 o	n MZ-80B *
1025	REM	*	(1	by BASIC in	(terpreter)	*
1030						×
			*******	*******	**********	********
1050						
			arameter	***		
1070						
1080		WR	DEFB	18H	DATA 18	
1090			DEFB	10H	DATA 10	
1100			DEFB	10H	:DATA 10	
1110		WR4	DEFB	4	:DATA 04	
1120		يل ي	DEFB	4FH	:DATA 4F	
1130		WR5	DEFB	5	DATA 05	
1140		1100		EAH	DATA EA	
1150		WK3	DEFB	3	DATA 03	
1160			DEFB	EOH	:DATA EO	
1170		MODE	THE			-
		MODE	ENT	C, CHACT	; [adr.=\$F009	J
1190				B,9	DATA OE,B1	
1200 1210					:DATA 06,09 :DATA 21,00,F0	
1210			LD OTIR	HL,WR		
1220				С,СНВСТ	:DATA ED,B3 :DATA OE,B3	
1230				B,9	DATA 06,09	
1240			LD LD	HL;WR	:DATA 21,00,FO	
1260			OTIR		DATA ED,B3	
1280				A,3 -	DATA SE,03	
1280			OUT		DATA D3,B1	
1290			LD		:DATA 3A,08,FO	
1300			OR	1	:DATA F6,01	
1310					DATA D3,B1	
1320			LD	A+3	DATA 3E,03	
1330			OUT		DATA D3,83	
1340			LD		:DATA 3A,08,F0	
1350			OR	1	:DATA F6:01	
1360	REM		OUT	(CHBCT),A	:DATA D3,B3	
1370	REM		RET		DATA C9	
1380	REM					
1390	REM	*** IN	NPUT ROUT	TINE ***		
1400	REM	(1)	NER@)=0	NO ERROR		
1410	REM		bit4=1	PARITY EF	ROR	
1420	REM		bit5=1	OVERRUN E	ERROR	
1430	REM		bit6=1	FRAMING E	RROR	
1440	REM					
		INER@	ENT		; [adr.=\$F032	1
1460			DEFS	1	DATA 00	
1470	REM	CHAR	ENT		; [adr.=\$F033]
1480			DEFS	1	:DATA 00	
1490			Allerter Las		www.careera.com	
		CHAIN	ENT		;`[adr.=\$F034]
1510			IN A, (CH	HACT)	:DATA DB,B1	
1520			RRCA	3 (2) - 2000 - 200	DATA OF	
1530			JR	NC+CHAIN		
1540			LD	A,1	:DATA 3E,01	
1550			OUT		DATA D3,81	
1560			IN		DATA DB,B1	
1570			AND	70H	:DATA E6,70	
1580					:DATA 32,32,F0	
1590			IN LD		:DATA DB,B0 :DATA 32,33,F0	
$\frac{1600}{1610}$			RET	(CHAR) A	:DATA 32,33,FU :DATA C9	
1010	NER		NEI		·DHIA UZ	

1630 REM CHBIN ENT ; [adr.=\$F04A] 1640 REM IN A, (CHBCT) :DATA DB,B3 1650 REM RRCA :DATA OF 1660 REM :DATA 30,FB JF. NC+CHBIN 1670 REM LD :DATA 3E,01 A . 1 1680 REM DUIT (CHBCT),A :DATA D3,B3 1690 REM IN A, (CHBCT) :DATA DB, B3 1700 REM AND 70H :DATA E6,70 1710 REM 1 1 (INER@),A :DATA 32,32,FO 1720 REM IN A, (CHBDT) :DATA DB, B2 1730 REM LD (CHAR),A :DATA 32,33,F0 1740 REM RET :DATA C9 1750 REM OUTPUT ROUTINE *** 1760 REM *** 1770 REM 1780 REM CHAOUT ENT ; [adr.=\$F060] 1790 REM IN A, (CHACT) :DATA DB, B1 1800 REM BIT :DATA CB,57 2,A 1810 REM JR Z, CHAOUT :DATA 28, FA 1820 REM LD A, (CHAR) :DATA 34,33,F0 1830 REM OUT (CHADT),A :DATA D3,B0 1840 REM RET :DATA C9 1850 REM 1860 REM CHBOUT ENT ; [adr.=\$F06C] 1870 REM IN A, (CHBCT) :DATA DB, B3 1880 REM BIT :DATA CB:57 2 + A 1890 REM JR Z, CHBOUT :DATA 28, FA 1900 REM LD :DATA 3A,33,FO A, (CHAR) 1910 REM OUT (CHBDT),A :DATA D3,B2 1920 REM RET :DATA C9 1930 REM END **:DATA END** 1940 REM 1950 DIM X(30):LIMIT \$F000 :P=15*4096 1960 FOR J=0 TO 9:X(J)=J:NEXT:FOR J=0 TO 5:X(17+J)=J+10:NEXT 1965 PRINT"SIF SUBROUTIN LOADING" 1970 READ X\$: IF X\$="END" THEN 3000 1980 J=16*X(ASC(MID\$(X\$,1,1))-48)+X(ASC(MID\$(X\$,2,1))-48) 1990 POKE P, J: P=P+1:GOTO 1970 3000 REM ********** 3010 REM * 3020 REM * MAIN PROGRAM ¥ 3030 REM * 3050 REM 3060 USR(\$F009):REM mode set 3070 PRINT:PRINT:PRINT "***** TEST PROGRAM (Seria) I/F MZ-8BIO3) ***** " 3080 PRINT 3090 PRINT "Channel A TEST " 3100 FOR I=0 TO 255 3110 POKE \$F033,I :USR(\$F060):POKE \$F033,0 : REM channel-A output 3120 USR(\$F034):A=PEEK(\$F033):ER=PEEK(\$F032) : REM channel-A input 3130 IF ER<>0 THEN PRINT"COMMUNICATION ER = ";ER:STOP 3140 IF I<>A THEN PRINT"COMPARA ER":STOP 3150 PRINT", "; :NEXT 3160 PRINT"*** OK ***" 3170 PRINT 3180 PRINT"Channel B TEST " 3190 FOR I=0 TO 255 a 3200 POKE \$F033, I:USR(\$F06C): POKE \$F033,0 : REM channel-B output 3210 USR(\$F04A):A=PEEK(\$F033):ER=PEEK(\$F032) : REM channel-B input 3220 IF ER<>0 THEN PRINT "COMMUNICATION ER = ";ER:STOP 3230 IF I<>A THEN PRINT "COMPARA ER":STOP 3240 FRINT"#";:NEXT 3250 PRINT"*** OK ***" 3260 END

by PASCAL language

```
1. (
                                                       3
2.{
       Serial I/F subroutine for MZ-8BI03 on MZ-80
                                                       3
3.6
                 ( by PASCAL interpreter )
                                                       3
4. {
                                                       3
6.var BIT4, BIT5, BIT6, BIT7: integer;
7.
      CHADT, CHACT, CHBDT, CHBCT, ERFLAG; integer;
8.
      MODEPARAMETER:array[9]of char;
9.
      OUTDATA, INPDATA: char;
10.procedure BITPAT(BYTE:integer);
11.{ bit pattern exchange }
12.
    begin
13.
       BIT4:=0;BIT5:=0;BIT6:=0;BIT7:=0;
       if(BYTE div 128)=1 then begin BIT7:=1;BYTE:=BYTE-128 end;
14.
       if(BYTE div 64)=1 then begin BIT6:=1;BYTE:=BYTE-64 end;
15.
16.
       if(BYTE div 32)=1 then begin BIT5:=1;BYTE:=BYTE-32 end;
       if(BYTE div 16)=1 then begin BIT4:=1;BYTE:=BYTE-16 end;
17.
18.
    end;
19.procedure PARAMETERSET;
20.{
     constant & parameter setting )
21.
    begin
22.
       CHADT:=11*16;{BOH,Channel A data port);
       CHACT:=CHADT+1;(B1H, channel A control port);
23.
24.
       CHBDT:=CHACT+1;{B2H, channel B data port};
       CHBCT:=CHBDT+1;(B3H, channel B control port);
25.
       MODEPARAMETER[1]:=chr(1*16+8);(18H,Channel reset);
26.
27.
       MODEPARAMETER[2]:=chr(16);{10H,ext+status reset};
28.
       MODEPARAMETER[3]:=chr(16);
29.
       MODEPARAMETER[4]:=chr(4);{Register NO.};
       MODEPARAMETER[5]:=chr(4*16+15);{4FH,x16,2stop,EV,PE};
30.
31.
       MODEPARAMETER[6]:=chr(5);(Register NO.);
       MODEPARAMETER[7]:=chr(14*16+10); {EAH,DTR,TxDT=8,TxEN,RTS);
32.
33.
       MODEPARAMETER[8]:=chr(6);(Register NO.);
34.
       MODEPARAMETER[9]:=chr(14*16);(EOH,RxDT=8)
35.
    end;
36.procedure MODESET(CHXCT:integer);
37.{ mode set routine }
38. var N:integer;
39.
        RXEN:char;
40. begin
41.
       for N:=1 to 9 do output(MODEPARAMETER[N],CHXCT);
       RXEN:=succ(MODEPARAMETER[9]);
42.
43.
       output(chr(3),CHXCT);
44.
       output(RXEN,CHXCT)
45.
    end:
46.procedure SINP(CHXCT,CHXDT:integer);
47.{
     serial I/F input routine }
48. var STATUS:char;
49. begin
50.
       ERFLAG:=0;
51.
       repeat
         STATUS:=input(CHXCT);
52.
53.
        until odd(ord(STATUS));
54.
           output(chr(1),CHXCT);
55.
           STATUS:=input(CHXCT);
56.
           INPDATA:=input(CHXDT);
57.
           BITPAT(ord(STATUS));
           if(BIT6=1)or(BIT5=1)or(BIT4=1)then ERFLAG:=1
58.
59. end;
```

```
60.procedure SOUT(CHXCT,CHXDT:integer;DATA:char);
       serial I/F output routine
 61.{
                                  3
 62.
      var STATUS:char;N:integer;
 63.
      begin
 64.
        ERFLAG:=0;
        repeat
 65.
 66.
          STATUS:=input(CHXCT);
          N:=ord(STATUS);N:=N div 4
 67.
 68.
        until odd(N);
 69.
          output(DATA,CHXDT)
 70.
      end;
 72.(
                                           3
 73.{
               test procedure
                                           3
 74.{
                                           }
 75.{
           channel-X test routine
                                           3
 76.{
                                           3
 78.procedure TESTX(CHXCT,CHXDT:integer);
 79. var I:integer:
 80.
          A:char;
 81.
      begin
 82.
        for I:=0 to 255 do
 83.
          begin
 84.
             OUTDATA:=chr(I);
 85.
             SOUT(CHXCT, CHXDT, OUTDATA);
 86.
             SINP(CHXCT, CHXDT);
 87.
             if ERFLAG<>0 then
 88.
                begin
 89.
                  if BIT6=1 then writeln("FRAMING ERROR");
 90.
                  if BIT5=1 then writeln("OVERRUN ERROR");
 91.
                  if BIT4=1 then writeln("PARITY ERROR")
 92.
                end;
 93.
             if OUTDATA<>INFDATA then
 94.
                  begin
 95.
                  write("COMPARA ER : OUTDATA=",ord(OUTDATA):4);
 96.
                  writeln(" INPDATA=",ord(INPDATA):4);
 97.
                  ERFLAG:=2
 98.
                  end;
 99.
             if ERFLAG=0 then write(".")
100.
              else begin
101.
                  write("C : CONTINUE ");
102.
                  repeat readln(A)until A='C';
103.
                  output(chr(3*16),CHACT);(SIO_ER_RESET);
104.
                  output(chr(3*16),CHBCT);(
                                                     3 :
105.
               end;
106.
          end;
107.
        if ERFLAG=0 then writeln("*** OK ***");
108.
     end:
110.6
                                 3
111. (
            MAIN PROGRAM
                                 2
112.(
                                 3
114.begin
115.
        PARAMETERSET;
116.
        MODESET(CHACT);
117.
        MODESET(CHBCT);
118.
        writeln("Channel A TEST ");
119.
        TESTX(CHACT, CHADT);
120.
        writeln():
121.
        writeln("Channel B TEST ");
122.
        TESTX(CHBCT,CHBDT);
123.end.
124.
```

9. BASIC SB-6511

BASIC SB-6511 is an improved version of Disk BASIC which is based on Disk BASIC SB-6510 and includes control statements for the serial interface (MZ-8BI03) and GP-IB interface (MZ-8BI04). The following is information concerning the serial interface.

Using this version of BASIC allows them to be controlled simply.

1. RSMODE

Format

RSMODE a, Rb, Tc, Md, RXe

a: Channel Specification

a	Channel
Α	A Channel
В	B Channel

b: Specification of the number of bits for the received character.

b	bits/character
5	5
6	6
7	7
8	8

c: Specification of the number of bits for the transmitted character.

С	bits/character
5	5
6	6
7	7
8	8

d: Parity bit specification and number of stop bits specificat	fication
--	----------

d	parity	stop bits
69	odd	8
70	none	1
71	even	
73	odd	
74	none	1½
75	even	
77	odd	
78	none	2
79	even	

e: Receive active/inactive specification

е	Receive
0	Inactive
1	Active

Function

Setting of the various modes is performed using the above parameters.

Description

- Although it is not necessary to specify all of the parameters, specification of the receive active/inactive status must be made after specification of the various parameters.
- Specification of mode setting parameters other than those given in *a* through *e* are not allowed.
- When BASIC is initialized, all channels are set for the following modes.

<i>b</i> , <i>c</i>	8	8 bits per character
d	79	Even parity/Stop bits 2
е	0	Receive inactive

Example

10 RSMODE A, RX1 Enables reception in channel A.

2. RSO

Format	RSO x A \$
	x: Channel specification (A or B).
	A\$: Specify transmission data using a string variable
Function	Transmit the data specified using A to channel x
Example	10 X\$ = "Demonstration"
	20 RSO B X\$Transmit the data in X\$ to channel B.

3. RSI

Format	RSI x A \$
	x: Channel specification (A or B)
	A\$: A string variable which contains the received data
Function	Data is received from channel x and stored in the string variable A .
Example	10 RSMODE A, RX1Activates channel A for reception. 20 RSI A B\$Receives data from channel A.
	30 PRINT B\$

Error Number

Error 29:	Framing error
Error 30:	Overrun error
Error 31:	Parity error
Error 32:	Data transmission is impossible. (The transmit buffer is not empty.)
Error 33:	Buffer overflow

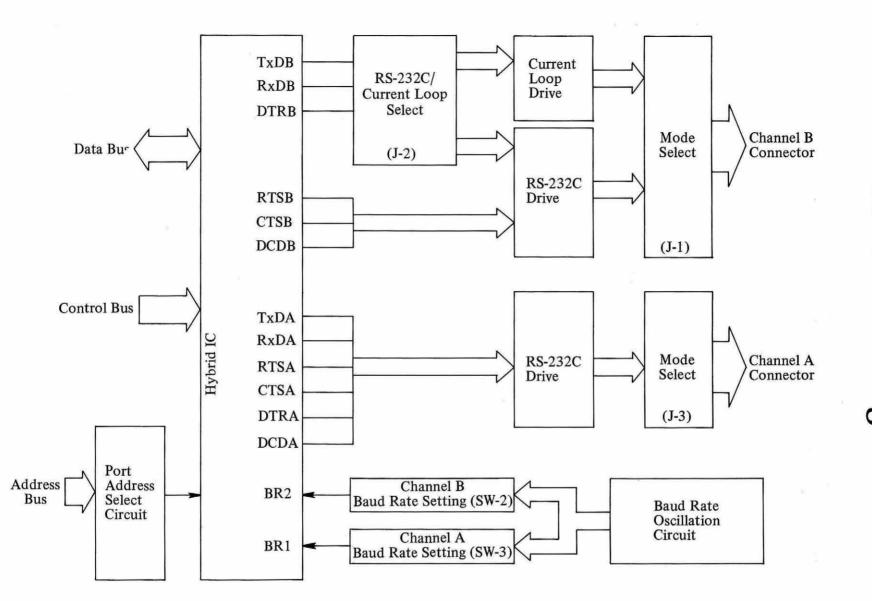


Fig. 10-1 Block Diagram of the Interface Card

10. Circuit Diagram

61

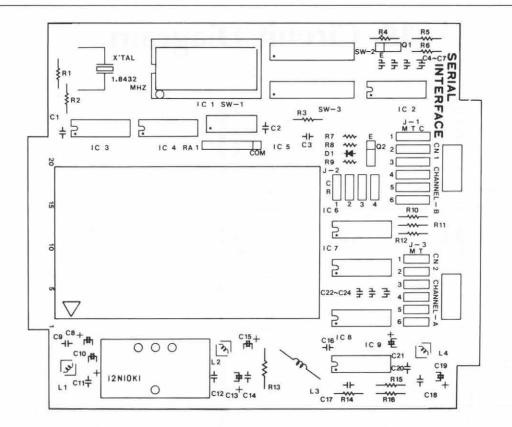
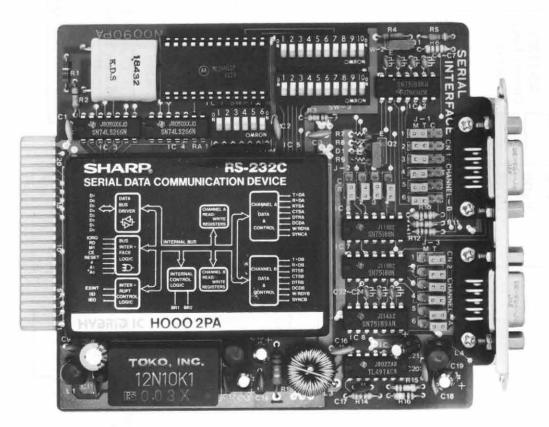
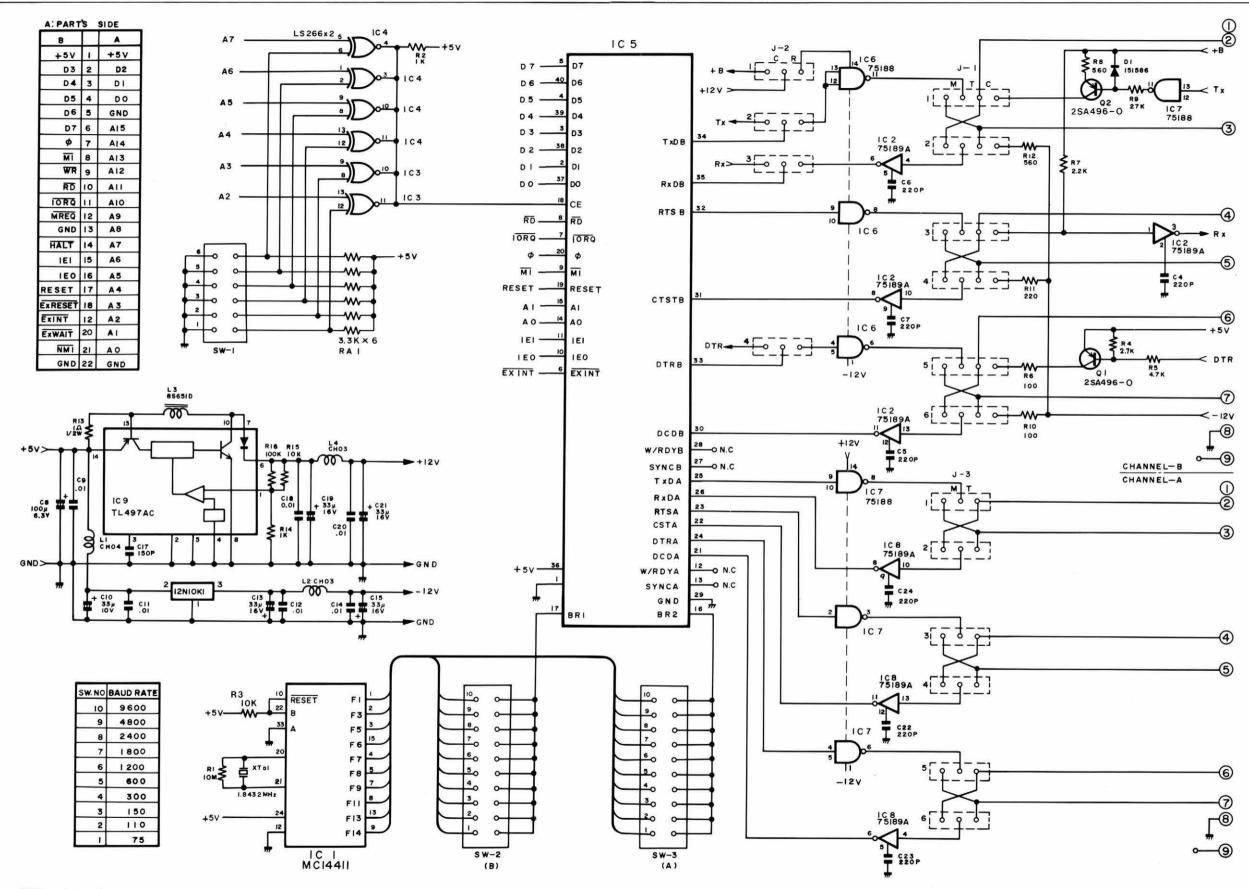




Fig. 10-2. Components Arrangement

This wiring diagram may be changed in the future for improvement of the product without prior notice.

Fig. 10-3. Wiring Diagram

SHARP CORPORATION

TINSE0036PAZZ 2I 301-K Printed in Japan